Thijs Feryn

VARNISH 6

BY EXAMPLE

A practical guide to web acceleration and content

»

delivery with Varnish 6 technology

@
®VARNISH

SOFTWARE

Varnish 6 By Example

by Thijs Feryn

© 2021 Varnish Software AB
Layout: Tomas Arfert

All rights reserved. No portion of this book may be reproduced in any form
without permission from the publisher, except as permitted by Swedish copyright law.
For permissions contact: info@varnish-software.com

Varnish (word) and Varnish Software (figurative) are registered trademarks of Varnish Software AB

Content

Chapter 1: What is Varnish?

1.1
1.2
1.3

1.31
1.3.2
133

134
14

1441
1.4.2
14.3
1.4.4
1.4.5

1.5
1.5.1
1.5.2

15.3
154

1.5.5
1.5.6
157
15.8

What is Varnish?
What is VCL?

Varnish Cache and Varnish
Enterprise

Version numbers

Product vs project

Which features does
Varnish Cache have?

Which features does

Varnish Enterprise have?
Which use cases does Varnish
address?

APl acceleration

Web acceleration

Private CDN

Video streaming acceleration
Web application firewalling

Under the hood

The manager process
The VCL compiler process
Compilation steps

The child process
Threads

The cache-main thread

The thread pool herder thread
The acceptor threads

The waiter thread

The expiry thread

The backend-poller thread
The ban-lurker thread
Worker threads

Transports
Disembarking
The waiting list
Serialization

14

15
17

19
20
20

21

24

26
26
27
27
29
30

32
32
33
33
34

34
36
36
37
37
38
38
39
39

40
Ly
|
42

1.5.9 Workspaces
1.5.10 Backend fetches
Streaming
Varnish Fetch and Delivery Processors

1.6 Chapter summary

Chapter 2: Varnish 6

2.1 Why Varnish 6?

211 Alot of old content out there

2.1.2 Varnish versions vs VCL syntax
versions

21.2 Encouraging upgrades

21.3 It’s the way forward

2.2 What's new in Varnish 6?

2.21 What’s new in Varnish 6.0?
UNIX domain sockets (UDS)
HTTP/2 support considered stable
Other features in Varnish 6.0

2.2.2 What’s new in Varnish 6.1?

2.2.3 What’s new in Varnish 6.2?

2.2.4 What’s new in Varnish 6.3?
Explicitly trigger vcl_backend_error
VMOD import changes

Behavior change in auto VCL temperature
state

Querying changes in VSL tools
2.2.5 What’s new in Varnish 6.4?
if-range support
Import vmod_cookie from varnish_modules
Defining none backends
Other VCL changes
2.2.6 What’s new in Varnish 6.5?
Strict CIDR checks on ACLs
vce_acl_pedantic parameter
obj.can_esi
A new .resolve() method
Closing the connection
BLOB literal syntax
std.blobread()

43

43
44
44

45

46

47
47

48
48
49

50
50
51
52
52

53
54
54
54
55

55
55

56
56

57
58
58
58
59
59
59
59
60
60

2.27

2.2.8

23
231
233

233

234

235
2.3.6
2.3.8

239

No connection is made to a backend
administratively set as unhealthy

Help screen in varnishstat
What’s new in Varnish 6.6?
Start Varnish without a backend
Header validation

Vary notices

Checking ban errors

Modulus operator

New notation for long strings
New built-in VCL

VCL variable changes

Backports to 6.0 LTS

Varnish Enterprise 6
The origin story

New features in Varnish Enterprise 6

Total encryption and vmod_crypto
vmod_urlplus

The return of req.grace
vmod_synthbackend

MSE3

vmod_ykey

Varnish High Availability 6
vmod_mmdb

vmod_utils

Explicitly return errors

JSON formatting support in varnishncsa

vmod_str
vmod_mse

Last byte timeout
If-Range support
Built-in TLS support
Memory governor
vmod_jwt
vmod_stale
vmod_sqlite3
vmod_tls
vmod_headerplus
vmod_resolver
Veribot

vmod_brotli
vmod_format

Features ported from Varnish
Cache Plus 4.1

What happens when a new Varnish
Cache version is released?

60
60

60
60
61
61
61
61
62
62
62

62

63
63
63

68
70

71

71
73
75
75
76
78
79
79
80
83
84
84
85
85
87
88
89
90
91
92

93
93

95

96

24 Where to get it 98
2.41 The official package repositories 98
2.4.2 Installing from source 929
2.4.3 Official Docker image 929
2.4.4 Official cloud images 100
Varnish Enterprise features in the cloud 101
Licensing and billing 101
2.5 Chapter summary 102
Chapter 3: It's all about HTTP 103
3.1 HTTP as the go-to protocol 105
311 The strengths of HTTP 105
3.1.2 The limitations of HTTP 106
3.1.3 Newer versions of the HTTP protocol 107
HTTP/1.1 107
HTTP/2 108
HTTP/3.0 108
3.1.4 What about Varnish? 109
HTTP/2 in Varnish 110
HTTP/3 in Varnish 1
3.2 HTTP caching 112
3.21 The Expires header 112
3.2.2 The Cache-Control header 13
max-age vs s-maxage 13
Public vs private 114
Deciding not to cache 114
Revalidation 115
How Varnish deals with Cache-Control 116
3.2.3 Surrogates 17
The Surrogate-Capability header 18
The Surrogate-Control header 118
Surrogate caching 119
Surrogate targeting 120
Surrogate support in Varnish 122
3.2.4 TTL header precedence in Varnish 122
3.2.5 Cacheable request methods 123
3.3.6 Cacheable status codes 123
3.2.7 Cache variations 124
The vary header 125
Accept-Language variation example 125
Hit-rate considerations 126
Sanitizing user input 127
Varying on custom headers 128
3.3 Varnish built-in VCL behavior 130

3.31

3.3.2

3.33
3.34

3.35

34

341
34.2
343
3.4.4
345

3.5

3.5.1
3.5.2
353
354
355
3.5.6

3.5.7

3.5.8

3.59

3.6

3.6.1
3.6.2
363
364

3.7
3.7
372

When is a request cacheable?
Cacheable request methods
Invalid request methods

State getting in the way

How does Varnish identify objects
in cache?

Dealing with stale content

When does Varnish store a
response in cache?

What happens if the response
couldn’t be stored in cache?
Range requests

Accept-Ranges response header
Range request header
Content-Range response header
What if the range request fails?

Range request support in Varnish
Impact on the origin
Backend range requests using VCL

Conditional requests
304 Not Modified

Etag: the fingerprint
If-None-Match

The workflow

Strong vs weak validation

Conditional request support
in Varnish
Conditional request workflow in Varnish

Grace vs keep

Optimizing the origin for
conditional requests
Some context

Exit early
Leveraging Varnish

Last-Modified and If-Modified-Since

as your backup plan
Conditional range requests
Compression

Content negotiation

Gzip compression in Varnish
Gzip and VCL

Brotli compression in Varnish

Content streaming
Chunked transfer encoding
Streaming support in Varnish

130
131

131
132

132
132

133

134

136
136
137
137
138

139
139

139

142
142
142
143
143
144

145
145
148

148
148
149
150

151
152

154
154
154
155
156

157
157
158

3.8 Summary

Chapter 4: The Varnish
Configuration Language

4.1 What is VCL again?

4.2 The finite state machine
4.21 The client-side flow
4.2.2 The backend flow

160

161

162

163
164
165

4.3 Hooks, subroutines, and built-in VCL 166

4.31 vcl_recv
Error cases

To pipe or not to pipe
Only GET and HEAD
Stateless
Anything else gets cached
4.3.2 vcl_hash
4.3.3 vcl_hit
A dirty little secret about vcl_hit
4.3.4 vcl_miss
4.3.5 vcl_purge
4.3.6 vcl_pass
4.3.7 vcl_pipe
4.3.8 vcl_synth
4.3.9 vcl_deliver
4.3.10 vcl_backend_fetch

4.3.11 vcl_backend_response
Uncacheable

Zero TTL
A cookie was set
Surrogate control
Cache control says no
Vary all the things
4.3.12 vcl_backend_error
4.3.13 vcl_init
4.3.14 vcl_fini

44 V(L syntax

4.41 VCL version declaration
4.4.2 Assigning values
4.4.3 Strings

4.4.4 Conditionals

4.4.5 Operators

446 Comments

4.47 Numbers

166
167
168
168
169
169

170

170
171

172
172
172
173
174
175
176
177
177
178
179
179
179
180
180
182
182

183
183
183
184
185
186
187
187

4438
449

4.4.10
441

4412
4413

4.4.14
4.4.15
4.4.16

4.5
451

45.2

453
453

454
45.5
4.51

4.6
461
46.2

46.3

Booleans 188
Time & durations 189
Time 189
Duration 189
Regular expressions 190
Backends 190
The basics 190
Probes 191
UNIX domain sockets 194
Overriding the host header 195
Access control lists 195
Functions 196
ban() 196
hash_data() 197
synthetic() 197
regsub() 197
A practical example 198
A practical example 199
Subroutines 200
Include 201
Import 202
VCL objects and variables 204
Connection variables 204
PROXY vs no PROXY 205
The IP type 206
Local variables 207
Identities 207
Request variables 207
A request example 208

Top-level requests and Edge Side Includes 209

Backend request variables 210
Backend response variables 210
VFP-related backend response variables 211

Timing-related backend response variables 211

Other backend response variables 2n
Object variables 212
Response variables 213
Storage variables 213
Making changes 215
Excluding URL patterns 215
Sanitizing the URL 216
Alphabetic sorting 217

Removing tracking query string parameters 217

Removing URL hashes 217
Removing trailing question marks 218
Stripping off cookies 218
Removing select cookies 219

Removing all but some cookies
Using vmod_cookie
Using vmod_cookieplus

4.6.4 Sanitizing content negotiation

headers

Overriding TTLs

Static data example
Overriding the default TTL
Zero TTLs are evil

4.6.5

4.6.6
46.7

Dealing with websockets
Enabling ESI support

Inspect the URL

Inspect the Content-Type header
Surrogate headers

4.6.8 Protocol detection

Using vmod_proxy
Using vmod_tls

4.6.9 VCL cache variations

Protocol cache variations
Language cache variations
4.6.10 Language cookie cache variation
Using vmod_cookie
Using vmod_cookieplus

4.6.11 Custom error messages
The current built-in VCL implementation

220
221
221

222
224
224
225
225

226
227
228
228
228

229
230
231

231

231
232
233
234
235

235
235

Customize error messages using templates 237

4.6.12 Caching objects on the second miss 238

4.7 Validation and testing
4.71 Syntax validation
4.7.2 Testing
Built-in VCL test
A failing test
Looking at Varnish’s tests
A VCL test
48 Summary

Chapter 5:
Varnish Modules (VMODs)

51 What's a VMOD?
5.1.1 Scope and purpose
5.1.2 VMOD API

5.1.3 VCLusage

5.1.4 VMOD initialization
5.1.5 Installing a VMOD

240
240

242
242
244
244
245

248

249

250
250
250
252
252
253

52

5.21
5.2.2
5.2.3
5.24
5.2.5

5.2.6
5.3

5.31

5.3.2
5.3.3
534
5.3.5

5.3.5
5.37

5.3.8
5.3.9

Which VMODs are shipped with
Varnish Cache?

vmod_blob

vmod_cookie

vmod_directors

vmod_proxy

vmod_std

Logging

String manipulation
Environment variables
Reading a file

Server ports

vmod_unix

Which VMODs are shipped with
Varnish Enferprise?
vmod_accept

vmod_aclplus
Advanced ACLs

A key-value store example

vmod_cookieplus
Set-Cookie logic

vmod_crypto
Hashing & encoding
Encryption
vmod_deviceatlas
vmod_edgestash

vmod_file
File backends

Command line execution

vmod_format
vmod_json

5.3.10 vmod_goto

5.31

The DNS backend

The DNS director

Extra options

Dynamic backends example

vmod_headerplus

5.3.12 vmod_http
5.3.13 vmod_jwt
5.3.14 vmod_kvstore
5.3.15 vmod_mmdb
5.3.16 vmod_mse
5.3.17 vmod_resolver
5.3.18 vmod_rewrite

Rewrite rules in VCL
vmod_rewrite rulesets

255
256
256
258
259

261
261
262
263
263
264

265

267
269

270
270
270

271
272

273
273

273
274
275
276
276

277
278
279
280
280

281

281
282
284
284
285
287
288
289
290

290
290

291

Rulesets as a string 292
Matching URL patterns 292
Extracting ruleset fields 293
5.3.19 vmod_sqlite3 293
5.3.20 vmod_stale 294
5.3.21 vmod_synthbackend 295
5.3.22 vmod_tls 296
5.3.23 vmod_urlplus 297
5.3.24 vmod_xbody 297
5.3.25vmod_ykey 298
54 Where can you find other VMODs? 300
5.41 Third-party VMODs 300
vmod_basicauth 300
vmod_redis 301
5.4.2 The Varnish Software VMOD
collection 302
vmod_bodyaccess 302
vmod_header 304
vmod_tcp 304
vmod_var 305
vmod_vsthrottle 306
vmod_xkey 307
5.4.3 How to install these VMODs 308
Compiling from source 308
Debian and Ubuntu distro packages 309
5.5 Writing your own YMODs 310
5.5.1 vmod_example 310
5.5.2 Turning vmod_example into vmod_os 311
Dependencies 31
Getting the code 312
5.5.3 Looking at the vmod_os.c 312
Looking at the vmod_os.vcc 316
Building the VMOD 317
Testing the VMOD 317
Using the VMOD 319
5.6 Summary 321

Chapter 6: Invalidating

the cache 322
6.1 Purging 34
6.11 Purge VCL code 324
6.1.2 Triggering a purge 325
6.1.3 vmod_purge 326

Hard purge 326

Soft purge 328

6.1.4

6.2
6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6
6.2.7
6.2.8
6.2.9

6.3
6.3.1

6.3.2

6.4
6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

6.6

Integrating purge calls in your
application

Banning

Ban expressions
Expression format
Expression examples
Executing a ban from the
command line

Ban VCL code

Purge replacement
Invalidate URL patterns
Complete flexibility

The best of both worlds
The ban list

There is always an item on the list
Adding a first ban

Adding multiple bans

The ban lurker

Runtime parameters

Ban lurker workflow

Ban lurker scope

Enforcing asynchronous bans
Tag-based invalidation

Integrating bans in your application

Ban limitations

Secondary keys
vmod_xkey
Initializing vmod_xkey
Registering keys
Invalidating content
vmod_xkey limitations

vmod_ykey
Why Ykey?

vmod_ykey performance improvements

Registering keys
Invalidating content

Forcing a miss

Distributed invalidation with
Varnish Broadcaster

Varnish Broadcaster

Varnish inventory

Issuing a purge

Bans and secondary keys
Broadcast groups

Summary

329

331

331
331

332

332

333
334

334
335
336

337
338

338
339

340
340

341

341
342
343
345
345

47

347
348

348
348
350

352
352

352
353
354

360

362
362
363
363
364
365

367

Chapter 7: Varnish for

operations
7.1 Install and configure
7.1.1Packages
Official packages
Varnish Enterprise packages
Distro packages
71.2 Cloud images

71.3
714

12
7.24

722
723
7124

7125
7.2.6
1.2.7

13
7.34
7.3.2

733
734

Amazon Web Services
Microsoft Azure

Google Cloud Platform
Oracle Cloud Infrastructure
DigitalOcean

Official Docker container
Kubernetes

Config map definition
Service definition
Deployment definition
Deploying Varnish to Kubernetes

Configuring Varnish
Systemd

Editing via systemctl edit
Docker

Port configuration
Object storage

Naming storage backends
Transient storage

File storage

MSE

Not using a VCL file
Varnish CLI configuration
Runtime parameters

TLS

Historically

Hitch

Installing Hitch
Configuring Hitch
Networking settings
Certificate settings
Protocol settings
Cipher settings
OCSP stapling
Mutual TLS

vmod_proxy
Native TLS in Varnish Enterprise

368

369
369
370
371
373
373
374
375
376
377
377

378
379
379
380
381
382

385
385
386
387
389

390
391
391
392
392

394
394
395

397
397
397
398
399
400
402
403
406
407
408

410
412

735
7.3.6
1.3.7

14
7.44

74.2

74.3

74.4

74.5

74.6

15

7.5
7.5.1
7.5
7.5
7.5

751

Enabling native TLS
Configuring native TLS
When to use native TLS

vmod_tls
Backend TLS
End-to-end

Massive Storage Engine
History

The file stevedore

The persistence stevedore

Early versions of MSE
Architecture

Memory vs disk

Books

Stores

The danger of disk fragmentation

Problems with the traditional
memory allocator

Memory governor
Lucky loser
Configuration
Memory configuration
Persistence

Book configuration
Store configuration
Store selection
Tagging stores
Tagging books
Setting the default stores
vmod_mse
Monitoring

Memory counters
Book counters

Store counters

Cache warming

Load balancing
Directors
Round-robin director
Random director
Fallback director
Hash director

Routing through two layers of Varnish

Self-routing Varnish cluster
Key remapping

Shard director
Hash selection

an
413
414

414
415
416

417
417
417
418
419
419
420
420
422
423

425
426
427

428
428
429
432
432

433
434
435
436
436

438
438
439
440

442

443
443
443
445
446
447
448
449
450

451
452

751
751

1.6

7.6.1
7.6.1
7.6
7.6

761

761

761
761
761
761

17
7.1

712

Warmup and ramp-up

Key mapping and remapping
Least connections director
Dynamic backends

High Availability

Keeping the caches hot
VHA

Leveraging the broadcaster
Architecture

Workflow

Efficient replication

When does replication take place?
Security

Installing VHA

nodes.conf

VCL

Configuring VHA
Broadcaster settings

Origin settings

TLS

Limits

Skipping replication

Forcing an update
Monitoring

Logging

Not using the broadcaster
Discovery

The varnish-discovery program
Installing varnish-discovery
Configuring varnish-discovery
DNS

AWS

Azure

Kubernetes

Monitoring

Varnishstat

Varnishstat options

Other output formats
Curses mode

Varnish counters

Main counters
Management process counters
Malloc stevedore counters
Backend counters

MSE counters

KVStore counters

452
455

457
458

461
461
462
462
463
463
464
465
465

466
466
467
467
467
469
470
a7
472
473

474
475
477
478
478
479
480
482
482
483
483

486
486
488

491
493
497
497
498
498
499

501
504

713

774

7115

776

18
7.81
7.8.2

78.3

784

7.8.5

7.8.6

Prometheus

Varnish Exporter
Telegraf

Setting up Prometheus
Grafana

Varnish Custom Statistics
VCS metrics

Defining keys

The VCS agent

The VCS server

The VCS API

The VCS user interface

When things go wrong
Counters we want as low as possible

Debugging
Varnish scoreboard

Logging

Varnish Shared Memory Log
Transactions

Transaction hierarchy
Transaction grouping

Tags

Transaction tags

Session tags

Request tags

Response tags

Backend tags

Backend request tags
Backend response tags
Object tags

VCL tags

The timestamp tag

The TTL tag

Output filtering

Tag inclusion

Tag exclusion

Tag inclusion by regular expression
Tag exclusion by regular expression
Filtering by request type
The all-in-one example
VSL queries

Record selection criteria
Operators

Operands

Chaining queries

Other VSL options
Processing the entire buffer
Rate limiting

505
506

508
509
510
513
513
515
518
519
521
526

529
530
531

532

535
535
536
536
538
540
540
542
543
544
545
546
546
547
547
549

551

553
553
554
554
555
555
556
558
558

561

561
563
564
565
566

787

78.8
7.8.9
7.8.10

781

7.8.12

19
7.91
7.9.2

79.3
794

79.5
7.9.6
79.7

79.8
79.9

110

Storing and replaying logs
varnishncsa

Logging modes

Modifying the log format
Extended variables

VSL queries

Other varnishncsa options
Log rotation

varnishtop
Running varnishncsa as a service
Why wasn’t this page served

from cache?

Because it was a POST request

Because the request contained a cookie
Because an authorization header

was passed

Because we couldn’t recognize the
request method

Why wasn’t this page stored
in cache?
Zero TTL

Private, no-cache, no-store
Surrogate-control no-store
Setting a cookie

Wildcard variations

The significance of VSL

Security

Firewalling

Cache encryption

Encrypting persisted cache objects
Performance impact

Skipping encryption

Choosing an alternate encryption cipher
Header encryption

Jailing

Making runtime parameters
read-only

VCL security

TLS

Cache busting

Query string filtering

Max connections

Backend throttling

Slowloris attacks

Web application firewall
Installing the Varnish WAF

Tuning Varnish

567
568
570
570
573
575
575
576

578
581

583
584
585

585

586

587
588

589
590
590
591

591

593
593

594
595
596
596
597
597

597

598
598
600

601
601

603
604
605
605
606

610

7101

710.2
710.3
7104
710.5

710.6

111

711
7M.2
ms3

1.4

7115
711.6
m.7
711.8

112
7124
714

714
AN
141
FALN

Threading settings
Growing the thread pools

Shrinking the thread pools

Client-side timeouts
Backend timeouts
Workspace settings
HTTP limits

HTTP request limit examples
HTTP response limit examples
Make sure you have enough
workspace memory

Limiting /O with tmpfs
Other settings

Listen depth

Nuke limit

Short-lived

Logging CLI traffic in syslog

The Varnish CLI

Backend commands
Banning

Parameter management
Displaying parameters
Setting parameter values
VCL management

VCL inspection

Loading VCL

VCL labels

VCL temperature
Configuring remote CLI access
The CLI protocol

The CLI command file

Quoting pitfalls
Expansion
Heredoc

The Varnish Controller
Architecture

Core concepts
Domain

VCL

Deployment

VCL group

Agent

Setup

Authentication & authorization
The API

The CLI

610
610

611
612
613
614

615
616
617

617
618
618
619
619
620
620

621
622
624
625
625
627
628
628
629
630
633
634
635
638

639
639
640

642
642

643
644

645
645
645
646

646

646
647
649

711
113

The GUI
Summary

Chapter 8: Decision-making

on the edge
8.1 Dealing with state
8.2 Body access
8.2.1 Request body access
vmod_bodyaccess
xbody
Json.parse_req_body()
8.2.2 Response body access
xbody revisited
Edgestash
8.2.3 An e-commerce example
Sessions
Cacheability
The caching solution
The VCL code
The end result
8.3 HTTP calls
8.3.1 Prefetching
Link prefetching
Video prefetching
8.3.2 APl calls
8.3.3 Authentication
8.4 Database access
8.41 SAQlLite
8.4.2 Key-value storage (kvstore)
8.4.3 Memcached
8.4.4 Redis
A shopping cart example
8.5 Geo features
8.51 vmod_geoip2
8.5.2 vmod_mmdb
8.5.3 Lookup filters
8.5.4 Backend geotargeting example
8.6 Synthetic responses
8.6.1 Synthetic output and no backend
Loading an HTML template
Creating a simple API
8.6.2 Synthetic backends
8.7 Authenfication

651
656

657

658

660

660
661

663
666
667
668
669

674
674
674
675
675
678

679

679
679

680
682
683

685
685
687
688
690
690
693
693
694
695
696

699

699
700

701
703
106

8.71 Basic authentication 706
Ensuring cacheability 707
vmod_basicauth 707
Hashed passwords inside vmod_kvstore 709

8.7.2 Digest authentication m
Digest authentication exchange 711
Offloading digest authentication in Varnish 713

8.7.3 JSON web tokens 716
JWT header 717
JWT payload 717
JWT signature 718
vmod_jwt 721

8.7.4 OAuth 726
Google OAuth in Varnish 727

8.8 Summary 729

Chapter 9: Building your

own (DN with Varnish 730

91 Whatis a (DN? 731

911 Network connectivity 731

9.1.2 Caching 733

9.1.3 Request routing 733

9.1.4 Why build your own CDN? 734

9.2 Why Varnish? 736

9.21 Request coalescing 736

9.2.2 Backend request routing 736

9.2.3 Performance and throughput 736

9.2.4 Horizontal scalability 737

9.21 Transparency 738

9.2.1 Varnish Cache or Varnish Enterprise? 738

9.3 Varnish (DN architecture 740

9.3.1 Edge tier 41
Hardware considerations 41
VCL example 741

9.3.2 Storage tier 744
Hardware considerations 744
VCL example 744

9.3.3 Origin-shield tier 747

94 Caching video 749

9.41 OTT protocols 749
HLS 750
MPEG-DASH 753
CMAF 756

9.4.2 Varnish and video 757

12

9.4.3 VCL tricks
Controlling the TTL
Prefetching segments
No origin
Ad injection

9.5 Request routing

9.51 PowerDNS

9.51 AWS Route53

9.51 Anycast

9.5.1 Varnish Traffic Router

9.6 Varnish and 56

9.6.1 Multi-access edge computing
9.6.1 Use cases
9.6.1 Varnish Edge Cloud

9.7 Summary
Chapter 10: Closing notes

10.11 Thank you
10.1.2 What does the future bring?
10.1.3 More information

759
759

760
761
762

765
765
767
768
769

170
770
m
m

773
/74

776
777
777

VARNISH

Foreword

Dear Reader,

First of all, thank you for deciding to take a look at the Varnish Book, whether in its
digital or physical version. We’d say "read” the Varnish Book, but it is better aligned
with our ambitions in writing the book to say "use” the book. We’ve written the book
to make it as useful and efficient as possible by structuring it around practical examples
because the potential use cases for Varnish technology can be very difterent.

For example, Varnish powers traditional website acceleration, scales and protects your
video origin, works as an API gateway, delivers a full-blown, global, high-performance
CDN, and takes care of SG edge computing. Aslong as it is all about the HT'TP pro-
tocol, Varnish has an important role to play whether you are looking for high-perfor-
mance delivery, sub-millisecond latency, massive concurrency, or all of them combined.

Thijs Feryn has spent one year of his life creating this book. Thijs, being a Varnish evan-
gelist, is usually a globetrotter, but due to Covid-19 he has been able to focus on putting
together the most comprehensive description of Varnish technology to date. Thijs is the
perfect person to write this book, not only because of his extensive Varnish experience,
but also because he speaks to more Varnish users than anyone in the industry and never
loses the customer and user perspective.

Thijs has been supported by a great team of Varnish core developers, editors and graph-
ic designers to make sure the book delivers as much use to you as possible.

We hope you will agree.

Please let this book guide you, inspire you, and empower you.
Stockholm April 7, 2021

Lars Larsson, CEO of Varnish Software

13

CHAPTER 1: WHAT IS VARNISH?

Chapter 1: What is Varnish?

Varnish is industry-leading content delivery and edge computing software that speeds
up websites, APIs, video streaming platforms, and content delivery platforms by lever-
aging uniquely powerful caching technology.

Varnish powers some of the world’s most popular brands. It is used by millions of web-
sites, including about 20% of the top 10,000 biggest websites worldwide, according to
https://builtwith.com/.

In this chapter we’ll go into further detail about the power of Varnish and the features
that make it so powerful.

14

https://builtwith.com/

CHAPTER 1: WHAT IS VARNISH?

1.1 What is Varnish?

Originally, Varnish was a reverse caching proxy: a proxy server that speaks HTTP that

you put in front of your web servers. Varnish heavily reduces the load and the latency of
your web servers.

It does this by serving client requests with content that is cached in memory, eliminat-
ing the need to send each client request to the web servers.

However, when the content for a request is not available in cache, Varnish will connect
to web servers to retrieve the requested content, and will attempt to store the response
in cache for future requests.

By adding this new layer of caching, we divide the platform into two distinct tiers in
terms of content delivery:

* The origin: represents your original web servers that are inherently prone to high
load and latency, and that need to be protected in order to guarantee stability.

* The edge: the outer tier of your platform. It is secure, stable, fast and scalable. This
is where users interact with your content and where Varnish really shines.

The edge The origin

Webserver

Basic Varnish Diagram

(N
Because Varnish speaks HI'TP and sits in front of the web servers, it seemingly as-
sumes the role of the web server. The HTTP client that connects to the platform

has no idea that Varnish is actually a proxy. In a lot of cases, the same applies to the
origin servers: most of the time, they have no clue that Varnish is a proxy and not a
regular HT'TP client.

Varnish is available in two forms:

15

CHAPTER 1: WHAT IS VARNISH?

. The open source versions that we refer to as Varnish Cache

. The enterprise versions that we refer to as Varnish Enterprise

Varnish Enterprise is maintained by Varnish Software, whereas Varnish Cache is main-
tained by both Varnish Software and the open source community.

Varnish Software employs most of the engineers working on Varnish Cache. In addition
Varnish Software maintains the long-term support (LTS) version of Varnish Cache.

More information about the differences between the two versions can be found in
a dedicated section in this chapter.

In its default configuration, Varnish will respect Cache-Control headers from the web
server, and cache objects for the amount of time the web server indicates, or not at all.
There are built-in mechanisms to do this in a safe way, so that private information is not
stored in the cache. This means that a web developer can gain a lot from Varnish with
just some basic configuration.

However, much of the power of Varnish is that its behavior can be configured and
changed in many ways. There are many parameters that can be tuned. Request han-
dling and caching behavior can be altered, or completely redefined, using the Varnish

Configuration Language (VCL).

16

https://varnish-cache.org
https://www.varnish-software.com/solutions/varnish-enterprise/
https://www.varnish-software.com

CHAPTER 1: WHAT IS VARNISH?

1.2 What is VCL?

VCL stands for Varnish Configuration Language and is the domain-specific language

used by Varnish to control request handling, routing, caching, and several other things.

At first glance, VCL looks a lot like a normal, top-down programming language with
subroutines, if-statements and function calls. However, it is impossible to execute V'CL
outside of Varnish. Instead, you write code that is run inside Varnish at specific stages
of the request-handling process. This lets you define advanced logic that extends the
default behavior of Varnish.

The locations where the VCL is run are actually different states of the Varnish finite state
machine. Even though you can accomplish a lot by configuring just a few states, under-
standing the state machine is necessary to leverage the full potential of Varnish.

VCL is one of the most compelling Varnish features. It is often the main reason
why users choose Varnish over competing web acceleration products. The level of
flexibility that VCL offers is unparalleled in the industry.

Through a set of pre-defined subroutines and other language constructs in the VCL
file, the behavior of Varnish can be extended. This can range from request and response
header manipulation, to backend selection, overriding state transitions in the finzte state
machine, and many more other actions.

When the varnishd runtime process is started, the VCL file is processed, the VCL code
is translated into C code, the C code is then compiled to a shared object, and eventually
this shared object is linked to the server process, where its code is executed.

Here’s some sample code to give you an idea of what VCL looks like:

vcl 4.1;

backend default {
.host = "backend.example.com";
.port = "80";

}

sub vcl_recv {
if(req.url ~ "A/admin(/.*)?") {
return(pass);

}

17

CHAPTER 1: WHAT IS VARNISH?

This VCL snippet will instruct Varnish not to serve objects from cache if the
URLis /admin or if the URL starts with /admin/. When a backend connection is
made, Varnish will connect to the backend.example.com hostname on the con-
ventional HTTP port, which is 8@.

Note that the DNS resolution of the hostname is done when the VCL configuration is
loaded and not on every backend connection.

In addition to standard VCL, there’s also a rich ecosystem of VA ODs, or Varnish mod-
ules. These modules allow users to integrate with third-party C libraries, and add extra
functionality to Varnish. A VMOD exposes its functionality through a set of functions
and objects, which further enrich the VCL language.

Here’s a VCL snippet that features the cookie VMOD:

vcl 4.1;
import cookie;

backend default {
.host = "backend.example.com";
.port = "80";

}

sub vcl_recv {
cookie.parse(req.http.cookie);
cookie.keep("language");
set req.http.cookie = cookie.get_string();
return(hash);

}

sub vcl_hash {
hash_data(cookie.get("language"));

}
& J

f R
This VCL snippet will use the cookie VMOD to remove all incoming cookies

except the language cookie. It will force a cache lookup, even when cookies are
present. The value of the 1anguage cookie will be used as a cache variation to

create a cache object per URL per language.
N\ J

As you can see this VMOD adds additional functionality to Varnish and exposes this
functionality usinga VCL API.

We’ll discuss VCL in much more detail in the dedicated VCL chapter.
18

CHAPTER 1: WHAT IS VARNISH?

1.3 Varnish Cache and Varnish
Enterprise

As mentioned earlier, there are two versions of Varnish: an gpen source version and an
enterprise version.

Originally, Varnish started out as tailor-made software for Verdens Gang, a Norwegian
newspaper. The development of Varnish was spearheaded by long-time FreeBSD core
contributor Poul-Henning Kamp in collaboration with Nordic open source service pro-
vider Redpill Linpro.

Eventually it was decided that the source code would be open sourced. Poul-Henning
Kamp has remained the project lead, and continues to maintain Varnish Cache with the
help of various people in the open source community and Varnish Software.

The success and enormous potential of the project led to Varnish Software being found-
ed in 2010 as a spinoft of Redpill Linpro. Initially Varnish Software focused on support
and training, which funded further development of the open source project.

In 2014, Varnish Software started developing specific features on top of Varnish Cache
in a commercial version of the software, and named it Varnish Plus. It is now known as
Varnish Enterprise.

The feature additions that Varnish Enterprise initially offered primarily consisted of ex-
tra VMODs, but as time went by, some substantial features were developed by Varnish
Software that went beyond modules.

The most significant feature being MSE, which is short for Massive Storage Engine.
MSE is a so-called stevedore that Varnish uses to store its cached objects. Unlike malloc
(memory storage stevedore), and file (non-persistent disk storage stevedore), MSE offers a
dual-layer storage solution that leverages the speed of memory, and the resilience of disk,
without the typical slowdown effect of traditional disk-based storage systems.

In addition, VHA, which stands for Varnish High Availability, was introduced. This
solution replicates stored cache objects across multiple Varnish servers.

Add built-in client and backend TLS/SSL termination, and a browser-based administra-
tion interface to that, and you have a pretty solid feature set.

The combination of these features, and the fact that they were shipped by default, sup-
ported and covered by a Service Level Agreement (SLA), made Varnish Enterprise look
pretty interesting to enterprise companies.

19

CHAPTER 1: WHAT IS VARNISH?

1.3.1 Version numbers

There is a correlation between the Varnish Cache and Varnish Enterprise version num-
bers.

Varnish Cache is on a six-month release schedule. Every year you’ll see a release in
March, and a release in September:

* On March 15th 2018 Varnish Cache 6.0 was released

* On September 17th 2018 Varnish Cache 6.1 was released

* On March 15th 2019 Varnish Cache 6.2 was released

* On September 16th 2019 Varnish Cache 6.3 was released

* On March 16th 2020 Varnish Cache 6.4 was released

* On March 16th 2020 Varnish Cache 6.4 was released

* On September 15th 2020 Varnish Cache 6.5 was released

* On March 15th 2021 Varnish Cache 6.6 was released

Varnish Enterprise 6 is based on Varnish Cache 6.0, and doesn’t follow the minor version
upgrades. Instead the Varnish Software team backports fixes and some of the features.

However, Varnish Enterprise 6 does follow the patch version upgrades for Varnish Cache
6.0, but adds a release version number.

So when Varnish Cache 6.0.1 was released on August 29th 2018, the corresponding
Varnish Enterprise release was version 6.0.1r1. When a new Varnish Enterprise release
takes place, and there is no new Varnish Cache 6.0 patch release; the release number just
increases.

This happened for example on October first when Varnish Enterprise 6.0.1r2 was re-
leased.

[At the time of writing this book, the latest Varnish Enterprise version is 6.0.8r1.]

1.3.2 Product vs project

It would be too simplistic to conclude that Varnish Enterprise is just Varnish Cache with
some extra features and an SLA. The differences are much more fundamental.

[Varnish Cache is a project. Varnish Enterprise is a product.]

This quote sums it up best, and they both have different goals.

20

CHAPTER 1: WHAT IS VARNISH?

Varnish Enterprise is a product that you install once, and then let run for several years,
without having to put in a significant amount of effort every time a new minor version
is released.

If for example you installed Varnish Enterprise version 6.0.1r1 when it came out back
in 2018, and you now upgrade to 6.0.871, everything will just work without any risk of
incompatibility.

For Varnish Cache, the goal is to continuously improve the code and the architecture,
and look toward the future. Compatibility breaks are discouraged, but every six months
a release is cut, which might break users’ setups. The Varnish Cache community tries to
document everything that has changed enough to affect users. But it’s still up to users
to check whether or not these changes are compatible with their setup.

1.3.3 Which features does Varnish Cache have?

Varnish Cache is extremely fast and stable. It has a rich feature set that can be used:
* Outof-the-box

* By writing VCL

* Byleveraging some of the built-in Varnish Modules

Here’s an overview of Varnish Cache’s features:

Feature Description

Request coalescing Protects origin servers against cache stampedes by collapsing
similar requests

Cache-Control support Varnish respects Cache-Control headers, and uses max-
age and s-maxage values to define the object TTL. Di-
rectives like public, private, no-cache, no-store, and
stale-while-revalidate are also interpreted.

Expires support Varnish can interpret the Expires header and set the object
TTL accordingly.

Conditional requests Varnish supports 304 Not Modified behavior by interpreting
ETag and Last-Modified headers and issuing If-None-
Match and If-Modified-Since headers. This is supported
both at the client side and at the backend side.

21

CHAPTER 1: WHAT IS VARNISH?

Grace mode

Content streaming

Cache invalidation

LRU cache evictions

HTTP/2 support
Backend health checking

Backend connection
limiting

Backend timeout control
Advanced backend

selection

Advanced request saving
Configurable listening

addresses

PROXY protocol support

TLS termination

Varnish’s implementation of Stale While Revalidate. Var-
nish will serve stale objects while the latest version of the
object is fetched in the background. The duration is config-
urable in VCL or via the stale-while-revalidate direc-
tive in the Cache-Control header.

Varnish will start streaming content to the client as soon as
it has received the response headers from the backend.

Varnish has purging, banning, and content refresh capabili-
ties to remove objects from cache.

When the cache is full, Varnish will use a Least Recently
Used (LRU) algorithm to remove the least recently used ob-
jects in an attempt to free up space.

Varnish supports the HTTP/2 protocol.

The health of a backend can be checked using configurable
health probes. These checks can lead to backends not being
selected for backend fetches.

Limit the maximum number of open connections to a sin-

gle backend.

Limit the amount of time Varnish waits for a valid back
response. Configurable through various timeout settings

Programmatically select the backend, based on a custom set
of conditions written in VCL

Varnish can transparently save requests by retrying other
backends if the initial backend request fail or serving stale
content if the backend is unavailable.

Varnish can accept incoming HTTP requests on multiple
listening addresses. Hostname/IP and port number are con-

figurable

Listening addresses can be configured to accept PROXY
protocol requests rather than standard HTTP requests. The
PROXY PROTOCOL will keep track of the IP address of
the original client, regardless of the number of potential
proxies in front of Varnish.

Although Varnish Cache doesn’t support TLS natively, TLS
termination can be facilitated with the PROXY protocol.

22

CHAPTER 1: WHAT IS VARNISH?

Unix domain socket

support (UDS)

Stevedores

Command line interface

(CLI)

Edge Side Includes (ESI)

Both incoming connections and connections to backends
can be made over Unix domain sockets (UDS) instead of

TCP/IP

A stevedore is the storage mechanism that Varnish uses to
store cached objects. malloc (memory storage) is the default.
file (non-persistent disk storage) is also common

Varnish has a command line interface (CLI) that can be used
to tune parameters, ban objects from cache and load a new
VCL configuration

XML-based placeholder tags whose src attributes are
processed by Varnish (o the edge) and where the HT TP

responses replace the placeholders.

Zero-impact config reload Load a new VCL file without having to reload the Varnish

Label-based multi-VCL
configurations

Access control lists

(ACLs)

URL transformation

Header transformation

Synthetic HT'TP

responses

VCL unit testing frame-
work

Advanced logging

Advanced statistics

process

Load multiple VCL files and conditionally execute them
using labels in your main VCL file

Allow or restrict access to parts of your content using access
control lists (ACLs), containing IP addresses, hostnames or
subnets that can be matched in VCL

Transform any URL in VCL
Transform any request or response header in VCL

Return custom HTTP responses that did not originate
from your origin

The varnishtest tool performs Varnish unit tests based
on VTC files containing unit testing scenarios

The varnishlog, varnishtop, and varnishncsa tools
allow you to perform deep introspection into the Varnish
flow, the input and output

The varnishstat tool displays numerous counters that
give you a global insight into the state of your Varnish server

Additionally, Varnish Cache also comes with a set of VM ODs that are plugged into Var-
nish, and which are discussed in chapter 5.

23

CHAPTER 1: WHAT IS VARNISH?

1.3.4 Which features does Varnish Enterprise

have?

Here’s a list of some of the core features of Varnish Enterprise:

Feature

Description

Massive Storage Engine (MSE)

Varnish High Availability
(VHA)

Varnish Controller

An optimized dual-layer storage solution that offers
persistence

A multi-master object replication suite that keeps the
contents of multiple Varnish servers in sync, and as a
consequence reduces the number of backend revali-
dation requests

A GUI and API to administer all the Varnish servers

in your setup

Varnish Custom Statistics (VCS) A statistics engine allowing you to aggregate, display

Varnish Broadcaster

Varnish Live

Varnish Web Application Fire-
wall (WAF)

Client TLS/SS

Backend TLS/SS

Parallel ESI

JSON logging

TCP-only probes

and analyze user web traffic and cache performance
in real time

Broadcasts client requests to multiple Varnish nodes
from a single entry point

A mobile app that shows the performance of Varnish
instances

Web Application Firewall capabilities, based on the
ModSecurity library

Termination of client TLS/SSL connections ox the
edge
Connect to backend servers over TLS/SSL, ensuring

end-to-end encryption

Process Edge Side Includes (ESI) in parallel, whereas
Varnish Cache only processes ESI tags sequentially

Output from the varnishlogand varnishncsa
logging tools can be sent in /JSON format

Allow probes to perform health checks on backends
by checking for an available TCP connection, with-
out actually sending an HTTP request

24

CHAPTER 1: WHAT IS VARNISH?

last_byte_timeout

Total Encryption

Veribot

Brotli compression

Dynamic backends

Body access & modification

A backend configuration parameter that defines how
long Varnish waits for the full backend response to
be completed

Encryption of cached objects, both in memory and

on disk

Identify and verify traffic that comes from online
bots

Compress HT'TP responses with Brotli compression,
which offers a higher compression rate than GZIP

Define backends on-the-fly, instead of relying on
hardcoded backend definitions in the VCL file

Via the xbody module, request and response bodies
can be inspected and modified

Besides feature additions in the Varnish core, Varnish Enterprise ofters many features as
VMODs that are plugged into Varnish Enterprise, which are also discussed in chapter S.

25

CHAPTER 1: WHAT IS VARNISH?

14 Which use cases does Varnish
address?

Historically Varnish has always been associated with web acceleration. Varnish was in-
vented to speed up websites and the majority of Varnish users have a web acceleration use
case.

However, Varnish is not solely built for websites: Varnish is an H7TTP accelerator and
there are far more HT TP use cases than just websites.

14.1 APl acceleration

Accelerating APIs is a good example of an alternate use case for Varnish: APIs return
HTTP responses and interpret HTTP requests, but they do not return HTML output.
In most cases a REST API will return JSON or XML.

One could say that the acceleration of REST APIs is more straightforward than speed-
ing up a website, and that is because REST A PIs inherently respect the best practices of
HTTP caching:

* The HTTP request method indicates the type of action that is taken

* The idempotency of HTTP request methods is respected, and by design only GET
and HEAD requests are cached

* Cookies are hardly ever used in a RESTful context, which makes caching a lot easier

¢ The hierarchical nature of UR Ls and how they represent their respective resource
is very intuitive

APT authentication is a more complicated matter: as soon as an Authorization head-
er appears, caching usually goes out the window. Just like cookes, auth headers are a
mechanism to keep track of szate. They imply that the data is for your eyes only and hence
cannot be cached.

Of course Varnish has an elegant way to work around these limitations, but we’ll talk
about state and authentication on the edge at a later stage in the book.

26

CHAPTER 1: WHAT IS VARNISH?

14.2 Web acceleration

Let’s rewind for a minute, and focus on website acceleration.

Generating the HTML markup for a dynamic website is often done using server-side
programming languages like PHP, Python, ASP.NET, Ruby, or Node.js. These lan-
guages have the ability to interact with databases and APIs. Although they seem quite
fast, they are prone to heavy load as soon as the concurrency increases.

The concurrency aspect is very significant: yes, the application logic that generates
HTML output will consume CPU, RAM and disk I/O. But the most time is spent
waiting for external resources, such as databases or APIs. While your application is
waiting, resources cannot be freed and the connection between the client and the server
remains open for the duration of the request.

On a small scale, this has no impact on the user experience, but at larger scale, more
memory and CPU will be used, and a lot more time is spent waiting for results to be
returned by databases. And eventually you’ll run out of available connections, you’ll
run out of available memory, and your CPU usage may spike.

The stability of your entire website is in jeopardy. These are all problems that weren’t
tangible at small scale, but the risk was always there.

The bottom line is that code has an impact on the performance of the server. This
impact is amplified by the concurrency of visits to your website. By putting Varnish in
front of your web server, the impact of the code is mitigated: by caching the HTML
output in Varnish, user requests can immediately be satisfied without having to execute
the application logic.

The resource consumption and stability aspect also applies to APIs of course, and
to any HT'TP platform that requires a lot of computation to generate output.

14.3 Private (DN

You’ll also notice that websites consist of more than text formatted in HTML markup:
¢ There are lots of images

e CSS files are used to improve the look and feel

* JavaScript files are used to make websites more interactive

¢ Custom web fonts are loaded through WOFF files

27

CHAPTER 1: WHAT IS VARNISH?

All these files and documents need to be accelerated too. Some of them are a lot bigger
in size. Although modern web servers don’t need a lot of CPU power or memory to

serve them, there are bottlenecks along the way that require a reverse caching proxy like
Varnish.

As mentioned before: web servers only have a limited number of available connections.
At large scale you quickly run out of available connections. Using Varnish will mitigate
that risk.

Another aspect is the geographical distance between the user and the server, and the
latency issues that come into play: transmitting images and other large files to the other
side of the world will increase latency. That’s just physics: light can only travel so fast

through fiber-optic cables.

Having servers close to your users will reduce that latency, which has a positive impact
on the quality of experience. By putting Varnish servers in different locations, you can
efficiently reduce latency, but you also horizontally scale out the capacity of your web
platform, both in terms of server load and bandwidth.

Let’s talk about bandwidth for a minute. At scale, the first problem you’ll encounter is
alack of server resources. With Varnish, you’ll be able to handle a lot more concurrent
users, which will expose the next hurdle: a lack of bandwidth.

Your web/HT TP platform might have limited network throughput. Your network may
be throttled. Maybe you operate at such a scale that you don’t have sufficient network
resources at your disposal.

In those cases it also makes sense to distribute your Varnish servers across various lo-
cations: not just to reduce latency, but also to be on multiple networks that have the
required capacity.

This use case may sound familiar, and it is exactly the problem that a content deliv-
ery network (CDN) tries to tackle: by placing caching nodes in different poznis of
presence (PoPs), latency is reduced, network traffic to a single server is reduced, and
excessive server load is tackled as well.

Varnish can serve as a private content delivery network (Private CDN), accelerating con-
tent close to the consumer. Even caching large volumes of content is not a problem: set-
ting up a multi-tier Varnish architecture with edge nodes for hot content and storage nodes
to store more content sharded over multiple nodes allows you to cache petabytes of data
using horizontally scalable architecture.

Varnish Enterprise even has a purpose-built stevedore that combines memory and opti-

28

CHAPTER 1: WHAT IS VARNISH?

mized disk storage to build your own Private CDN. It’s called the Massive Storage En-
gine and it is covered in depth in chapter 7.

[The why and the how of Private CDNG is further explained in chapter 9.]

144 Video streaming acceleration

A more unexpected use case for Varnish is the acceleration of online video streaming
platforms, or OTT platforms as we call them. More than 80% of the internet’s band-
width is used to serve video. These are staggering numbers, and video has its own
unique content delivery challenges.

Online video is not distributed using traditional broadcast networks, but over the top
(OTT). Meaning that a third-party network, in this case the internet, is used to deliver
the content to viewers. The distribution of this type of video also uses HT TP as its go-
to protocol. And once again, Varnish is the perfect fit to accelerate OTT video.

Accelerating video has many similarities with Private CDN:

* Online video consists of large volumes of data that need to be transferred over the
internet.

* Encoding and packaging video into the right format is very resource intensive, and
at scale this requires a lot of server capacity.

* Latency has a negative effect on the guality of experience.

* Putting cached video content closer to the viewers, and scaling out the delivery,
will reduce latency and reduce the load on the origin.

Although it seems video streaming acceleration is a carbon copy of a regular Private
CDN, there are some unique challenges.

Alot of it has to do with how online video is packaged. OTT video, both live and on
demand, is chopped up into segments. Each segment represents on average six seconds
of video. This means that a video player has to fetch the next segment every six seconds.
For 4K video, a six-second segment requires transmitting between 10 MB and 20 MB of
data. Audio can be a separate download stream and this also applies to subtitles.

A single 4K stream consumes at least 6 GB per hour. Not only does this pose an enor-
mous bandwidth challenge, low latency is also important for the continuity of the video
stream, and of course the quality of experience. The slightest delay would result in the
video player having to rebuffer the content.

Some of Varnish’s features are ideal for caching live video streams, guaranteeing low

29

CHAPTER 1: WHAT IS VARNISH?

latency. For video on demand (VoD), the enterprise product has the storage capabilities
as well as a module to prefetch the next video segment.

Varnish for OTT video is discussed in depth in chapter 10.

14.5 Web application firewalling

Varnish operates oz the edge, which is the outer tier of your web platform. It is responsi-
ble for handling requests from the outside world.

From an operational point of view, the outside world comes with a lot risk. Ensuring the
stability of your platform is key, and a reverse caching proxy like Varnish has an import-
ant role in maintaining that stability.

We already talked about performance. We also talked about scalability, which is main-
taining performance and stability at large scale. These are some of the risks that we try
to mitigate.

Another important aspect of risk mitigation is security: it’s not always a large number of
concurrent visitors that jeopardizes stability; it’s also about what these visitors do when
they’re on your platform.

Websites, APIs, content delivery solutions all consist of many pieces of software. Often
all of this software has layer upon layer of components, third-party libraries, and tons
of business logic that is written in-house. Keeping all that software secure is a massive
undertaking. From the operating system to the web server, from encryption libraries to
the component that allows your code to interact with the database: more than 90% of
the code is written and maintained by third parties.

Although many organizations have the discipline of installing security updates as soon
as they become available, it’s not always clear what needs to be patched. Hackers and cy-
bercriminals are a lot more aware of the vulnerabilities out there, and they’re not afraid
to exploit them.

There are many VCL code snippets available that try to detect malicious access to web
platforms: from SQL injections, to Cross Site Scripting attempts. In this context, Varnish
assumes the role of a web application firewall (WAF), blocking malicious requests. Al-
though these VCL code snippets work to some extent, they are hard to maintain, and
are hardly as effective as well-respected WAF projects like ModSecurity.

Varnish Enterprise has a WAF add-on module that wraps around ModSecurity. It allows
for all traffic to be inspected by ModSecurity and is configurable using VCL. Suspi-
cious requests are blocked and never reach your origin.

30

CHAPTER 1: WHAT IS VARNISH?

The Varnish WAF supports all ModSecurity features and the full rule set, including the
OWASP Core Rule Set. This includes:

* SQL Injection (SQLi)

¢ Cross Site Scripting (XSS)

* Local File Inclusion (LFI)

* Remote File Inclusion (RFI)
* Remote Code Execution (RCE)
¢ PHP Code Injection

* HTTP Protocol Violations
* HTTPoxy

* Shellshock

* Session Fixation

* Scanner Detection

* Metadata/Error Leakages

* Project Honey Pot Blacklist
* GeolP Country Blocking

When a security vulnerability is detected and reported in the list of common vulnera-
bilities and exposures (CVE), it is expected that the vulnerability is fixed at the source.
Unfortunately software maintainers aren’t always quick enough to respond in time.
Luckily ModSecurity proactively releases new rules to protect your origin against so-
called zero-day attacks.

The Varnish WAF and security in general will be covered in much more detail in
chapter 7.

31

CHAPTER 1: WHAT IS VARNISH?

1.5 Under the hood

Now that you know what Varnish does, and how powerful this piece of software is, it’s

time to take a look behind the curtain. The raw power of Varnish is the direct conse-
quence of an architecture that doesn’t compromise when it comes to performance.

4)

This section is very technical, and covers some concepts that will be clarified later

in the book. However, it is useful to talk about some of the internals of Varnish
right now, because it will give you a better understanding when we cover the con-
cepts in details.

This applies to runtime parameters, detault behavior, and the impact of certain

VCL changes.
N\ J

Let’s start at the beginning.
When the varnishd program is executed, it starts one additional process resulting in:

* The manager process
¢ The child process

In varnishd there is separation of privileges, where actions that require privileged access
to the operating system are run in the manager process. All other actions run in a sepa-
rate child process.

1.5.1 The manager process

Because of its privileged access to the operating system, the manager process will only
perform actions that require this access, and leave all other tasks to the child process.

The manager process is responsible for opening up sockets, and binding them to a se-
lected endpoint.

If you configured varnishd to listen for incoming connections on port 80, which is a
privileged port, this is processed by the manager process with elevated privileges. How-
ever, the manager process will not handle any data that is sent on this socket. Listening
on that socket, accepting new connections, and reading incoming data is the responsibil-

ity of the child process.

The manager process will also make sure that the child process is responsive. It contin-
uously pings the child process, and if the child process should become unresponsive or
die unexpectedly, the manager process will tear down the old and start a new one.

32

CHAPTER 1: WHAT IS VARNISH?

The manager process also owns the command line socket, which is used by the varni-
shadm management program. Privileged access is required here in order to start or stop
the child process using varnishadm.

The manager process is also responsible for opening up the VCL file and reading its
contents. However, the compilation of VCL happens in a separate process.

And finally, the manager process is also responsible for the different VCL configurations
that were loaded into Varnish.

1.5.2 The VCL compiler process

As mentioned, the manager process will open the VCL file, and will read the contents,
but it will not process the VCL code. The VCL compiler process, which is a separate pro-
cess, will take care of the VCL compilation.

The process is named vcc-compiler. However, you won’t often see it appear in your
rocess list, as it is a transient process: it only runs for the duration of the compilation.
y

The vcc-compiler process isn’t just used on startups; it also runs when the vcl.load or
vcl.inline commands are executed by the varnishadm command line tool.

Compilation steps

The first step in the VCL compilation process is to take the raw VCL code read from the
VCL file and process any include statements in the VCL code. The files are resolved and
inserted verbatim in the code. After that a special source referred to as the buzlt-in VCL
code is included last. This adds a sane default behavior that respects best practices of
each VCL function, even if you don’t write any additional VCL.

As mentioned earlier, V’CL is language can be used to extend the behavior of or
various states in the Varnish finite state machine. The built-in VCL is just there as
a safety net. The details of this fznite state machine will be covered in chapters 3
and 4.

With the complete VCL source available, the VCL compiler will then transform the
VCL code into C-code. The management process will then spawn a new vcc-compiler
process to compile the C-code.

If you want to see the actual C-code that is produced for your VCL file, you can
run the following command: varnishd -C -f <vcl_filename>.

33

CHAPTER 1: WHAT IS VARNISH?

The vce-compiler will take the C-code, and will run the gcc compiler to compile the
code. This compiles and optimizes the C statements into object code that can be execut-
ed directly by the host system CPU. The output is a shared library under the form of

a .so file. The parameter cc_command is used by the vcc-compiler to set the gec flags
used for compilation.

After that, the child process is messaged, and will use and run the .so file.

f R
All these steps describe how Varnish compiles the VCL on startup. But using the

varnishadm vcl.load, and the varnishadm vcl.use commands, you can load
new VCL at runtime. varnishadm vcl.load will compile the V'CL into the .so
file and load it. varnishadm vcl.use will select the .so file to be used on new

connections.

- J

1.5.3 The child process

From a security point of view, you really want to avoid giving the manager process too

many responsibilities. That’s why the child process does most of the work in Varnish.

Accepting the connections, processing the requests, and producing the responses are
all done in the child process. Seen from afar the child process basically sits in a loop and
waits for incoming connections and requests to be processed. This in turn will activate
the numerous mechanisms that make up the Varnish caching engine, such as backend
fetches and caching of content.

1.54 Threads

To be honest, all this logic doesn’t happen in one place. The child process will distrib-
ute the workload across a set of threads. Threads are used to facilitate both parallelism
and asynchronous operations.

There are various threads in Varnish. Some of them have a dedicated role, others are
general-purpose worker threads that are kept in thread pools.

Here’s an overview of the threading model in Varnish:

34

CHAPTER 1: WHAT IS VARNISH?

Thread name Amount Task

cache-main 1 startup & initialization

acceptor 1 per thread pool per accept new connections
listening endpoint

cache-worker

ban-lurker

waiter
expiry
backend-poller

thread-pool-
herder

hcb_cleaner

1 per active connection

1
1
1

1 per thread pool

request handling, fetch processing
and probe execution

background ban processing and
ban list cleaning

manages idle connections
remove expired content
manage probe tasks

monitor & manage threads

cleaning up retired hashes

If you're using Varnish Enterprise, you can use the varnishscoreboard program to

display the state of the currently active threads.

Varnish Enterprise has several additional threads

Thread name Amount Task

vsm_publish 1 publish & remove shared memory
segments

cache-memory-stats | memory statistics gathering

cache-governator 1 memory governor balancing thread

mse_waterlevel 1 per MSE book MSE book database waterlevel
handling

mse_aio 1 per MSE store MSE store AIO execution

mse_hoic 1 per MSE store MSE store waterlevel handling

35

CHAPTER 1: WHAT IS VARNISH?

The cache-main thread

The cache-main thread is the entry point at which the management process forks oft
the child process.

This thread initializes the dependencies of the child process. These are just a set of dedi-
cated threads, which will be covered in a just a minute.

As soon as the initialization is finished, the cache-main thread really doesn’t have any-
thing more to do. So it turns into the command line thread: it sits in a loop, waiting for
CLI commands to come in.

This may seem confusing because earlier I mentioned that the management process takes
care of the command line. Well, in fact, they both do.

There is a Unix pipe in between management process and the cache-main thread of the
child process. Although the command line socket is owned by the manager process, com-
mands that are relevant to the child process, will be sent over the Unix pipe.

Commands that require privileged access to the system are the responsibility of the
manager process.

The thread pool herder thread

One of the first threads that is initialized by cache-main is the thread-pool-herder
thread because a lot of internal components depend on thread pools.

A thread pool is a collection of resources that Varnish reuses while handling incoming
requests. These resources include things like the worker threads and the workspaces they
use for scratch space. Some of these resources benefit from Non-uniform memory access
(NUMA) locality, and are grouped together in a pool. The number of thread pools is
configurable through the thread_pools runtime parameter. The default value is rwo.

A thread pool manages a set of threads that perform work on demand. The
threads do not terminate right away. When one of the threads completes a task,
the thread becomes idle, is returned to the pool, and is ready to be dispatched to
another task.

The thread-pool-herder is a per pool management thread. It will create the amount
of threads that is defined by the thread_pool_min runtime parameter at startup, and
never goes below that amount. The default value is 700.

36

CHAPTER 1: WHAT IS VARNISH?

When the traffic on the Varnish server increases, the thread-pool-herder threads will
create new threads in their pools. It will continue to monitor the traffic, and create new
threads until the thread_pool_max value is reached. The default value is 5000.

Note that thread_pool_min and thread_pool_max set limits per thread pool.

When new workload exceeds the amount of free threads, the thread-pool-herder
thread will queue incoming tasks, while new threads are being created.

When threads have been idle for too long, the thread-pool-herder thread will re-
move these threads from the thread pool. The thread_pool_timeout runtime param-

eter defines the thread idle threshold.

But as mentioned, the number of threads in a thread pool will never go below the value
of thread_pool_min.

The acceptor threads

The acceptor threads are the point of entry for incoming connections. They are created
by the cache-main thread, and are one of those dependencies I referred to.

The acceptor threads will call accept on a socket that was opened by the manage-
ment process. This call is the server end part of the TCP handshake. The SYN-ACK part,
if you will.

The acceptor threads will then delegate the incoming connections by dispatching a work-
er thread from the thread pool.

There is one acceptor thread per listening point per thread pool. This means for a single lis-
tening point and the default number of thread pools, there will be two acceptor threads
that are running.

The waiter thread
The waiter thread is used to manage idle file descriptors.

Behind the scenes, epoll or kqueue are used, depending on the operating system.
epoll is a Linux implementation. kqueue is a BSD implementation. Since this book
focuses on Linux, we’ll talk about epoll.

epoll is the successor of the poll system call. It polls file descriptors to see if 7/0 is
possible. epoll is a lot more efficient at large scale. The same applies to kqueue on BSD
systems.

37

CHAPTER 1: WHAT IS VARNISH?

The term fzle descriptor is quite vague because we know that on Unix systems every-
thing is a file. Network connections also use file descriptors, and Varnish happens to
process a lot of those at large scale.

Varnish leverages the waiter to keep track of open backend connections. Whenever a
backend connection is idle, it will sit in the waiter for Varnish to monitor the connec-
tion status.

In addition, Varnish will use the waiter for client connections whenever we are done
processing a request and the connection goes idle.

Varnish does not use epoll for regular connection handling: client traffic is still pro-
cessed using blocking 1/0. epoll is only used for idle connections.

The expiry thread
The expiry thread is used to remove expired objects from cache.

This thread keeps a beap data structure that tracks the TTL of objects. The object that
expires next is always at the top of the data structure.

When an expired object is removed, the heap is re-ordered and again has the object that
expires next at the top.

The expiry thread removes expired objects, goes back to sleep, and wakes up to do itall
over again. The amount of time that the expiry thread sleeps is the time until the new
element at the top of the heap expires.

The backend-poller thread

The backend-poller thread manages a set of health probe tasks. Health probes are used
to monitor the health of backends, and to decide whether or not a backend can be con-

sidered healthy.

The backend-poller thread keeps track of the health check interval that was defined by
the probe, and dispatches the health check at the right time.

As mentioned, this thread manages probes, and dispatches health checks. It doesn’t per-
form the actual HTTP request itself. Instead the backend-poller thread will farm out
the work to a worker thread.

38

CHAPTER 1: WHAT IS VARNISH?

The ban-lurker thread

The ban-lurker thread has the responsibility of removing items from the ban list.

But before we can talk about that, let me briefly explain what banning means.

[Banning, and content invalidation will be covered in detail in chapter 6.]

A ban is a mechanism in Varnish to ultimately remove one or more objects from the
cache.

Bans happen based on a ban expression, and these bans end up on the ban list. This ex-
pression can be triggered using the ban() function in V'CL, or by calling the ban com-
mand in the varnishadm administration tool.

Expressions that match objects in the cache cause these objects to be removed from
cache. Once all objects have been checked, the ban is removed from the ban list, because
it is no longer relevant.

Bans are evaluated when an object is accessed, causing a ban expression to have an im-
mediate effect on the cache. The ban-lurker thread is responsible for matching ban ex-
pression on the ban list with all the objects in cache, as well as those that are infrequently
accessed.

There are some runtime parameters that influence the behavior of the thread:

e ban_lurker_age: the age a ban should have before the lurker evaluates it. The
default value is 60 seconds

* ban_lurker_batch: the number of bans that are processed during a ban lurker
run. The default value is 1000

* ban_lurker_holdoff: the number of seconds the ban lurker holds off when lock-
ing contention occurs. The default value is 0.010 seconds

* ban_lurker_sleep: the number of seconds the ban-lurker thread sleeps before
performing its next run. The default value is also 0.010 seconds

Worker threads

There is one worker thread per active connection when the HTTP/1 protocol is used. For
HTTP/2 there are multiple worker threads per connection: One for the HTTP/2 session,
and one for each HTTP/2 stream.

Additionally, each backend fetch will consume one worker thread.

39

VARNISH

Worker threads can be spawned on demand, and the cost of spawning new threads
comes at a cost. That’s why we pre-allocated a number of threads in the thread pools.

1.5.5 Transports

One of the first tasks that the worker thread performs is checking which protocol handler
was configured.

In Varnish Cache, this can be the PROXY transport handler, or the regular HTTP trans-
port bandler.

In Varnish Enterprise, there’s the addition of the TLS transport handler.

Imagine the following address configuration in Varnish:

[var‘nishd -a :80,PROXY -f /etc/varnish/default.vcl]

Because PROXY was used, we first need to handle the PROXY protocol bytes that are part
of the TCP preamble. This information contains the /P and port that were used to con-
nect to Varnish.

Varnish will populate the various /P and port variables based on the information.

Once this decoding process is finished, the PROXY transport handler will hand off the
work to the HTTP transport handler, which is now able to process the HTTP part of
the TCP request.

The HTTP transport handler will parse the HT'TP request and populate the necessary
internal data structures with request information for later use.

In the example below, we’re not using the PROXY protocol, this means the HT TP trans-
port bandler is used immediately:

[var‘nishd -a :80 -f /etc/varnish/default.vcl]

In Varnish Enterprise, we can configure native TLS support. Our address configuration

may look like this:

[var‘nishd -A /etc/varnish/tls.cfg -a :80 -f /etc/varnish/default.vcl]

40

VARNISH

Because the -A runtime parameter was used, the 7LS transport handler will be used,
which will handle the crypto part. But after that, the work is handed oft to the HTTP
transport bhandler.

1.5.6 Disembarking

When a worker thread is waiting for a fetch to finish, its internal state can be stored on a
waiting list, while the worker thread is put back into the thread pool.

This concept is called disembarking, and is an optimization so as to avoid needlessly
tying up resources that are waiting.

Transactions on the waiting list can be woken up after a fetch finishes, and will be redis-
patched to another worker thread.

1.5.7 The waiting list

When an incoming request doesn’t result in a cache hit, Varnish has to connect to the
origin server to fetch the content. If a lot of connections for the same resource happen at
the same time, the origin server has to process a lot of connections through Varnish, and
could suffer from increased server load.

To avoid this, Varnish has a waiting list per object, where requests asking for the same
object are grouped together.

The first request for this object will result in the creation of a busy object, which tells
Varnish there is a fetch in progress. While the busy object is in place, all subsequent
requests for this resource are put on the waiting list.

As soon as the response is ready for delivery, all items on the waiting list can be satis-
fied. However, the 7ush exponent will make sure the kernel doesn’t choke on a sudden
increase of activity.

The rush_exponent runtime parameter defines the amount of waiting list items that
can be processed exponentially. Its default value is 3. This means that the first run will
satisfy three objects, the next run will satisfy nine objects, and the following one will
satisfy 27 objects. This is a mitigation put in place to avoid the so-called thundering herd
problem.

The exponential nature of this mechanism ensures a workload buildup that the kernel

will be able to handle.

4]

CHAPTER 1: WHAT IS VARNISH?

This concept of satistying multiple items on the waiting list is called request coalescing
because we’re basically coalescing multiple similar requests into a single backend request.

1.5.8 Serialization

Request coalescing is a very powerful feature in Varnish. But when Varnish is not able to
get a proper TTL for the object, the object is immediately expired.

The first transaction on the waiting list will be satisfied by the fetch, but since the ob-
ject was immediately expired it cannot be used to satisfy the rest of the requests on the
waiting list.

This means that the other waiting list items are kept there, and are processed serially.
This side effect is what we call serzalization because the waiting list is processed serially,
instead of in parallel.

As you can imagine, serialization is very bad for performance, and for the quality of
experience in general.

Imagine that you have a waiting list of 7000 items, and a backend fetch takes two seconds
to be completed. When serzalization takes effect, the last transaction in the waiting list
has to wait 2000 seconds until completion.

The sole reason for serialization is bad VCL configuration. As a Varnish operator, you
have the flexibility to override many aspects of the behavior of the cache. The 77 and
the cacheability of fetched responses are part of that.

Non-cacheable responses are also cached in the so-called bit-for-miss or hit-for-pass
cache. In essence, we’re caching the decision not to cache and by default this happens
for a duration of 120 seconds.

Items on the bit-for-miss or hit-for-pass cache will bypass the waiting list to avoid serial-
ization.

A common, but bad, practice is setting the 77L of an object to zero in VCL, when de-
ciding not to cache. This expires the object immediately, and the waiting list no longer
has the required information.

The way uncacheable content should be approached is by setting the object to #ncache-
able in VCL, and ensuring a proper T7L, which will be beneficial for transactions in
the waiting list.

The built-in VCL, which is covered in chapters 3 and 4, has the necessary behavior
in place to protect VCL operators from falling into this trap.

42

CHAPTER 1: WHAT IS VARNISH?

When writing custom VCL, please try to fall back on the built-in VCL as much as
possible. As we will discover later in the book: buzlt-in VCL behavior takes effect
when VCL subroutines don’ explicitly return an action.

1.59 Workspaces

The concept of workspaces in Varnish is an optimization to lessen the strain on the sys-
tem memory allocator. Memory allocation is expensive, especially for short-lived alloca-
tions.

Varnish will allocate a chunk of memory for each transaction. A very simple allocator
within Varnish can hand out memory from that chunk. We call this workspace memory.

Different parts of Varnish, use workspace memory in various ways:

Request handling happens using workspace memory, and is sized using the workspace_
client runtime parameter. The default value is 64 KB. This means that the client-side
processing of each request, and the subsequent response, receives 64 KB of memory per
request.

For transactions that involve a backend fetch, a separate piece of workspace memory is
used: the workspace_backend runtime parameter defines how much memory per
backend request can be used. By default this is also 64 KB.

The workspace_session runtime parameter reflects how much memory from work-
space can be consumed for storing session data. This is mainly information about 7CP
connection addresses, and other information that is kept for the entire duration of the
session. The default value here is 0.5 KB.

There is also aworkspace_thread runtime parameter that defines how much awxiliary
workspace memory will be assigned as thread local scratch space. This memory space is
primarily used for storing Z/O-vectors during delivery.

1.5.10 Backend fetches

Ever since Varnish 4, there has been a split between client-side logic and backend-side
logic. Whereas there was only one thread for this in Varnish 3, it got split up into two
separate threads from Varnish 4.

A major advantage is that background. fetches are supported. This means that a client
doesn’t need to wait for the backend response to be returned. A background fetch takes
place, and while that happens, a stale object can be served to the client.

43

CHAPTER 1: WHAT IS VARNISH?

As soon as the background fetch is finished, the object is updated, and subsequent re-
quests receive the fresh data.

Streaming

Another advantage of the client and backend split is that it enables streaming deliver.
When this is enabled, the body of a backend fetch may be delivered to clients as it is
being received.

This of course has the side effect that fetch failures become visible to the clients. The
streaming delivery can be turned off if this is not desired by setting the beresp.do_
stream VCL variable to false in vcl_backend_response. This will cause the entire
object to be received before it is delivered to any waiting clients.

Varnish Fetch and Delivery Processors

When Varnish fetches content from a backend, it flows through a set of filters called
Varnish Fetch Processors (VEP). These filters perform different tasks, like compressing
the object using GZIP or parsing the content for Edge Side Include (ESI) instructions.

Similarly when delivering content to clients a set of filters called Varnish Deliver Proces-
sors (VDP) is used. These typically perform tasks like decompressing content if neces-
sary, or stitching together ESI content.

44

CHAPTER 1: WHAT IS VARNISH?

1.6 Chapter summary

By now, you should have a solid idea of what Varnish is, and how it is an important tool
in the modern-day web stack.

Delivering content at scale proves to be a lot more challenging than anticipated.

We cannot ignore the importance of speed, scalability, and stability of web platforms.
Without a well-thought-out content delivery strategy, you’ll suffer from a lot more
downtime, or you’ll have to spend a lot more money on sufhicient infrastructure.

Varnish does more than just website and API acceleration: Varnish is content delivery
software. With Varnish you can build your own CDN and tailor it to your exact needs.

Not only can this CDN cache images, scripts and documents of all kinds. It is excep-
tionally well-suited to accelerate OTT video streaming platforms. This is a significant use
case, as more than 80% of the internet’s bandwidth is used to stream video.

In the next chapter we will focus specifically on Varnish version 6, what has changed,
how it is supported, and where to get it.

45

CHAPTER 2: WHAT IS VARNISH?

Chapter 2: Varnish 6

In this chapter we’ll be focusing on the specifics of Varnish version 6: why it’s important
to use this version, what it offers in terms of functionality, how it is supported, and how
you can get a hold of the software.

The entire book has a Varnish 6 focus, but this chapter specifically justifies its usage and
puts things in the right perspective for the chapters to come.

46

CHAPTER 2: WHAT IS VARNISH?

2.1 Why Varnish 6?

Varnish 6 is the latest major version of the Varnish project, and although it sounds new
and shiny, the first release of Varnish 6 dates all the way back to March 15th 2018, when
Varnish Cache 6.0.0 was announced.

Later that year Varnish Enterprise 6 was released to all customers as version 6.0.171.
Prior to this, some limited availability versions were produced and tested by select cus-
tomers. With the release of 6.0.171, all the features from the 4.1 version of the enterprise
product had been brought to the latest version, and even more features unique to Var-
nish Enterprise 6 were introduced. These features will be discussed later in this chapter.

Right now, Varnish Cache 6.6.0 is the latest version, which was released on March 15th
2021. Even though the recent release has a much higher version number, only 6.0 has
the status as a long-term support (LTS) release.

Such an LTS release will receive bugfixes and support for an extended length of time: at
least for half a year after the next L7S has been announced. Varnish Software maintains
this release, and provides packages for free to the general public.

All versions of Varnish Cache prior to 6.0 are deemed end-of-life, while Varnish Software
still supports older versions of Varnish Enterprise.

2.1.1 Alot of old content out there

Varnish 6 is already two years old. But there is still a lot of content available, written for
versions that have reached their end-of-life date.

A lot of it is based on Varnish version 4.1. 1 even wrote a book about Varnish 4, which is
still available. And although a lot of the concepts and V'CL examples still hold up, it is
important to educate people on the current state of the project.

The Varnish development team strives to be backwards compatible. This means that
almost all VCL examples written for Varnish 4.0 and 4.1 will work in exactly the same
way in Varnish 6. However, there are often better ways of doing things in the newer
versions, so not all of the advice is still current.

This book focuses on version 6, and many of the VCL examples in this book will not
work with older versions of Varnish.

47

CHAPTER 2: WHAT IS VARNISH?

2.1.2 Varnish versions vs VCL syntax versions

‘We must however make a clear distinction between the version of Varnish itself, and the
VCL syntax versions.

When Varnish 4.0.0 was released in 2014, there were a lot of breaking changes to the
VCL syntax. Most notably, backend and client request handling was separated, intro-
ducing several new states in the Varnish finite state machine.

As a mechanism for handling developments in the language itself, at the time and in the
tuture, Varnish Cache 4.0 introduced a new requirement: from that version on, every
valid VCL file must start with a line defining the VCL version to use. For a long time,
only vcl 4.0; was allowed.

Throughout the years, Varnish version numbers have increased, major releases like Var-
nish 5 and 6 happened, but the syntax remained compatible.

For a lot of people, VCL is the way they interface with Varnish. If the VCL syntax
doesn’t change, it seems as though the project doesn’t evolve either.

In reality, a lot of change has happened, and a lot of change is still taking place right
now. When Varnish 6 was released, VCL syntax 4.1 was introduced, while using the 4.0
syntax is still allowed.

Support for Unix domain sockets (UDS) in Varnish was the feature that required your
VCL file to start with vcl 4.1;.

It is important to understand that even though the VCL language was kept at a con-
stant version for a long time, capabilities were added to it. In other words, it was kept
backwards compatible, but not forward compatible. Most of these additions were in form
of new VCL variables like, for example, req.grace, or local.socket.

2.1.2 Encouraging upgrades

The main problem with outdated Varnish content on the internet, and in professional
literature, is that it doesn’t represent the most efficient way to tackle certain issues that
Varnish is suited for.

The lack of modern Varnish content on blogs, on GitHub, and on platforms like Stack
Overflow, does not encourage users the install the latest major version.

When sharing new VCL snippets, we should make sure they start with vcl 4.1;. Be-
cause that’s how we ensure people run them on a recent version of Varnish.

Encouraging upgrades from a feature perspective is one way to approach this challenge.

48

CHAPTER 2: WHAT IS VARNISH?

Another equally compelling argument is the fact that Varnish 6 is faster than previous
versions, is more stable, less resource consuming, and more secure.

Varnish Cache 6 is an active project, Varnish Enterprise 6 is an active product. Both
will continue to receive bugfixes, security updates, and feature additions. As a
Varnish evangelist, I strongly advise you to upgrade to this version in your current
setup, or to install this version on new setups.

2.1.3 It's the way forward

A conservative approach and critical thinking are generally good qualities for any oper-
ations engineer to have. They’re part of the risk mitigation mindset that gives organiza-
tions peace of mind.

Sticking with older versions that you know and trust is a common strategy: if it ain’t
broken, don’t fix it. However, as another saying goes: you have to get with the times:

e Varnish 6 is the foundation of future development

* New features will not be backported to pre-v6 versions

* Varnish 6 is the LTS version and will receive bugfixes and security updates
* Varnish 6 is faster and more stable

* New VMODs, either by Varnish Software, or the broader community, are unlikely
to be compatible with older versions

Do yourself a favor, upgrade to Varnish 6, even if Varnish is not a cornerstone of
your setup or platform.

49

CHAPTER 2: WHAT IS VARNISH?

2.2 What's new in Varnish 6?

Varnish 6 is not a snapshot, and it doesn’t represent a single release: it’s the major version

that groups a set of releases.
These are the seven Varnish versions that have been released so far:

* Varnish 6.0 (released March 15th 2018)
e Varnish 6.1 (released September 17th 2018)
* Varnish 6.2 (released March 15th 2019)
* Varnish 6.3 (released September 17th 2019)
* Varnish 6.4 (released March 16th 2020)
* Varnish 6.5 (released September 15th 2020)
* Varnish 6.6 (released March 15th 2021)

Because Varnish is on a six-month release schedule, the minor versions go up quite quickly.

That doesn’t mean every release adds a lot of functionality. They happen on a regular
basis, and when there’s something new, it’s added. Sometimes you end up with fea-
ture-heavy releases, sometimes there isn’t a lot to talk about.

There are also occasional maintenance releases. These aren’t really scheduled: they just
happen when they happen, and they increase the patch version, e.g. Varnish 6.0.3. These
maintenance releases contain bugfixes, enhancements, and sometimes even security
fixes.

But in order to answer the question, and to tell you what’s new in Varnish 6, we
need to look at the individual mznor versions.

2.2.1 What's new in Varnish 6.0?

Varnish 6.0 isn’t all that feature beavy. The new major version is primarily justified by
the work that was done under the hood.

However, there are two features that are quite impactful:

* Varnish 6.0 supports the use of UNIX domain sockets (UDS).

* HTTP/2support that was an experimental feature of Varnish 5 is now considered
stable.

50

CHAPTER 2: WHAT IS VARNISH?

UNIX domain sockets (UDS)

Varnish is a proxy and a cache, but it is often more correct to think of it as a component
in an HTTP-based application or application stack, where HTTP is the main communi-
cation protocol. Usually, the HTTP calls are made over TCP/IP, where the peer can be

very close or somewhere across the globe.

But these services aren’t always located on different servers, so there isn’t always a need
for a protocol that can route traffic over the network. T7CP/IP is complex, and relatively
speaking, there can be a significant overhead and latency when using it, even within the
same server.

When the web server is hosted on the same physical machine, you can communicate
over UDS instead of TCP/IP. The same applies when you terminate 7LS on the same
machine: the connection between the TLS terminator and Varnish can be made over
UDS.

So instead of connecting to the web server using the following backend definition:

vcl 4.0;

backend default {
.host = "localhost";
.port = "8080";

¥

you can remove 7CP/IP from the equation and use the .path attribute to connect to
the web server over UDS:

vcl 4.1;

backend default {
.path = "/var/run/webserver.sock";

}

It’s also possible to listen for incoming Varnish connections over UDS by configuring
the -a runtime option accordingly:

varnishd -a /var/run/varnish/varnish.sock,PROXY,user=vcache,group=-
varnish,mode=660

51

CHAPTER 2: WHAT IS VARNISH?

UDS support introduced a couple of new VCL variables:
* local.endpoint: the address of the -a socket the session was accepted on
e local.socket: the name of the -a socket the session was accepted on

These variables and the new .path attribute aren’t available in Varnish versions older
than 6.0, so that forced a new VCL version.

When using UDS features in VCL, you have to make sure the VCL file starts with vcl
4.1;.

HTTP/2 support considered stable

There is not a whole lot to say about HTTP/2 support. Yes, it’s stable now, and there are
a few new VCL variables related to this feature:

° req.proto

* bereq.proto
* beresp.proto
° resp.proto

These variables all expose the HTTP protocol version that is used for the request or re-
sponse. These are either HTTP/1.1 or HTTP/2.0.

Using these variables in your VCL file also requires the file to start with vcl 4.1;.

At the moment, Varnish does not support H1TP/2 on the backend side, but the vari-
ables bereq.proto and beresp.proto are reserved for future versions of Varnish,
which might support more protocols than HTTP/1.1 and HTTP/1.0.

Other features in Varnish 6.0

The shard director that is part of vmod_directors received lots of improvements.

vmod_unix was also added to retrieve the group id (GID), the user id (UID), the group
name, and the user name of incoming connections over UDS.

vmod_proxy is a useful addition for users who terminate TLS and connect the TLS
proxy to Varnish using the PROXY protocol. This VMOD has the ability to retrieve 7LS
information from the PROXY protocol. Most importantly whether or not the initial con-
nection from the client was made using 7LS.

52

CHAPTER 2: WHAT IS VARNISH?

Varnish 6.0 re-introduced a couple of removed VCL variables:
* req.ttl: upper limit on the object age for cache lookups to return hit
* req.grace: upper limit on the object grace

These variables are used to limit the time that objects are served from cache. Here’s an
example of how they can be used:

~
vcl 4.1;
import std;
sub vcl _recv {
if (std.healthy(req.backend_hint)) {
set req.ttl = 1m;
set reg.grace = 10s;
}
}
sub vcl_backend_response {
set beresp.ttl = 1h;
set beresp.grace = 10m;
¥
_ J
Even though the #ime to live (TTL) is explicitly set to one hour in vcl_backend_re-
sponse, setting req.ttl and req.grace will limit the effective TTL and grace for the
current transaction. In other words, when the backend is healthy, Varnish will only
serve objects for one minute with a ten-second grace. If it turns out that the backend is
not bealthy, the original TTL and grace values will be used.
[More information about 77 and grace can be found in the next chapter.]

Another feature worth mentioning is std.fnmatch, which is part of the standard
VMOD (vmod_std). This function will perform shell-style pattern matching on a string,
whereas PCR E-style pattern matching is otherwise used in Varnish.

2.2.2 What's new in Varnish 6.1?

Varnish 6.1 is a periodic release. It’s one of those releases when the release date is due,
but apart from bugfixes and enhancements, there’s nothing much more to say.

If you really care about the internals, you can always have a look at the most recent ver-
sion of the changelog.

53

https://github.com/varnishcache/varnish-cache/blob/master/doc/changes.rst
https://github.com/varnishcache/varnish-cache/blob/master/doc/changes.rst

CHAPTER 2: WHAT IS VARNISH?

2.2.3 What's new in Varnish 6.2?

Varnish 6.2 introduced two new variables that allow you to check if a request will by-

pass the regular caching flow, and immediately fetch the data from the backend. This

happens when the corresponding backend response is marked as hit-for-miss or hit-for-
pass. The respective variables are req.is_hitmiss and req.is_hitpass.

There was also an adjustment in the flow of Varnish’s finite state machine, which in-
volved return(miss) being removed from vcl_hit{}. There are other ways to still
trigger a miss, even when a bzt took place, but it is no longer deemed a common scenario.

A couple of new type conversion functions were added to vmod_std.

A new lookup function was added to vmod_directors to look up individual back-
ends by name.

The varnishadm command line tool can now return output in JSON format thanks to
the -j option.

And logging programs like varnishlog and varnishncsa will perform better due to
internal enhancements and the introduction of the -R rate-limiting option.

And as always: this version of Varnish features a number of bugfixes and enhancements.

2.24 What's new in Varnish 6.3?

Explicitly trigger vel_backend_error

Varnish 6.3 allows you to explicitly return an error from vcl_backend_fetch and
vcl_backend_response. This triggers the vcl_backend_error state and can be
achieved using either of the statements below:

return (error);
return (error(503));
return (error(503, "Service Unavailable"));

This is the erroneous equivalent of return (synth(200,"0K"));

54

CHAPTER 2: WHAT IS VARNISH?

VMOD import changes

In Varnish 6.3 it is now possible to import a VA/OD multiple times. It’s also possible to
run them under a different name, as illustrated below:

vcl 4.1;
import directors as dir;

sub vcl_init {
new rr = dir.round_robin();

}

Behavior change in auto VCL temperature state

When loading multiple V'CL files using varnishadm, the behavior of the auto state
with regard to the VCL temperature has changed: in previous releases, the V'CLs could
cool down and would remain cold. As of Varnish 6.3 it works in both directions, and
these V’CLs can automatically warm up again when required.

std.ip() accepts optional port argument
The std.ip() function now accepts an optional porr argument that overrides the de-
fault port value when it is called through std.port(). The default value is 80.

This is the new definition of std.ip():

[IP ip(STRING s, [IP fallback], BOOL resolve=1, [STRING p])]

Querying changes in VSL tools

VSL tools like varnishlog and varnishncsa have the ability to filter output based on
VSL queries using the -q option.

Prior to Varnish 6.3, a new line in a -q statement was merely used as a token separator.
As of Varnish 6.3, every new line in a -q statement is treated as a new query. Unless
specified otherwise, the statements are joined with the or gperator.

Here’s an example:

varnishlog -q
BerespStatus < 400
Requrl eq ¢/’

55

CHAPTER 2: WHAT IS VARNISH?

Prior to Varnish 6.3, the use of multiple -q options would result in the last query being
selected. As of Varnish 6.3, multiple queries will be joined with the or operator, as illus-
trated below:

[var‘nishlog -q "BerespStatus < 400" -q "ReqUrl eq /"]

The uppercase -Q is now available and reads stored VSL queries from a file. The -Q op-
tion can also be used multiple times, which just adds queries with the or gperator to any
query specified by either -q or -Q.

Here’s an example:

[var‘nishlog -Q queryl.vsl -Q query2.vsl]

And finally the varnishncsa program can take an -E option, which includes ES7 trans-
actions in the output.

2.2.5 What's new in Varnish 6.4?
1f-range support

Varnish 6.4 teatures support for the if-range request header. The value of that header
is either a date or an ETag value.

The result is that range requests are only performed if the value of the if-range header
either matches the Last-Modified date of the response, or if it matches the value of the
ETag response header.

Long story short: the if-range header performs conditional range requests.

Import vmod_cookie from varnish_modules

Prior to Varnish 6.4, vmod_cookie had to be installed from the varnish _modules re-
pository. You either had to compile it manually, or get it from the package manager of
your operating system.

As of Varnish 6.4, vmod_cookie has been imported into the main tree and is now avail-

able by default.

56

https://github.com/varnish/varnish-modules

CHAPTER 2: WHAT IS VARNISH?

vmod_cookie makes parsing, fetching, and modifying cookies a lot easier. Here’s an

example:
~
vcl 4.1;
import cookie;
sub vcl _recv {
if (req.http.cookie) {
cookie.parse(req.http.cookie);
Either delete the ones you want to get rid of:
cookie.delete("cookie2");
or delete all but a few:
cookie.keep("SESSIONID,PHPSESSID");
Store it back into req so it will be passed to the backend.
set req.http.cookie = cookie.get_string();
If empty, unset so the builtin VCL can consider it for
caching.
if (req.http.cookie == "") {
unset req.http.cookie;
}
}
}
_ J

In Varnish Enterprise, vmod_cookieplus solves many of the same use cases in a
similar way. The feature set of vmod_cookieplus is also a bit broader.

Defining none hackends

In Varnish 6.4, it is possible to explicitly state that you do not want a default backend by
writing backend default none;.

The symbol none is similar to NULL, null and nullptr in other languages and rep-
resents the absence of an actual backend.

Any attempt to use the none backend, which is not a backend, will result in a failure.

In some cases, specifying none as the default makes a lot of sense: for example, you
might use Varnish to just generate synthetic HT TP responses.

Another use case is when you are using labels to split V'CL logic into more than
one VCL, and the main VCL simply jumps to other loaded V'CLs through return
(vcl(...)). In these cases, it does not make sense to define an actual backend in the
main VCL.

57

CHAPTER 2: WHAT IS VARNISH?

Finally, vmod_goto, a Varnish Enterprise VAMOD, provides dynamic backends. By us-
ing goto.dns_director() or goto.dns_backend(), none makes a good choice as the
default backend.

Other VCL changes

There are also some smaller V'CL changes in 6.4:

* std.rollback(header) can be used to roll back the value of that header to its
original state.

* Numerical expressions can now be negative or negated as illustrated in the follow-
ing hypothetical example: set resp.http.ok = -std.integer("-200");.

* The += operator can be used to append data to headers and response bodies.

2.2.6 What's new in Varnish 6.5?

Strict CIDR checks on ACLs

Access control lists in Varnish support hostnames, individual IP addresses, and also sub-
nets. These subnets use the CIDR notation.

An example is 192.168.0.0/24. As of Varnish Cache 6.5, the use of a non-zero host part
will result in an Address/Netmask mismatch warning during VCL compilation.

Here’s an example of a such a mismatch:

acl myAcl {
"192.168.0.10"/24;

}

The correct notation that is enforced as of Varnish Cache 6.5, is the following:

acl myAcl {
"192.168.0.0"/24;

}

58

CHAPTER 2: WHAT IS VARNISH?

vee_acl_pedantic parameter

The vec_acl_pedantic runtime parameter can turn ACL CIDR mismatch warnings
into actual errors when enabled. As mentioned, these errors are triggered when the host
bits of a CIDR in an ACL aren’t all-zero.

obj.can_esi

Varnish Cache 6.5 introduced the obj.can_esi variable, which returns a boolean. If
the response that is stored in the object can be processed using ES7, it returns true.

A new .resolve() method

As of Varnish Cache 6.5, there is a new .resolve() method for backends and directors,
which immediately resolves a backend. Explaining exactly what this means requires an
understanding of what a director is. In short, a director organizes a set of backends, for
example for load balancing, and selects one from the set when a backend is needed to
carry out a backend request. The new .resolve() method forces the director to imme-
diately select a concrete backend.

Note that this method is not related to DNS resolution when a backend is defined using
a domain name. In these cases, the DNS lookup happens once, during compilation, and
the IP address is constant throughout the lifetime of the VCL.

Read more about different types of directors in chapter 5.

Closing the connection

Varnish Cache 6.5 now allows you to explicitly close the connection in V'CL, bypassing
any potential keep-alive settings that were in place.

Here’s an example of how this can be accomplished in VCL:

sub vcl_backend_response { h
if (beresp.backend == faulty backend) {
if (beresp.http.Connection) {
set beresp.http.Connection += ", close";
} else {
set beresp.http.Connection = "close";
}
}
}
_ J

59

CHAPTER 2: WHAT IS VARNISH?

BLOB literal syntax

Binary large objects or BLOBs as we call them, now have a new literal syntax as of Var-
nish Cache 6.5. The format is :<base64>:.

Here’s an example of such a literal:

[:3k@fOYyRKtKt7akzkyNsTGSDOJAZOQowTwKWhu5+kIu0=:]

std.blobread()

Similar to std.fileread(), the new std.blobread() function will read data from disk,
but it will return a BLOB rather than a string. This is ideal for reading binary files.

No connection is made to a backend administratively set as unhealthy

When a backend is explicitly set to unhealthy using varnishadm backend.set_
health, Varnish will no longer attempt to connect to the backend. The unhealthy status
is immediately noticed, and a HTTP 503 error is returned.

Help screen in varnishstat

If you type h in varnishstat, you’ll get a help page as of Varnish Cache 6.5, explaining
the various controls.

2.2.7 What's new in Varnish 6.6?

Start Varnish without a backend

The -b and -f runtime parameters are mutually exclusive. Prior to Varnish Cache 6.5 it
was not possible to start Varnish without defining the none backend in your VCL file,
which required using the -f option.

In Varnish Cache 6.5 it is now possible to use -b none to start the varnishd program
without having to use the -f parameter.

60

CHAPTER 2: WHAT IS VARNISH?

Header validation

Headers can now be validated against the rules set by RFC7230. By default header vali-
dation doesn’t take place.

By adding the -p feature=+validate_headers runtime parameter to varnishd,
header validation is enabled.

Vary notices

In Varnish Cache 6.6 the number of cache variations is now limited by the newly intro-
duced vary_notice parameter. The default value is ten.

When the number of cache variations exceeds this value, a Notice record will be added
to the Varnish Shared Memory Log (VSL).

Checking ban errors

The ban() function is now deprecated because it lacks the ability to evaluate its success.
In Varnish Cache 6.6 two new ban functions were added:

¢ std.ban(): performs the ban and either returns true or false depending on its
success.

e std.ban_error():ifan error occurred in std.ban(), std.ban_error() will dis-
play a detailed error message.

Here’s a tiny VCL snippet that illustrates its use:

if (std.ban(...)) {
return(synth(200, "Ban added"));
} else {
return(synth(400, std.ban_error()));

}

Modulus operator

Varnish Cache 6.6 added the modulus operator to VCL. This corresponds to % and can
be used as follows:

61

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;
import std;

sub vcl_recv {
set req.http.number = "4";
if(std.integer(req.http.number) % 2 == 0) {
return(synth(200, "Even"));
} else {
return(synth(200,"0dd"));

}
}
g J

New notation for long strings

In addition to the {" ... "} format for denoting long strings, Varnish Cache 6.6 has
now added the """ ... """ format.

New built-in VCL

The built-in VCL has been reworked: VCL code has been split into small subroutines,
to which custom VCL can prepend custom code.

VCL variable changes

The client.identity variable is now accessible on the backend side. Prior to the re-
lease of Varnish Cache 6.6, this variable was only accessible on the client side.

The variables bereq.is_hitpass and bereq.is_hitmiss have been added to the
backend side. They match the corresponding req.is_hitpass and req.is_hitmiss
that operate on the client side.

The bereq.xid variable is now also available in the vcl_pipe subroutine.

The resp.proto variable is now a read-only variable.

2.2.8 Backports to 6.0 LTS

Several of the features described above have been ported to the 6.0 long-term support re-
lease series of Varnish Cache, and to the corresponding Varnish Enterprise oftering. The
changelog for Varnish Cache 6.0 LTS releases can be found via https://varnish-cache.
org/, while Varnish Enterprise changes are available at https://docs.varnish-software.
com/varnish-cache-plus/changelog/changes/.

62

https://varnish-cache.org/
https://varnish-cache.org/
https://docs.varnish-software.com/varnish-cache-plus/changelog/changes/
https://docs.varnish-software.com/varnish-cache-plus/changelog/changes/

CHAPTER 2: WHAT IS VARNISH?

2.3 Varnish Enterprise 6

2.3.1 The origin story

The release of Varnish Enterprise 6 was a new starting point for Varnish Software’s com-
mercial version. In fact, it was so significant that it warranted a rebrand from Varnish
Cache Plus, to Varnish Enterprise.

The previous version, which was called Varnish Cache Plus 4.1, was based on Varnish
Cache 4.1. Although there were plenty of Varnish Cache 5.x releases, there was no com-
mercial equivalent.

Varnish Software’s goal is to release a stable version that can be supported for a long
time. The cost of stabilizing the code, and keeping the version up to date was not worth
it for a potential Varnish Enterprise S release, given the high quality of Varnish Cache
Plus 4.1 at the time, and the lack of killer features in Varnish Cache 5. This changed with
Varnish Cache 6 when HTTP/2 support was becoming quite stable, and Unix domain
sockets provided a considerable performance gain.

Because Varnish Software is an important contributor to the Varnish Cache project,
preparations were made long before the actual release of Varnish Cache 6. As a matter
of fact, Varnish Enterprise 6.0.0r0 was ready before Varnish Cache 6.0.0 was released.
However, it is important to mention that Varnish Enterprise 6.0.0r0 was never released
to the public. The first public version was Varnish Enterprise 6.0.1r1 on September 20th
2018.

2.3.3 New features in Varnish Enterprise 6

Now that Varnish Cache Plus had turned into Varnish Enterprise, a couple of major fea-
tures had to be developed and released on top of this milestone version.

The big one was Massive Storage Engine (MSE) version 3. The first version of MSE was
introduced in the days of Varnish Cache Plus 4.0. The second incarnation of MSE de-
buted with the first public release of Varnish Cache Plus 4.1. With Varnish Enterprise 6,
MSE has reached its third iteration, and each new version has improved on the previous
ones.

Chapter 7 has a section dedicated to MSE, in which its architecture, configura-
tion, and usage is explained in-depth.

63

CHAPTER 2: WHAT IS VARNISH?

Along with MSE came the release of Ykey, a VMOD that is used for tag-based invalida-
tion of objects in the cache. It is the successor of Xkey, and was specifically developed to
work well with MSE.

Another important new feature that was launched was Total Encryption: an end-to-end
encryption feature that was written in VCL and leveraged the brand-new vmod_crypto.

But as mentioned before: since Varnish Cache 6 is not a single release, or snapshot, Var-
nish Enterprise 6 isn’t either. With every release, new features were added.

Here’s a quick overview of some Varnish Enterprise 6 feature additions:

* Varnish Enterprise 6.0.0r0 (unreleased): Varnish Total Encryption and vmod_
crypto

* Varnish Enterprise 6.0.0r1 (unreleased): vmod_urlplus

* Varnish Enterprise 6.0.1r1: the return of req.grace

* Varnish Enterprise 6.0.1r3: vmod_synthbackend, MSE3
* Varnish Enterprise 6.0.2r1: vmod_ykey

* Varnish Enterprise 6.0.3r6: Varnish High Availability 6

* Varnish Enterprise 6.0.3r7: vmod_mmdb and vmod_utils

* Varnish Enterprise 6.0.4rI: return(error()) syntax in vcl_backend_fetch and
vcl_backend_response

* Varnish Enterprise 6.0.4r2: JSON formatting support in varnishncsa

* Varnish Enterprise 6.0.4r3: vmod_str

* Varnish Enterprise 6.0.5r1: vmod_mse, last_byte_timeout support for fetches
* Varnish Enterprise 6.0.5r2: if-range support in conditional fetches

* Varnish Enterprise 6.0.6r2: built-in TLS support, memory governor, vmod_jwt
* Varnish Enterprise 6.0.6r3: vmod_stale, vmod_sqlite3

* Varnish Enterprise 6.0.6r5: vmod_t1s

* Varnish Enterprise 6.0.6r6: vmod_headerplus

* Varnish Enterprise 6.0.6r8: vmod_resolver and Veribot

* Varnish Enterprise 6.0.6r10: vmod_brotli

* Varnish Enterprise 6.0.7rI: vmod_format, a brand-new varnishscoreboard

* Varnish Enterprise 6.0.7r2: new counters for vmod_stale

64

CHAPTER 2: WHAT IS VARNISH?

* Varnish Enterprise 6.0.7r3: a new resp.send_timeout variable, varnishncsa
EPOCH support, and the introduction of utils.waitinglist() and utils.
backend_misses()

* Varnish Enterprise 6.0.8r1: std.bytes() was backported from Varnish Cache, in-
troduction of utils.hash_ignore_vary()

4)

It’s important to know that the above feature list only covers the introduction of
new features. Every release since Varnish Enterprise 6.0.0r0 has seen improvements
and added functionality to one more Varnish Enterprise 6 features.

A feature is never really done, as we’ll always be able to improve as we go.
\ J

So let’s talk about individual features and show some VCL code.

Total encryption and vmod_crypto

Atits base vmod_crypto consists of a set of cryptographic functions that perform vari-
ous tasks.

Encoding

One example is the crypto.hex_encode() function that turns a blob into its hexadeci-
mal value.

The VCL snippet below returns the hexadecimal value for a. Because crypto.hex_en-
code() accepts a blob as an argument, the crypto.blob() function is used to convert
the string into the required blob.

~
vcl 4.1;
import crypto;
sub vcl_recv {
return(synth(200, crypto.hex_encode(crypto.blob("a"))));
}
g J

65

CHAPTER 2: WHAT IS VARNISH?

As you’d expect, the output returned by this VCL snippet is 61. And using crypto.
string(crypto.hex_decode("61")), you can turn the hexadecimal value 61 back into
a.

Similarly, we can also base64 encode and decode. Here’s the base64 equivalent:

vcl 4.1;
import crypto;

sub vcl_recv {
return(synth(200, crypto.base64_encode(crypto.blob("a"))));

}
g J

The output will be YQ==.

Hashing

Besides encoding, there are also hashing functions. The following example will create a
sha512hash of a string:

~
vcl 4.1;
import crypto;
sub vcl_recv {
return(synth(200, crypto.hex_encode(crypto.hash(sha512,"pass-
word"))));
}
g J

vmod_crypto also supports hash-based message authentication code or HMAC as we call
it.

The following example will create an HMAC signature for the string password using
the sha512 hash function, and will sign it using the secret key abc123:

~
vcl 4.1;
import crypto;
sub vcl_recv {
return(synth(200, crypto.hex_encode(crypto.hmac(sha512,crypto.
blob("abc123"),"password"))));
¥
S J

66

CHAPTER 2: WHAT IS VARNISH?

'Fheourpurvvﬂlbe3e714097c7512f54901239ceceeb8596d2ced28e3b428ed0
182662c69664c11cc483daftolf66671fb9a7a2dacd7977+12095dc08e1b2954e698
de222083b97e.

Encryption

And finally, vmod_crypto also supports encryption and decryption. The following
example will return an AES encrypted string using a 16-byte key:

~
vcl 4.1;
import crypto;
sub vcl_recv {
crypto.aes_key(crypto.blob("my-16-byte-value"));
return(synth(200, crypto.hex_encode(crypto.aes_encrypt("pass-
word"))));
¥
\ J

The output will be 60ed8326cfblec02359fff4a73fe7edc. And by calling crypto.
aes_decrypt(crypto.hex_decode("60ed8326cfblec@2359fff4a73fe7e0c")), the
encrypted value will be decrypted back to password.

Total Encryption

These cryptographic functions can be used in your VCL code, but they are also lev-
eraged by Total Encryption to provide a service that encrypts your data before it gets
stored in cache.

Encrypting your cached data is quite easy, and all the logic is hidden behind this one
include statement:

[include "total-encryption/random_key.vcl";]

This statement will encrypt the response body using
crypto.aes_encrypt_response() before storing it in cache. On the way out, it will
decrypt the cached response body using crypto.aes_decrypt_response() before
sending it to the client.

This approach uses a random key for encryption, where the key is stored in an zz-memo-
1y key-value store. This is of course not persistent. That isn’t really a problem because the
cache itself is, by default, not persistent either.

67

CHAPTER 2: WHAT IS VARNISH?

However, if you use disk persistence in MSE, the key will not survive a restart, while the
encrypted content will. We need a more reliable solution for that.

We can create a secret key on disk that is loaded into Varnish using the -E command line
option. But first, we need to create the secret key. Here’s a set of Linux commands to
achieve this:

$ cat /dev/urandom | head -c 1024 > /etc/varnish/disk_secret
$ sudo chmod 600 /etc/varnish/disk_secret
$ sudo chown root: /etc/varnish/disk_secret

In order to set the -E option, you’ll need to edit your systemd unit file and add the op-
tion. Here’s an oversimplified example of how to do this:

[ExecStart=/usr/sbin/varnishd ... -E /etc/varnish/disk_secret]

But in the end, the only thing you’ll need to add to your VCL file to support persisted
data encryption is the following line:

[include "total-encryption/secret_key.vcl";]

vmod_urlplus

vmod_urlplus is a URL normalization, parsing and manipulation VMOD. It doesn’t
just handle the URL path, but also the query string parameters. It has a set of utility
functions that make interacting with the URL quite easy.

The following example features a couple of gerter functions that retrieve the file exten-
sion and filename of a URL:

68

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;
import urlplus;

sub vcl_backend_response {
if (urlplus.get_extension() ~ "gif|jpg|jpeg|bmp|png|tiff|tif|img")

{
set beresp.ttl = 1d;
}
if (urlplus.get_basename() == "favicon.ico") {
set beresp.ttl = 1w;
}
}
- J

The next example is a normalization example in which we remove all query string pa-
rameters that start with utm_. Upon rewriting, the query string parameters are sorted

alphabetically:

N
vcl 4.1;
import urlplus;
sub vcl_recv {
Remove all Google Analytics
urlplus.query_delete_regex("utm_");
Sort query string and write URL out to req.url
urlplus.write();
}
_ J
4 N
Normalizing UR Ls is useful when query string parameters are added that don’t
result in different content. Because items in cache are identified by the URL,
removing these query string parameters results in fewer unnecessary cache varia-
tions, which increases your hit rate.
_ J

The example above explicitly removes query string parameters. Instead of stating which
parameters should be removed, we can also state which ones we want to keep. The fol-
lowing example illustrates this feature:

69

CHAPTER 2: WHAT IS VARNISH?

~
vcl 4.1;
import urlplus;
sub vcl_recv {
Only keep id query string parameter
urlplus.query_keep("id");
Sort query string and write URL out to req.url
urlplus.write();
}
g J

This example will remove all query string parameters, except the ones that were kept. In
this case, only id will be kept.

The return of req.grace

req.grace isa VCL request variable that specifies the upper limit on the object grace.

Grace mode is a concept where expired objects are served from cache for a certain
amount of time while a new version of the object is asynchronously fetched from

the backend.

This feature was removed from Varnish in the 4.0.0 release, back in 2014, and was rein-
troduced in the 6.0.1 release in 2018.

Here’s how to use it in your VCL code:

~
vcl 4.1;
import urlplus;
import std;
sub vcl_recv {
if (std.healthy(req.backend_hint)) {
set req.grace = 10s;
}
}
sub vcl_backend_response {
set beresp.grace = 1h;
}
g J

70

CHAPTER 2: WHAT IS VARNISH?

So in this case we're setting the object’s grace to an hour via set beresp.grace =
1h;, but as long as the backend is healthy, we’re only allowing ten seconds of grace, via
set req.grace = 10s;.

vmod__synthbackend

Varnish can return synthetic responses. These are HT'TP responses that didn’t originate
from an actual backend request. The standard return(synth(200,"0K")); VCL imple-
mentation does a pretty decent job at this. Unfortunately, these responses are generated
on-the-fly, and aren’t cacheable.

vmod_synthbackend is a module that creates cacheable synthetic responses. Here’s the
VCL code for it:

~N
vcl 4.1;

import synthbackend;
backend default none;
sub vcl_backend_fetch {

set bereq.backend = synthbackend.from_string("URL:
" + now);

+ bereq.url

"

+ ", time:

}
- J

The above example will print the current URL and the current timestamp. The re-
sponse will be stored in cache using the default 77Z.

Because backend requests and responses are synthetic, there is no need to define
areal backend. Instead you can use backend default none; to seta pro forma
backend called defanlt.

MSE3

Version 3 of the Massive Storage Engine adds a lot more reliability and flexibility to the
product. Chapter 7 has a section dedicated to MSE, so I won’t cover too many details
here.

I’ll just throw in an example configuration file that shows the capabilities of MSE:

71

CHAPTER 2: WHAT IS VARNISH?

s
env: {
id = "myenv";
memcache_size = "100GB";
books = ({
id = "book1l";
directory = "/var/lib/mse/book1";
database_size = "1G";
stores = ({
id = "store-1-1";
filename = "/var/lib/mse/stores/diskl/store-1-1.dat";
size = "1T";
b o
id = "store-1-2";
filename = "/var/lib/mse/stores/disk2/store-1-2.dat";
size = "1T";
} s
3 o
id = "book2";
directory = "/var/lib/mse/book2";
database_size = "1G";
stores = ({
id = "store-2-1";
filename = "/var/lib/mse/stores/disk3/store-2-1.dat";
size = "1T";
b o
id = "store-2-2";
filename = "/var/lib/mse/stores/disk4/store-2-2.dat";
size = "1T";
)
s
s
g

Here’s what this configuration file defines:
* My environment is called myenv

¢ Theenvironment has 100 GB of memory to store objects

e The environment has two books, which are databases where metadata is stored

¢ Both books are 1 GB in size and are stored in /var/1lib/mse/book1 and /var/

1lib/mse/book?2

* Each book has two stores, these are pre-allocated large files where objects are persist-

ed

¢ FEachstoreis 1 TBin size

72

CHAPTER 2: WHAT IS VARNISH?

¢ The stores for book 1 are stored in /var/lib/mse/stores/diskl/store-1-1.dat
and /var/lib/mse/stores/disk2/store-1-2.dat

¢ The stores for book 2 are stored in /var/lib/mse/stores/disk3/store-2-1.dat
and /var/lib/mse/stores/disk4/store-2-2.dat

There’s a total of 4 TB for object storage, and 2 GB for metadata. Book and store alloca-
tion happens on a round-robin basis.

A specialized mkfs.mse program, which is shipped with your Varnish Enterprise 6 in-
stallation, can be used to initialize all the files from the configuration file. This can be
done as follows:

[mkfs.mse -c /etc/varnish/mse.conf j

Once these files have been initialized, it’s a matter of linking the configuration file to
Varnish using the -s option, as illustrated below:

[ExecStar‘t=/usr‘/sbin/var‘nishd ... -S mse,/etc/varnish/mse.conf]

4)

This is another relatively simple example. Because we will be going into much
more detail about MSE in chapter 7, it suffices to understand that MSE is a very
powerful stevedore that stores objects and metadata.

It combines the raw speed of memory with the reliability of persistent disk storage.
It’s truly a best of both worlds implementation that overcomes the typical limita-

tions and performance penalties of disk storage.

\ J

vmod_ykey

As described earlier, vmod_ykey is the successor to vmod_xkey. It adds secondary keys
to objects, which allows us to invalidate objects based on z4gs, rather than relying on the

URL.

For implementations where content appears on many different UR Ls, it’s sometimes
hard to keep track of the URLs that need to be invalidated. vmod_ykey allows you to
add tags to objects, and then invalidate objects based on those tags.

73

CHAPTER 2: WHAT IS VARNISH?

4 N
vmod_ykey will be covered more extensively in chapter 6. So let’s keep it simple for

now, and throw in one short VCL example:

\ J
~

vcl 4.1;
import ykey;
acl purgers { "127.0.0.1"; }
sub vcl_recv {
if (req.method == "PURGE") {

if (client.ip !~ purgers) {
return (synth(403, "Forbidden"));

}

set req.http.n-gone = ykey.purge_header(req.http.Ykey-Purge,
sep="");

return (synth(200, "Invalidated "+req.http.n-gone+" ob-
jects"));

}
}

sub vcl_backend_response {
ykey.add_header(beresp.http.Ykey);
if (bereq.url ~ "~/content/image/") {
ykey.add_key("image");

}
}
g J

This example will add the image tag to all objects that match UR Ls starting with /
content/image/. The origin server, or application, can also issue tags via the custom
Ykey response header. This is processed via ykey.add_header(beresp.http.Ykey);.

The logic in vcl_recv will process the invalidation by accepting HT TP requests using
the PURGE request method, based on an access control list. The value of the custom Ykey-
Purge header, is the tag that will be invalidated.

The HT TP request below can be used to invalidate all objects that match the image
tag:

PURGE / HTTP/1.1
Ykey-Purge: image

74

CHAPTER 2: WHAT IS VARNISH?

Varnish High Availability 6

A new and improved version of Varnish High Availability was developed for Varnish
Enterprise 6. Instead of relying on a dedicated agent for cache replication, VHAG lever-
ages the Varnish Broadcaster, which is an existing component of the Varnish Enterprise
stack.

By eating our own proverbial dog food, the implementation of VHA6 is a lot simpler,
and is written in VCL.

Chapter 7 will feature high availability in depth. For the sake of simplicity, a single
VCL example will do for now.

Here’s how you enable Varnish High Availability in Varnish Enterprise 6:

include "vha6/vha_auto.vcl";

sub vcl_init {
vha6é_opts.set("token", "secretl23");
call vha6_token_init;

The complexity is hidden behind the included file. And although there are plenty of
configurable options, the secret token is the only value that needs to be set. If the Broad-
caster’s nodes.conf node inventory file is properly configured, V’HA6 will automatical-
ly synchronize newly stored objects with other Varnish nodes in the c/uster.

vmod_mmdb

vmod_mmdb is the successor to vmod_geoip. Both VA ODs are able to map a geograph-
ical location to an IP address, based on a database. vmod_mmdb came into play when
libgeoip, the library that vmod_geoip depended on, was deprecated.

The previous database format had also been deprecated. vmod_mmdb supports the new
libmaxminddb library, and the new database format that comes with it. As a bonus,
this new geolocation module can retrieve a lot more information from an IP address
than just the country information.

Here’s a VCL example in which we retrieve both the country and city information from
the client IP address:

75

CHAPTER 2: WHAT IS VARNISH?

~
vcl 4.1;
import mmdb;
sub vcl_init {
new geodb = mmdb.init("/path/to/database");
}
sub vcl_recv {
return(synth(200,
"Country: " + geodb.lookup(client.ip, "country/names/en") +
oo
"City: " + geodb.lookup(client.ip, "city/names/en")
))s
}
_ J
(A
MaxMind, the company that provides the library and the database, has a free
offering. However, retrieving more detailed information will probably require a
commercial license.
N J

vmod__ufils

As the name indicates, vmod_utils is a utility module that groups features that are too
small to deserve their own VALOD.

Without any further ado, let’s just dive into a couple of examples:

The following example uses utils.newline() to print a new line between first line
and second line:

~
vcl 4.1;
import utils;
sub vcl_recv {
return(synth(200, "first line" + utils.newline() + "second
line"));
}
_ J

The next example prints a timestamp in a specific date-time format. It is basically a
wrapper around the strftime function in the C langnage:

76

CHAPTER 2: WHAT IS VARNISH?

~
vcl 4.1;
import utils;
sub vcl_recv {
return(synth(200, utils.time_format("%A %B%e %Y")));
}
_ J

The output will be something like Monday June 8 2026.
Another useful example leverages utils.waitinglist() and utils.backend_miss-
es() to ensure we only cache objects on the second miss:

~
vcl 4.1;
import utils;
sub vcl _backend_response {
if (lutils.waitinglist() && utils.backend_misses() == @) {
set beresp.uncacheable = true;
set beresp.ttl = 24h;
}
}
_ J

When utils.backend_misses() is @, the object is not yet in bit-for-miss status. This
allows us to make it uncacheable until the next time a miss happens, in which case
utils.backend_misses() will be 1.

But by adding the 'utils.waitinglist() check, we make sure we only trigger a bit-
for-miss when no other requests are on the waiting list. Otherwise these requests would
not benefit from request coalescing and request serialization would occur.

Although vmod_utils has plenty more functions, here’s just one more example. It’s the
utils.dyn_probe() function that creates a dynamic probe.

Dynamic probes are not predefined using a probe {} construct, but can be
set on-the-fly. They are used to probe dynamic backends. Just like these dynamic
probes, dynamic backends aren’t predefined using a backend {} construct, but

can be set on-the-fly.

77

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;

import utils;
import goto;

backend default none;

sub vcl_init {

set the probe URL to perform health checks

new dyn_probe = utils.dyn_probe(url="/");

assign dynamic probe to dynamic backend definition

new dyn_dir = goto.dns_director("example.com", probe=dyn_probe.
probe());
}

sub vcl_backend_fetch {
set bereq.backend = dyn_dir.backend();

}
g J

Explicitly return errors

With return(error()), you can explicitly return an error in both vcl_backend_
fetch and vcl_backend_response subroutines. This immediately takes you into the
vcl_backend_error state, where the error message is returned to the client.

Here’s an example where the error is returned before a backend request is sent:

vcl 4.1;

sub vcl_backend_fetch {
return(error(500, "Something is wrong here"));

}

Here’s an example where the error is returned after a backend response was received.
Even if the backend response turned out to be successful, we can still decide to return
an error:

vcl 4.1;

sub vcl_backend_response {
return(error(500, "Something is wrong here"));

}

78

CHAPTER 2: WHAT IS VARNISH?

JSON formatting support in varnishncsa

varnishncsa is a program that ships with Varnish and that returns access logs in an
NCSA format. This is pretty much the standard format that most web servers use.

The new -j flag doesn’t convert the output into JSON, as you might expect. It actually
makes the output [SON safe.

Here’s an example of varnishncsa output without any extra formatting:

$ varnishncsa
172.18.0.1 - - [08/Jun/2020:15:47:46 +0000] "GET http://localhost/
HTTP/1.1" 200 © "-" "curl"

When we actually create a custom output format using -F that looks like /[SON, the -j
option will make sure the output is JSON safe. Here’s an example:

$ varnishncsa -j -F { "received_at": "%t", "response_bytes": %b,
"request_bytes": %I, "time_taken": %D, "first_line": "%r", "status":
%s }°

{ "received_at": "[08/Jun/2020:16:03:33 +0000]", "response_bytes":
5490, "request_bytes": 472, "time_taken": 155, "first_line": "GET
http://localhost/ HTTP/1.1", "status": 200 }

2.3.3 vmod_str

vmod_str is a string VAMOD that contains a collection of belper functions. I’ll highlight
a couple of these helper functions in a single /’'CL example:

79

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;
import str;

sub vcl_recv {
set req.http.x-str = "vmod_str functions example";

if (str.len(req.http.x-str) <= 0) {
return(synth(500, "String is empty"));
}

if (str.contains(req.http.x-str," ")) {

set req.http.x-output = str.split(req.http.x-str,1," ");
} else {

set req.http.x-output = req.http.x-str;
}

set req.http.x-output = str.reverse(req.http.x-output);

return(synth(200,req.http.x-output));

}
& J

Here’s a quick rundown of what this V'CL file does:

e Theinput string we are inspecting and modifying contains vmod_str functions
example

¢ Ifthisinput string is empty, or the header is not set, returns an error

¢ Ifthe input string contains spaces, splits the string on spaces, and keeps only the
first word

¢ Otherwise just uses the input string as-is
* Reverses the characters and returns the string

In our case, the output will be rts_domv, which is the reverse string of vmod_str.

vmod_mse

vmod_mse gives users control over how MSE behaves on a per request basisin VCL. Al-
though MSE works fine without this A4OD, it does offer fine-grained control to users
that require it.

This VMOD has two functions:

¢ mse.set_weighting() : set the algorithm that is used for filling stores

* mse.set_stores() :selects one or more stores that match a given tag

80

CHAPTER 2: WHAT IS VARNISH?

Set weighting algorithm

By setting the weighting algorithm, MSE will switch from basic round robin store selec-
tion, to weighted round robin. The example below uses the store size as the weight:

~
vcl 4.1;
import mse;
sub vcl_backend_response {
mse.set_weighting(size);
}
_ J

This means that MSE will store more objects in the stores that have more space, rather
than in the smaller stores. The effect is that different-sized stores will become full, and
least recently used nuking will start, roughly at the same time.

By setting mse.set_weighting(available);, MSE will give store more objects in
stores that have most space available.

When setting mse.set_weighting(smooth);, MSE will combine store size and avail-
able store space to come up with a weight.

Select stores by tag

In order to select stores by tag, the stores will need to be tagged in the MSE configura-
tion file. Here’s such a file:

4)

env: {
id = "myenv";
memcache_size = "100GB";

books = ({
id = "book1";
directory = "/var/lib/mse/book1";

database_size = "1G";
stores = ({
id = "storel";
filename = "/var/lib/mse/stores/diskl/storel.dat";
size = "1T";
tags = "sata";
b A
id = "store2";
filename = "/var/lib/mse/stores/disk2/store2.dat";
size = "1T";

81

CHAPTER 2: WHAT IS VARNISH?

tags = "ssd";
)
1)

default_stores = "none";

s

This configuration has two stores, each with their own tag. In this case, the tags repre-

sent the type of disk they’re hosted on: store I has a slower SATA disk and is tagged as

sata. store 2 has a faster SSD disk and is tagged as ssd.

If no tag is explicitly set, no store will be selected, and the objects will be stored in mem-

ory only. This behavior is the result of default_stores = "none";.

Once the tags have been assigned to their corresponding store, we can start setting tags

for specific content, as illustrated in the V'CL example below:

~
vcl 4.1;
import mse;
import std;
sub vcl_backend_response {
if (beresp.ttl < 120s) {
mse.set_stores("none");
} else {
if (beresp.http.Transfer-Encoding ~ "chunked" ||
std.integer(beresp.http.Content-Length,0) > std.bytes("1M"))
{
mse.set_stores("sata");
} else {
mse.set_stores("ssd");
}
}
}
_ J

This VCL file will keep short-lived content with a 77L of less than 120 seconds in mem-

ory only.

When an object has a 77L that is greater than two minutes, it will be persisted to disk.

Based on the content size, the VCL file will either set the sata tag, or the ssd tag.

In this case, Varnish will store objects with a content size bigger than 7 MB on MSE
stores that are tagged with the sata tag. The same applies when there’s no Con-
tent-Length header and chunked transfer encoding is used.

All other content will be stored on AMLSE stores that are tagged with the ssd tag.

82

CHAPTER 2: WHAT IS VARNISH?

Last byte timeout

When configuring timeouts for backend interaction, the first byte timeout is a very
common parameter to tune: it represents the amount of time Varnish is willing to wait

before the backend sends the first byte.

The time to first byte indicates how fast, or how slow, a backend application is able to
respond.

With the introduction of the last byte timeout, Varnish can now decide how long it is
willing to wait for the last byte to be received. When this timeout occurs, it usually
means there is network latency. But when chunked transfer encoding is used, it can mean
that it takes too long for the last chunk to be sent and received.

You can either define this using a backend definition in your VCL file:

backend default {
.host = "localhost";
.port = "8080";
.last_byte_timeout = 90s;

Or you can explicitly set this value in your vcl_backend_fetch logic:

vcl 4.1;

sub vcl_backend_fetch {
set bereq.last_byte_timeout = 90s;

}

The code above overrides any timeout set in the backend definition. It also overrides

the default timeout, which is 0, meaning it will wait forever. The default timeout can be
changed with the last_byte_timeout runtime parameter. Like all runtime parame-
ters, the change can be made persistent by adding it to the command line in your service

file:

[ExecStart=/usr/sbin/var‘nishd ... -p last_byte_ timeout=90]

83

CHAPTER 2: WHAT IS VARNISH?

I-Range support
Range requests are a common HT TP feature, which Varnish supports as well.

By issuing a Range header upon request, a client can request a selected range of bytes to
be returned, instead of the full body. The response will not have an HTTP 2008 0K sta-
tus, butan HTTP 206 Partial Content status code.

Varnish Enterprise 6 now also supports the If-Range request header in conditional
fetches. This means when a range request is satisfiable, and the If-Range request head-
er contains a value that matches either the Etag response header, or the Last-Modified
response header, the range will be returned with an HTTP 206 Partial Content sta-
tus code.

If the If-Range header doesn’t match any of these response headers, the full response
body is returned with an HTTP 200 OK status code.

Built-in TLS support

Up until Varnish Enterprise 6.0.6r2, no version of Varnish has ever had native support
for TLS: neither Varnish Enterprise, nor Varnish Cache. The replacement for built-in
TLS has been to use a TLS terminator like Hitch, which communicates connection
meta information to Varnish through the PROXY protocol.

Varnish Enterprise now has native TLS support, which largely eliminates the need for a
TLS proxy. TLS configuration is done in a separate file, as illustrated below:

frontend = {
host = "*"
port = "443"
}
pem-file = "/etc/varnish/certs/example.com"

That configuration file is then linked to the varnishd process by using the -A com-
mand line parameter. Here’s an example:

[ExecStart=/usr/sbin/varnishd ... -A /etc/varnish/tls.cfg]

84

CHAPTER 2: WHAT IS VARNISH?

The TLS configuration syntax is the same that Hzzch uses. Hitch is a dedicated
TLS proxy, developed by Varnish Software. The configuration syntax is the same,
which allows for a seamless transition from Hitch to native TLS.

Memory governor
The memory governor is a new feature of the Massive Storage Engine.

Correctly sizing the memory of your Varnish server can be tricky at times, especially at
high scale. Besides the size of the payload in your cache, other support data structures
and temporary workspaces for handling requests use a varying amount of memory. In
addition to this, transient storage for short-lived objects is also allocated separately.

Even if only 80% of the server’s memory is allocated for cache payload data, the server
can still run out of memory when a large number of clients is connected, or when the
individual objects are small.

The memory governor alleviates this issue by automatically adjusting the size of the
cache based on the size of other allocations needed to run Varnish comfortably. The
memory governor allows MSE to limit the memory of the varnishd process, instead of
just the size of the payload data.

The memory governor is enabled by setting MSEs memcache_size property to auto:

env: {
id = "myenv";
memcache_size = "auto";
}s

The memory_target runtime parameter limits the total size of the varnishd process.
Its default value is 80%. You can set the value to percentages, or absolute memory sizes.

vmod_jwt

vmod_jwt is a module for creating, manipulating, and verifying [SON Web Tokens and
JSON Web Signatures.

JWTis astandard that APIs use to create and verify access tokens: the API creates the
token, and the client sends it back to the API on every subsequent request to identify
itself.

85

CHAPTER 2: WHAT IS VARNISH?

The /W T contains a set of public claims that the API can use. In order to guarantee the
integrity of a token, the /1¥ T also contains an HMAC signature that the API verifies.

vmod_jwt can verify incoming [SON Web Tokens, as illustrated in the example below:

()
vcl 4.1;

import jwt;

sub vcl_init {
new jwt_reader = jwt.reader();

}

sub vcl_recv {
if (!jwt_reader.parse(regsub(req.http.Authorization, "~Bearer

SN A
return (synth(401, "Invalid JIWT Token"));
}

if (!jwt_reader.set_key("secret")) {
return (synth(401, "Invalid JWT Token"));
}

if (!jwt_reader.verify("HS256")) {
return (synth(401, "Invalid JWT Token"));

}
}
- J

This example will look for an Authorization request header that matches Bearer, and
then performs the following tasks:

¢ The token is extracted and parsed
e Thesecretkey is set
* The token is verified using a SHA256 HMAC signature

vmod_jwt is also able to issue /1#75. In the next example were issuing a token with the
following properties:

* ASHA256 HMAC signature with secret as the secret key
e The subjectis 1234567890

* Theissueris John Doe

* The token is stored in the token response header

And here’s the code to issue the /1# T using vmod_jwt:

86

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;
import jwt;

sub vcl_init {
new jwt_writer = jwt.writer();

}

sub vcl_backend_response {
jwt_writer.set_alg("HS256");
jwt_writer.set_sub("1234567890");
jwt_writer.set_iss("John Doe");
set beresp.http.token = jwt_writer.generate("secret");

}
- J

vmod_stale

The new VMOD stale can be used to cleanly implement szale if error behavior in
Varnish. Varnish’s built-in grace mode covers the more well-known stale while revalidate
caching behavior, but does not work well to implement a szale if error.

Stale while revalidate will keep stale content around while Varnish asynchronously gets
the most recent version of the object from the cache. This can result in outdated con-
tent being served briefly.

This VMOD allows you to have a stale if error without stale while revalidate. This
means: never serve outdated content, except when the backend is down.

The example below will revive a stale object when the backend returns a status code
greater than or equal to 500:

vcl 4.1;
import stale;

sub stale_if_error {
if (beresp.status >= 500 && stale.exists()) {
Tune this value to match your traffic and caching patterns
stale.revive(20m, 1h);
stale.deliver();
return (abandon);

}

sub vcl_backend_response {
set beresp.keep = 1d;
call stale_if error;

87

CHAPTER 2: WHAT IS VARNISH?

}

sub vcl_backend_error {
call stale_if_error;

}

This stale.revive() function will set a new 77L and a new grace value, as long as the
total remaining lifetime of the object (TTL + grace value + keep value) is not exceeded.
If any of these values exceed the total lifetime, the maximum remaining lifetime is used
for either the 7'7TL or the grace value, and the rest flows over into the keep value.

More information about the object lifetime, #me to live, grace, and keep can be
found in chapter 3.

vmod_sqlite3

SQLite is a library that implements a serverless, self-contained relational database sys-
tem. As the name indicates, it’s very lightweight, and relies on a single database file.

vmod_sqlite uses this library to offer SQL:te support in Varnish. The following exam-
ple uses vmod_sqlite to display the user’s name based on an ID cookie:

(N
vcl 4.1;

import sqlite3;
import cookieplus;

backend default none;

sub vcl_init {
sqlite3.open("sqlite.db", "|;");
sqlite3.exec({"CREATE TABLE “users” (" name’ VARCHAR(100));"});
sqlite3.exec("INSERT INTO “users” VALUES (‘John’), (‘Marc’),
(‘Charles’),(‘Mary’);");
}

sub vcl_fini {
sqlite3.close();

}

sub vcl_recv {
unset req.http.userid;
unset req.http.username;
cookieplus.keep("id");

88

CHAPTER 2: WHAT IS VARNISH?

cookieplus.write();
if (cookieplus.get("id") ~ "~[0-9]+$") {
set req.http.userid = cookieplus.get("id");
set req.http.username = sqlite3.exec("SELECT “name™ FROM us-
ers” WHERE rowid=" + sqlite3.escape(req.http.userid));

}
if (!req.http.username || req.http.username == "") {
set req.http.username = "guest";
¥
return(synth(200, "Welcome " + req.http.username));
}
g J

Asyou can see, the vcl_init subroutine will initialize the SQLite database that is
stored in the sqlite.db file. Various SQL statements are executed to create the users
table, and to populate it.

When receiving requests, the value of the ID cookie is used as the row identifier of the
record we’re trying to fetch.

If there’s a match, the username is returned, if not, guest is returned.

Take for example the following HT TP request:

GET / HTTP/1.1
Cookie:id=2

The output in this case will be Welcome Marc, because row 7d 2 in the users table cor-
responds to Marc.

2.34 vmod_ils

Varnish Enterprise 6.0.6r2 features support for native TLS, meaning that TLS connec-
tions can be handled by Varnish, instead of depending on external TLS termination.

Up until 6.0.72, we had to use vmod_proxy to get TLS information for a TLS connec-
tion that was terminated elsewhere. Now, we can now use vmod_t1s to get information
about native TLS connections.

All sorts of TLS information is available:
¢ The TLS version
e The TLS cipher

* Server Name Indication (SNI) information

89

CHAPTER 2: WHAT IS VARNISH?

s Application Layer Protocol Negotiation (ALPN) information
¢ The certificate signature algorithm
* The certificate generation algorithm

But most importantly, there’s a. is_t1s() function that will return a boolean value to
indicate whether or not the connection was made over TLS. Here’s some example code:

~
vcl 4.1;
import tls;
sub vcl_recv {
if ('tls.is_tls()) {
set req.http.location = "https://" + req.http.host + req.url;
return(synth(750, "Moved Permanently"));
}
}
sub vcl_synth {
if (resp.status == 750) {
set resp.status = 301;
set resp.http.location = req.http.location;
return(deliver);
}
}
_ J

This example is a typical use case where connections over plain HTTP automatically
get redirected to the HTTPS equivalent.

vmod_headerplus

vmod_headerplus is an advanced header creation, manipulation, and introspection
module. It facilitates tasks that otherwise would be done with more complicated regular

expressions.

This VMOD allows easy access to complete header values, and specific attributes of a
header value.

The first example shows how multiple headers that match a given pattern can be deleted
using headerplus.delete_regex():

90

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;
import headerplus;

sub vcl_recv {
headerplus.init(req);
headerplus.delete_regex("~X-");
headerplus.write();

}
g J

The example will delete all headers that start with X-.

The next example will look at the Cache-Control response header, and will set the
max-age attribute to 20 seconds if there’s an s-maxage attribute:

vcl 4.1;
import headerplus;

sub vcl_backend_response {
headerplus.init(beresp);
if (headerplus.attr_get("Cache-Control”, "s-maxage") {
headerplus.attr_set("Cache-Control", "max-age","20");

}

headerplus.write();

}
g J

vmod_resolver

In Varnish Enterprise 6.0.6r8 vmod_resolver was added. It’s a module that performs
Forward Confirmed reverse DNS (FCrDNS). This means that a reverse DNS resolution is
done on the dient IP addyress.

The resulting hostname is then resolved with a forward DNS resolution, and if any of
the resulting IP addresses match the original c/zent IP addyress, the check succeeds.

Here’s some VCL to illustrate the feature:

91

CHAPTER 2: WHAT IS VARNISH?

vcl 4.1;

import std;
import resolver;

sub vcl recv {
if (resolver.resolve()) {
std.log("Resolver domain:
} else {
std.log("Resolver error: " + resolver.error());

+ resolver.domain());

}
}
- J

Veribot

Veribot is a Varnish Enterprise 6.0.6r8 feature that leverages vmod_resolver. The goal
of the Veribot feature is to check whether or not a clzent is a bot.

It does a first pass with a User-Agent filter, then a second pass using FCrDNS, which is
performed by vmod_resolver.

Here’s a VCL example of Veribot:

vcl 4.1;
include "veribot.vcl";

sub vcl_init {
vb_ua_filter.add_rules(string = {"
"(?i)(google|bing)bot"
"(?i)slurp"

"1

vb_domain_rules.add_rules(string = {"
.googlebot.com" "allow"
.google.com" "allow"
.bingbot.com" "allow"
.slurp.yahoo.com"” "allow"
.fakebot.com" "deny"

"D
}

sub vcl_recv {
call vb_check_client;
if (req.http.vb-access != "allow") {
return(synth(403, "Forbidden"));
}

92

CHAPTER 2: WHAT IS VARNISH?

If the User-Agent header of a client passes the filter, the FCrDNS check succeeds, and
the resulting domain name is allowed access by the domain rules, the client will be al-
lowed access to the content.

This example assumes that the content would otherwise be guarded from regular users
with a paywall. Verified bots, on the other hand, do get access to the content, and will
index it for SEO purposes.

2.3.5 vmod_ brotli

vmod_brotli was released in Varnish Enterprise 6.0.6r10, and ofters Brotli compression.

Not only can vmod_brot1i compress an object in cache using its optimized compres-
sion algorithm, it can also send Brotli compressed responses to browsers that support it.

When Brotli compressed responses are sent, the Content-Encoding: br header is also
added.

Content from backends that send native Brotli to Varnish, will also be processed by Var-
nish, and stored in cache in that format.

Here’s some VCL code to show you how to enable Brotli support:

vcl 4.1;
import brotli;

sub vcl_init {
brotli.init(BOTH, transcode = true);
}

sub vcl_backend_response {
if (beresp.http.content-encoding ~ "gzip" ||
beresp.http.content-type ~ "text") {
brotli.compress();

}
- J

2.3.6 vmod_format

String interpolation is possible in Varnish by closing the string, using the plus sign, and
re-opening the string. When many values need to be included, this can become tedious.

vmod_format leverages the ANSI C printf() capabilities to easily perform string in-
terpolation based on ordered arguments.

93

CHAPTER 2: WHAT IS VARNISH?

Imagine the following VCL snippet:

~
vcl 4.1;
sub vcl_synth {
set resp.body = "ERROR: " + resp.status +"\nREASON: " + resp.rea-
son + "\n";
return (deliver);
}
_ _J
It’s not that complicated, but we still have to open and close the string to insert the
values into the string. As the size of the string grows, and the number of interpolated
variables increases, things get more complicated.
The following VCL example uses vmod_format to make this task a lot easier:
~
vcl 4.1;
import format;
sub vcl_synth {
set resp.body = format.quick("ERROR: %s\nREASON: %s\n",
resp.status, resp.reason);
return (deliver);
}
_ _J

2.3.7 scoreboard

The varnishscoreboard program, which was introduced in Varnish Enterprise
6.0.4r3, and redesigned for Varnish Enterprise 6.0.7r1, displays the current state of the
various active threads.

Here’s some example output from this tool:

$ varnishscoreboard R
Age Type State Transaction Parent Address
Description

1.64s probe waiting (%] 0 -
boot.default

2.11m acceptor accept 0 0 :6443
al

2.11m acceptor accept 0 0 :6443
al

2.11m acceptor accept 0 0 :80

94

CHAPTER 2: WHAT IS VARNISH?

ao
0.03s acceptor accept
ao
0.01s backend startfetch
POST example.com /login
0.01s client fetch

2.11m acceptor accept
al
2.11m acceptor accept
al
2.11m acceptor accept
ao
0.01s acceptor accept
ao
Threads running/in pool: 10/90

g

(]

360910

360909

172.19.0.1:63610 POST example.com /login

(]

(]

(]

0

360909 -

360908

0

: 80

16443

16443

: 80

:80

[We’ll cover varnishscoreboard in more detail in chapter 7.

2.3.8 Features ported from Varnish Cache Plus 4.1

Since the release of Varnish Enterprise 6 in 2018, a lot of new features have been added.
But the very first features that were added were actually ported from Varnish Cache Plus
4.1. Users were quite accustomed to a range of features, and didn’t want to lose them.

The Varnish Software team ported the following enterprise features:

e Parallel ESI

e Edgestash

* Dynamic backends

* Backend TLS

¢ Key-value store

* Least connections director
* Real-time status module

* Varnish High Availability
e vmod_aclplus

¢ vmod_cookieplus

95

CHAPTER 2: WHAT IS VARNISH?

e vmod_http

* vmod_rewrite

* vmod_session
And the following open source VM ODs were also packaged:
* vmod_bodyaccess
* vmod_cookie

* vmod_header

* vmod_saintmode
e vmod_tcp

* vmod_var

* vmod_vsthrottle

* vmod_xkey

Some of these open source ¥’A{ODs have since been replaced with an enterprise
equivalent, but are still available for backwards compatibility reasons.

2.39 What happens when a new Varnish Cache version
is released?

As mentioned before, Varnish Enterprise 6 is built on top of Varnish Cache 6.0, so it
follows its releases. These releases are patch releases, so they usually relate to bugfixes or
security updates.

When the open source community notices a bug, and it gets fixed in Varnish Cache, the
fix will be ported to Varnish Enterprise as well, and the patch version number increases.

On February 4th 2020 for example, a security vulnerability was fixed in Varnish Cache
6. This resulted in the immediate release of version 6.2.3, 6.3.2, and 6.0.6 (LTS). Natu-
rally, a new version of Varnish Enterprise was released and became version 6.0.671.

It also works the other way around: sometimes an important fix happens in Varnish
Enterprise first, which results in a new release. Then the fix is ported to Varnish Cache,
which results in a release as well. Because this new Varnish Cache release doesn’t add
anything new at that point, the subsequent pazch release of Varnish Enterprise is post-
poned until there’s enough new additions and fixes to warrant another release.

96

CHAPTER 2: WHAT IS VARNISH?

Because Varnish Enterprise 6 follows the Varnish Cache 6.0 release schedule, new fea-
tures in other Varnish Cache minor versions are not automatically added to Varnish
Enterprise. Feature porting from 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 happens on a case-by-case
basis. Compatibility breaking changes, however subtle they may be, are not ported.

97

CHAPTER 2: WHAT IS VARNISH?

24 Where fo get it

Installing some version of Varnish is quite easy: your Linux distribution’s package man-

agers probably have a Varnish Cache package available. You can even compile Varnish
from source, and follow the development of the project, if you wish.

There are a lot more ways to get a hold of Varnish, both Varnish Cache and Varnish
Enterprise. The official packages by Varnish Software will give you the recommended
version of Varnish.

24.1 The official package repositories

The recommended official package repositories are hosted on Packagecloud, and they’re
available for Debian-based systems (Debian and Ubuntu), and for RPM-based systems
(Red Hat, CentOS, Fedora), both for Varnish Cache, and for Varnish Enterprise.

For Varnish Cache, you can find these packages on https://packagecloud.io/varnish-
cache. You can either pick individual releases, or one of the weekly builds. Since these
packages are supported for a limited time, my advice is to just install Varnish 6.0 LTS.

There is an equivalent for Varnish Enterprise, but it requires an access token, which
comes with the Varnish Enterprise license.

Using Packagecloud repositories is quite easy. For Debian-based systems, you can run the
following command to set up the repository on your machine:

curl -s https://packagecloud.io/install/repositories/varnishcache/
varnish60lts/script.deb.sh | sudo bash

This snippet will download and execute a Bash script, that detects which Linux distri-
bution you have. It provisions the right channels, and you can run apt-get install
varnish to install Varnish using our official packages.

There is also a manual way of configuring the repositories, if you are uncomfortable
running a Bash script you have downloaded from the internet as the root user.

For R PM-based systems, you’'ll have to run the following equivalent:

98

https://packagecloud.io
https://packagecloud.io/varnishcache
https://packagecloud.io/varnishcache
https://packagecloud.io/varnishcache/varnish60lts
https://packagecloud.io/varnishplus

CHAPTER 2: WHAT IS VARNISH?

curl -s https://packagecloud.io/install/repositories/varnishcache/
varnish60lts/script.rpm.sh | sudo bash

And you install Varnish using our official packages by running yum install varnish

24.2 Installing from source

Varnish Cache is open source, so yes, you can access and download the source.

The Releases & Downloads page on the Varnish Cache website provides every release,
from Varnish Cache 0.9 all the way up to Varnish Cache 6.6.

The development of Varnish Cache happens on GitHub. You can look at individual
commits, issues, pull requests, and various branches. The releases page also ofters all
released versions of Varnish Cache, as well as beta versions, and release candidates. If you
do not want to install from source, the weekly packages provide a convenient way to
check out the latest developments of Varnish Cache.

24.3 Official Docker image

There is an official Docker image for Varnish Cache on the Docker Hub.

By running the following command, you spin up a Docker container using the latest
version of Varnish Cache, which currently is version 6.6:

docker run --name my-running-varnish -v /path/to/default.vcl:/etc/
varnish/default.vcl:ro --tmpfs /var/lib/varnish:exec -d -p 8080:80
varnish:latest

This command will:
* Runthe latest tag of the varnish Docker image
* Name the container my-running-varnish

* Mount the hypothetical VCL file /path/to/default.vcl onto /etc/varnish/
default.vcl in the container

* Mount the /var/lib/varnish folder as a temporary file system in memory with
exec privileges

¢ Forward the container’s port 80 to the host’s port 8080

99

http://varnish-cache.org/releases
https://github.com/varnishcache/varnish-cache
https://github.com/varnishcache/varnish-cache/releases
https://packagecloud.io/varnishcache/varnish-weekly
https://hub.docker.com/_/varnish

CHAPTER 2: WHAT IS VARNISH?

At this point the latest tag on the varnish Docker image refers to version 6.6, which
can also be used as a tag. Another tag that refers to the same version is fresh. That’s
what we call the latest Varnish Cache release.

However, you can also run a Varnish 6.0 LTS Docker container by using either the 6.0
tag, or the stable tag.

In summary, these are the tags of the official Varnish Cache Docker image that are cur-
rently available:

* varnish:latest (version 6.6.0)
* varnish:fresh (version 6.6.0)
* varnish:6 (version 6.6.0)

* varnish:6.6 (version 6.6.0)

* varnish:6.6.0 (version 6.6.0)

* varnish:stable (version 6.0.8)
* varnish:6.9 (version 6.0.8)

* varnish:6.0.8 (version 6.0.8)

244 Official doud images

A collection of official Varnish images is available in the respective marketplace of cloud
providers like:

* Amazon Web Services (AVS)

* Microsoft Azure

* Google Cloud Platform (GCP)

* Oracle Cloud Infrastructure (OCI)
¢ DigitalOcean

These images contain pre-installed versions of Varnish with the required configuration
to get started immediately.

AWS, Azure, GCP, and OCI ofter Varnish Enterprise images, whereas DigitalOcean
currently only offers Varnish Cache images.

100

CHAPTER 2: WHAT IS VARNISH?

Varnish Enterprise features in the cloud

The Varnish Enterprise image also comes with pre-installed and pre-configured tools

like:
* Hitch to terminate TLS connections
* Varnish Broadcaster to broadcast individual requests to a group of Varnish servers

* Varnish Discovery, which automatically keeps the inventory of your Varnish cluster
up-to-date based on autoscaling groups

* Varnish Agent, which allows remote management of your server

e VCS Agent to send custom statistics from individual Varnish servers to a Varnish
Custom Statistics server that centralizes stats

Licensing and billing

What makes this cloud offering so interesting is that users can try Varnish Enterprise
without having to buy a license upfront: there is an hourly license cost associated
with running these images, which the cloud provider bills on top of their own service
charges.

You’re not interacting with Varnish Software directly, because your cloud platform’s
marketplace will act as a broker.

The licensing model for AW, Azure, and GCP is flexible in such a way that you can
spin up a Varnish Enterprise virtual machine using our official images for a couple of
hours, and end up spending only $1 on licensing.

Oracle’s OCI platform applies a bring your own license model, which works well for en-
terprise users.

However, if you don’t buy a license with Varnish Software, you’re not entitled to the
same level of service and support that Varnish Software clients enjoy.

On DigitalOcean there is no license fee because Varnish Cache is an open source project.
The only bill you will get there is your infrastructure bill.

101

CHAPTER 2: WHAT IS VARNISH?

2.5 Chapter summary

Go Varnish 6 or go home!: that’s pretty much the message of this chapter.

Varnish has a big responsibility in terms of acceleration, stability, and content delivery.
We cannot emphasize enough that being on a supported version is crucial.

Varnish Cache 6.0 LTS or Varnish Enterprise 6 are the versions you should use, and at
this point, the reason why should be crystal clear.

We’re already two chapters into this book. We’re past the introduction phase, and all
the disclaimers have been presented. You know what Varnish is; you know what it does.

Now it’s time to start using it.

In chapter 3, we’ll be looking at how you can control Varnish’s behavior using conven-
tional HTTP caching mechanisms.

102

CHAPTER 3: IT'S ALL ABOUT HTTP

Chapter 3: It's all about HTTP

[HTTP is not just one of the things we do, it’s the on/y thing we do. j

In this chapter we will talk about HTTP’s built-in caching semantics, and how they al-
low you to control the behavior of Varnish.

When it comes to configuring Varnish, and customizing the behavior of the cache, the
Varnish Configuration Language seems like the best choice. The level of flexibility you
get seems unparalleled.

But here’s a statement that might challenge that idea:

[Write as little VCL as possible; let HT'TP do the heavy lifting.]

It looks like we’re undercutting the number one feature of Varnish, but there’s a bit
more nuance to the statement:

* The HTTP protocol has built-in caching semantics.
* These caching mechanisms are both officially specified and widely adopted.

* Using the right HTTP response headers, backends can express whether a page can
be cached, how, and for how long.

* Varnish can automatically parse and act upon those headers, giving more control
to the backends.

103

CHAPTER 3: IT'S ALL ABOUT HTTP

By leveraging HTTP headers, application developers have a conventional and portable
way to control the behavior of the cache. Even if Varnish is swapped out for another
caching proxy, the behavior should be the same.

Although you can achieve a lot more by writing VCL, using HT'TP can reduce the line
count of your VCL file, making it easier to maintain. It also make sense from an archi-
tectural point of view to let the backend, which is the content producer, decide how
long said content can be cached.

So without further ado, let’s talk about leveraging HT'TP.

104

CHAPTER 3: IT'S ALL ABOUT HTTP

3.1 HTTP as the go-to profocol

There is a difference between the internet and the World Wide Web: the internet offers
us a multitude of protocols to interact with computers over a global network.

The World Wide Web is a specific application of the internet that depends on the
HTTP protocol and its siblings. This protocol has always been the engine behind web
pages and behind hypermedia, but HT'TP has grown and can do so much more now.

Although traditional c/ient-server interactions over HT'TP using a web browser are still
very common, it’s the fact that machines can communicate with each other over HTTP
that took the protocol to the next level.

API, service-oriented architectures, remote procedure calls, SOAP, REST, microservices.
Opver the years, we’ve seen many buzzwords that describe this kind of machine-to-ma-
chine communication.

Why develop a custom protocol? Why re-invent the wheel, when HT'TP is so accessi-
ble?

3.1.1 The strengths of HTTP

HTTP is actually an implementation of the Representational State Transfer (REST)
architectural style for distributed hypermedia systems.

We know, it’s quite the mouthful. The design of REST came out of Roy Thomas
Fielding’s Ph.D. dissertation, and many of the strengths of HT'TP are described in that
chapter of the dissertation.

HTTP is a pretty simple stateless protocol that is request-response based. There is a no-
tion of resources that can reflect entities of the application’s business logic. Resources
can be identified through URLs, and can be represented in various document and file
formats.

The type of action that is performed through an HTTP request is very explicit: because
of request methods, the intent is always clear. A GET request is used for data retrieval, a
POST request is all about data insertion. And there are many more valid HTTP request
methods, each with their own purpose.

The real power of HT'TP lies in its metadata, which is exposed through request and
response beaders. This metadata can be processed by clients, servers, or proxies, and im-
prove the overall experience.

105

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

CHAPTER 3: IT'S ALL ABOUT HTTP

Some of the metadata is considered hypermedia, helping users navigate through resourc-
es, presenting resources in the desired format. In essence, it is what makes the World
Wide Web so interactive and so impactful.

What makes Roy Thomas Fielding’s dissertation so relevant to our use case, which is
web acceleration and content delivery, can be summarized in the following quote:

REST provides a set of architectural constraints that, when applied as a whole,
emphasizes scalability of component interactions, generality of interfaces, inde-
pendent deployment of components, and intermediary components to reduce
interaction latency, enforce security, and encapsulate legacy systems.

The entire purpose is to make applications scale and to reduce latency. The fact that
caching is explicitly mentioned as one of the features of REST makes it a frrst-class citi-
zen. It is also by design that so-called intermediary components exist.

Varnish is such an intermediary component, and Varnish reduces interaction latency
through caching. A tool like Varnish, among others, facilitates the scalability of HT TP,
and as a consequence, the scalability of the web.

3.1.2 The limitations of HTTP

HTTP is not a perfect protocol. Although it probably tackled most of the issues it was
designed for, times change, and use cases evolve.

In the nineties, I knew that HTTP was what powered the interaction between
my Netscape browser and some web server. Today, in 2021, I know that HTTP is
used by my cell phone when it connects to my car to see if the windows are closed.
Now that’s an example of evolving use cases.

HTTP is now used in situations it wasn’t designed for. And although it’s doing an okay
job, there are some limitations:

e HTTP is stateless; we have to use cookies to keep track of state.

* There are mechanisms in place to define cache expiration (through the Cache-Con-
trol header), but there is no conventional mechanism for explicit cache purging.

¢ The Connection header is used by clients to decide whether or not the connection
should be closed after processing an HTTP request. Although it’s a popular mech-
anism, proper use is at the discretion of the client and server.

106

CHAPTER 3: IT'S ALL ABOUT HTTP

* Long polling, and Server-Sent Events are used for event-based communication,
whereas HT TP itself is not really suited for those situations.

¢ Although connections can be reused, concurrency requires opening up multiple
connections to the server, but clients must be careful not to open too many to
avoid overloading servers.

* Even though the payload of an HTTP response can be compressed with gzzp, the
headers remain uncompressed.

And there are many more limitations. Despite these limitations, and the fact that
HTTP has outgrown its original purpose, we still trust HT'TP as a low entry barrier
protocol.

3.1.3 Newer versions of the HTTP protocol

Although the previous section portrayed the limitations of HTTP, we should empha-
size that it has evolved over the years, and continues to do so.

In 1991, Tim Berners-Lee released HTTP as a single-line protocol, which bootstrapped
the World Wide Web. Back then, HTTP didn’t have a version number.

It wasn’t until HTTP/1.0 was released back in 1996, that its predecessor received the
HTTP/0.9 version number. HTTP/1.0 was already a multi-line protocol and feature head-
ers. In fact, it already looked a lot like the HT'TP we know today.

HTTP/1.]

In 1997 HTTP/1.1 was released. As the version number indicates, it added new features,
but it wasn’t a complete overhaul. Here are a couple of notable feature additions that
were part of the HTTP/1.1 release:

e TheHost header is a required request header
e Support for persistent connections through Connection: keep-alive
* Support for the OPTIONS method

* Better support for conditional requests through the Etag and If-None-Match head-
ers

¢ Advanced caching support through the Cache-Control header
* Cache variations support through the Vary header

* Streaming support using Transfer-Encoding: chunked

107

CHAPTER 3: IT'S ALL ABOUT HTTP

* Support for compressed responses through the Content-Encoding header
* Support for range requests

There are of course many more features in that release, but this overview shows that
significant improvements were made. Even in the mid-nineties, when the web was still
in its infancy, people had the impression that HT'TP was used beyond its scope. HTTP
had to improve, which it did, and still does to this day.

HTTP/2

In 2015, HTTP/2 was officially released as the new major version of the protocol. HTTP/2
was inspired by SPDY;, a protocol invented by Google to improve transport perfor-
mance and reduce latency.

In HTTP/1.1, only one request at a time could be sent over a single connection, and
you needed for this request to be done to tackle the next one. This is referred to as
head-of-line blocking. In order to benefit from concurrency, multiple TCP connections
should be opened. This obviously has a major impact on performance and latency, and
is further amplified by the fact that modern websites require an increasing amount of
resources: JavaScript files, CSS files, web fonts, AJAX calls, and much more.

HTTP/2 tackles these inefficiencies by enabling full request and response multiplexing.
This means that one TCP connection can exchange and process multiple HTTP re-
quests and responses at the same time.

The protocol became mostly binary. Messages, both requests and responses, were
fragmented into frames. Headers and payload were stored in different frames, and cor-
related frames were considered a message. These frames and messages were sent over the
wire on one or multiple streams, but all in the same connection.

This shift in the way message transport was approached resulted in fewer TCP connec-
tions per transaction, less bead-of-line blocking, and lower latency. And fewer connec-
tions means fewer TLS bhandshakes, reducing overhead even further.

Another benefit of HTTP/2 is the fact that headers can also be compressed. This feature
was long overdue because payload compression was already quite common.

HTTP/3.0

With HTTP/2 we significantly reduced latency by multiplexing requests and responses
over a single TCP connection. This solves bead-of-line blocking from an HT'TP point of
view, but not necessarily from a TCP point of view.

108

CHAPTER 3: IT'S ALL ABOUT HTTP

When packet loss occurs, there is head-of-line blocking, but it’s at the TCP level. Even
if the packet loss only occurs on a single request or response, all the other messages
are blocked. TCP has no notion of what is going on in higher-level protocols, such as

HTTP.

HTTP/3.0 aims to solve this issue by no longer relying on TCP, but using a different
transfer protocol: QUIC.

QUIClooks alot like TCP, but is built on top of UDP. UDP has no /oss recovery mech-
anisms in place and is a so-called fzre and forget protocol. The fact that UDP has no
handshaking allows for QUIC to multiplex without the risk of head-of-line blocking.
Potential packet loss will only happen on the affected transaction, and will not block
other transactions.

QUIC does implement a low-overhead form of handshaking that doesn’t rely on the un-
derlying protocol. As a matter of fact, TLS negotiation is also done in QUIC during the
handshaking. This heavily reduces extra roundtrips, compared to TLS on top of TCP.

This new QUIC protocol is a very good match for HT'TP, and moves a lot of the trans-
port logic from the transport layer into user space. This allows for HTTP to be a lot
smarter when it comes to transport and message exchange, and makes the underlying
transport protocol a lot more robust.

What initially was called HTTP over QUIC, officially became HTTP/3.0 in 2018. The
way that HTTP header compression was implemented in HTTP/2 turned out to be in-
compatible with QUIC, which resulted in the need to bump the major version of HTTP
to HTTP/3.0.

Most web browsers offer HTTP/3.0 support, but on the web server front, it is still early
days. LiteSpeed and Caddy are web servers that support it, but there is no support for it
in Apache, and Nginx only has a tech preview of HTTP/3.0 available.

3.14 What about Varnish?

Varnish supports HTTP/1.1 and HTTP/2. Requests that are sent using HTTP/0.9, or
HTTP/1.0 will result in an HTTP/1.1 response.

As you will see in the next sections, Varnish will leverage many HT TP features to de-
cide whether or not a response will be stored in cache, for how long it will be stored in
cache, how it is stored in cache, and how the content will be delivered to the client.

109

CHAPTER 3: IT'S ALL ABOUT HTTP

Here’s a quick preview of Varnish default behavior with regard to HTTP:

Varnish will inspect the reguest method of an HT'TP request, and only cache GET
or HEAD requests.

Varnish will not serve responses from cache where the request contains cookies or
authorization headers.

Varnish can serve compressed data to the client using Gzip compression. If the client
doesn’t support it, Varnish will send the plain text version of the response instead.

Varnish will respect the Cache-Control header and use its values to decide wheth-
er or not to cache and for how long,

The Expires header is also supported and is processed when there’s no
Cache-Control header in the response.

The Vary header is used to support cache variations.
Varnish supports conditional requests, both for clients and backends.

Varnish uses the values of the Etag and Lost-Modified response headers and com-
pares them to If-None-Match and If-Modified-Since request headers for condi-
tional requests.

The special stale-while-revalidate attribute from the Cache-Control header
is used by Varnish to determine how long stale content should be served, while
Varnish is revalidating the content.

Varnish can serve range requests and supports conditional range requests by com-
paring the value of an If-Range header to the values of either an Etag header, or a
Last-Modified header.

Varnish supports content streaming through chunked transfer encoding.

This is just default behavior. Custom behavior can be defined in V'CL and can be
used to leverage other parts of HTTP that are not implemented by default.

HTTP/2 in Varnish

Getting back to HTTP/2: Varnish supports it, but you need to add the following feature
flag to enable support for H2:

[-p feature=+http2]

110

CHAPTER 3: IT'S ALL ABOUT HTTP

Because the browser community enforced H7TTPS for H2, you need to make sure your
TLS proxy has H2 as valid ALPN protocol.

If you use Hitch to terminate your TLS connection, you can add the following value to
your Hitch configuration file:

[alpn—pr‘otos = "h2, http/1.1"]

If you use a recent version of Varnish Enterprise, you can enable native TLS support,
which will handle the ALPN part for you.

HTTP/3 in Varnish

HTTP/3 is on the roadmap for both Varnish Cache and Varnish Enterprise, but the imple-
mentation is only in the planning stage for now, with no estimated time of delivery as
the protocol itself hasn’t been finalized yet.

The changes needed to support HTTP/3 are substantial, and such changes will always
warrant an increase of the major version number.

Basically, it will take at least until Varnish 7 tor HTTP/3 to be supported in Var-
nish.

1M1

CHAPTER 3: IT'S ALL ABOUT HTTP

3.2 HTTP caching

The entire concept of caching is not an afterthought in HT'TP. As the protocol

evolved, specific headers were introduced to support caching.

However, there’s always a difference between the specification and the implementation
of the protocol.

Originally, HTTP’s caching headers were designed for browser caching. But experience
has taught us, this is not a reliable solution:

* The cache is not shared, because every client caches the data independently, so the
server still needs to serve each client.

* Browser caching can easily by disabled or bypassed.

Luckily, reverse caching proxy servers like Varnish can also interpret these caching
headers. These are shared caches, and HTTP even has specific semantics to control these
sorts of caches.

The fact that these headers exist allows for caching policies to become portable:
they are part of the code, they are part of a conventional specification, and they
should be respected by any kind of caching device or software. This reduces ven-
dor lock-in while allowing developers to better express their intentions.

Let’s have a look at these headers, and see how they allow you to cache.

3.2.1 The Expires header

The Expires response header isn’t really an exciting header. It’s also quite limited in its
usage. Here’s an example:

[Expir‘es: Wed, 1 Sep 2021 07:28:00 GMT j

The idea is that a response containing this header can be stored in cache until September
first 2021 at 07:28 (GMT time zone). Once that time is reached, the cached object is con-
sidered stale and should be revalidated.

There’s not a lot of nuance to it:

* A response with a date in the future can be cached.

* Aresponse with a date in the past cannot be cached.

112

CHAPTER 3: IT'S ALL ABOUT HTTP

Although Varnish supports this header, it’s not that common. You're better off
using the Cache-Control header instead.

Some servers will convey that a response isn’t cacheable by setting an Expires at the
beginning of the Unix Time:

[Expir‘es: Thursday, 1 January 1970 00:00:00 GMT]

Expires has been deprecated since HT'TP/1.1 and should be avoided. If both a
Cache-Control header and an Expires header are present, Expires is ignored.

3.2.2 The Cache-Control header

The Cache-Control header is the main tool in your toolbox when it comes to con-
trolling the cache. Compared to Expires, the semantics of Cache-Control are alot
broader, as it is actually a list of finer-grained properties.

The primary expectation of any caching header is to indicate how long a response
should be cached. Implicitly this also allows you not to cache certain responses.
Cache-Control also has the capabilities to express what should happen when an object
has expired.

The Cache-Control header is both a request and a response header. We common-
ly use it as a response header to describe how caching the response should be ap-
proached. But a browser can also send a Cache-Control: no-cache to indicate
that it doesn’t want to receive a cached version of a response.

max-age vs s-maxage

The first example features both max-age and s-maxage:

[Cache-Contr‘ol: s-maxage=86400, max-age=3600]

max-age is aimed at browsers. In this example, a browser can cache the response for an
hour, which corresponds to 3600 seconds because of the max-age=3600 keyword.

s-maxage, however, is aimed at shared caches like Varnish. In this example, Varnish is
allowed to cache the response for a day because of the s-maxage=86400 keyword.

113

CHAPTER 3: IT'S ALL ABOUT HTTP

If Varnish sees the s-maxage keyword, it will take that value as the 77L. If there’s
no s-maxage, Varnish will use the max-age value instead.

Public vs private

The public keyword indicates that both shared and private caches (browsers) are al-
lowed to store this response in cache. Here’s an example:

[Cache—Contr‘ol: public, max-age=3600]

In this example, both the browser and Varnish are allowed to cache the response for an
hour.

The private keyword, on the other hand, prohibits shared caches from storing the
response in cache:

[Cache-Contr‘ol: private, max-age=3600]

The example above only allows browsers to cache the response for an hour.

Deciding not fo cache

The Cache-Control header offers many ways of indicating that a response should not
be cached:

[Cache-Contr‘ol: s-maxage=0]

This example uses a zero TTL to keep a response from being cached. It also works with

max-age:

[Cache-Control: max-age=0]

If you just want to avoid that a shared cache stores the response, issuing private will

do:

[Cache-Control: private]

114

CHAPTER 3: IT'S ALL ABOUT HTTP

And then there’s the well-known no-cache and no-store keywords:

[Cache-Control: no-cache, no-store]

* no-cache means that the data in cache shouldn’t be used without a systematic
revalidation: the agent always needs to verify that the cached version is the current
one.

* no-store means that the object shouldn’ even be stored in cache, let alone be
served from cache.

The no-cache and no-store keywords each have their own nuance, but most of
the time they have the same effect, depending on the implementation.

Revalidation

When a cached object expires, it’s up to the cache to revalidate the content with the
origin server.

In its simplest form, a request to an expired object will trigger a synchronous backend

fetch and will update the object.

Some implementations, including Varnish, support asynchronous revalidation. This
implies that stale content is served while the new content is asynchronously revalidated.

The Cache-Control header has a couple of ways of expressing what should happen
when an object expires, and how revalidation should happen.

Take this header for example:

[Cache-Contr‘ol: public, max-age=3600, stale-while-revalidate=300]

This response can be stored in cache for an hour, but when it expires, the cache should
serve the expired object for a maximum of 300 seconds past its expiration time, while
backend revalidation takes place. As soon as the revalidation is finished, the content is
fresh again.

Varnish’s stale while revalidate implementation is called grace mode and is covered
later in this chapter.

115

CHAPTER 3: IT'S ALL ABOUT HTTP

Another revalidation mechanism is based on the must-revalidate keyword, as illus-
trated in the example below:

[Cache—Contr‘ol: public, max-age=3600, must-revalidate]

In this case, the content is fresh for an hour, but because of must-revalidate, serving
stale data is not allowed. This results in synchronous revalidation once the cached ob-
ject has expired.

A third revalidation mechanism in Cache-Control is one that is a bit more aggressive:

[Cache—Contr‘ol: public, no-cache]

Although no-cache was already discussed earlier as a mechanism to prohibit a response
from being cached, its actual purpose is to force revalidation without explicit eviction.

It implies must-revalidate, but also immediately considers the object as stale.

How Varnish deals with Cache-Control

First things first: Varnish doesn’t respect the Cache-Control as a request header, only
as a response header.

Your web browser could send a Cache-Control: no-cache request header to avoid
getting the cached version of a page.

One could argue that if Varnish truly wants to comply with HTTP’s specs, it would
respect this header, and not serve content from cache. But that would defy the entire
purpose of having a reverse caching proxy, and this could result in a severe decline in
performance and stability, not to mention an increased attack surface.

With that out of the way, let’s look at which Cache-Control features Varnish does sup-
port by default:

* Varnish respects s-maxage and sets its 7'7L according to this value.

* Varnish respects max-age and sets its 77 according to this value, unless a s-max-
age directive was found.

* Varnish respects the private directive and will not cache if it occurs.
¢ Varnish respects the no-cache directive and will not cache if it occurs.

* Varnish also respects the no-store directive, and will not cache when it occurs.

116

CHAPTER 3: IT'S ALL ABOUT HTTP

¢ Setting max-age or s-maxage to zero will cause Varnish not to cache the response.

* Asmentioned, Varnish respects stale-while-revalidate and will set its grace
time accordingly.

e There are two common Cache-Control directives that Varnish ignores:
* public

o must-revalidate

There is a must-revalidate Varnish implementation in the making, but since
this would result in a breaking change, it can only be introduced in a new major
version of Varnish. must-revalidate support in Varnish would result in grace

mode being disabled.

3.2.3 Surrogates

The Edge Architecture Specification, which is a W3C standard, defines the use of sur-
rogates. These surrogates are intermediary systems, that can act on behalf of the origin
server.

These are basically reverse proxies like Varnish. Although some of them might be located
close to the origin, others might be remote.

Varnish’s typical use case in this context, is as a local reverse caching proxy. A typical ex-
ample of remote reverse caching proxies is a content delivery network (CDN).

f R
Varnish is also CDN software. Although Varnish is primarily used in a /ocal con-

text, there are many use cases where Varnish is used in various geographical points
of presence, to form a full-blown CDN.

In chapter 9, we’ll discuss how Varnish can be used to build your own CDN.
N\ J

Whereas a regular proxy only caches content coming from the origin, a surrogate can act
on behalf of the origin and can perform logic on the edge. From offloading certain logic,
to adding functionality oz the edge, this makes surrogates alot more powerful than regu-

lar proxies.

Surrogates can be controlled through specific H77TP headers:

117

https://www.w3.org/TR/edge-arch/

CHAPTER 3: IT'S ALL ABOUT HTTP

* TheSurrogate-Capability header is a request header, sent by the surrogate to
announce its capabilities.

* TheSurrogate-Control header is a response header, sent by the or4gin, to control
the behavior of the surrogate, based on the capabilities it announced.

The Surrogate-Capability header

The Surrogate-Capability header is a request header that is not sent by the client,
but by the surrogate itself. This header announces the surrogate capabilities that this re-
verse proxy has.

The origin that receives this header can act on these capabilities, and later control some
of these surrogate capabilities through the Surrogate-Control header.

A Surrogate-Capability header is a collection of unique device tokens. Each one of
these tokens relates to a specific surrogate that can be used to announce its own capabil-
ities.

One of the most common surrogate capabilities is the capability to process edge-side in-
cludes.

4)

An edge-side include is a markup tag that is used to assemble content oz the edge,

using a source attribute that refers to an HTTP endpoint.

When an origin server sends such an ESI tag, the surrogate will process the tag, call
the endpoint, potentially cache that HTTP resource, and assemble the content as

asingle HTTP response.
_ J

Here’s how a surrogate can announce ESI support:

[Surrogate-Capability: varnish="ESI/1.0"]

The Surrogate-Control header

Once a surrogate has announced its capabilities, the origin can control it using a list of
directives in the Surrogate-Control header.

When we use our ES7 example, this is how the origin would specify how the origin
should process any EST tags in the response:

118

CHAPTER 3: IT'S ALL ABOUT HTTP

[Surrogate-Control: content="ESI/1.0"]

And this is what an EST7 tag looks like:

[<esi:inc1ude src="http://example.com/header/" />]

* Theresponse body contains the ST tag(s).

¢ TheSurrogate-Control response header instructs the surrogate to process these
tags as E£ST. In chapter 4 we’ll discuss £S7 in more detail.

Surrogate caching

Although surrogates are about additional capabilities that go beyond basic HTTP, there
is still a caching component to it. A Surrogate-Control header can contain directives
like no-store and max-age, which are used to control the cacheability of a response.

Surrogates can use the Surrogate-Control header to set the cacheability of a response
and its 77TL. The requirement is that a Surrogate/1.0 capability token is set in the
Surrogate-Capability header, as illustrated below:

[Surrogate-Capability: varnish="Surrogate/1.0"]

When a surrogate announces Surrogate/1.0 support, the Surrogate-Control cach-
ing directives have precedence over any 77 defined using the Cache-Control or Ex-
pires header.

Here’s an example where we combine caching and ES7 control:

[Sur‘r‘ogate—Contr‘ol: no-store, content="ESI/1.0"]

Regardless of any Cache-Control header, the response will not be cached, but the out-
put will be parsed as EST.

It’s also possible to indicate how long a surrogate should cache a response:

[Surrogate-Control: max-age=3600]

119

CHAPTER 3: IT'S ALL ABOUT HTTP

In the example above, a surrogate may cache this response for an hour. But it can geta
bit more complicated when you look at the max-age syntax in the following example:

[Surrogate-Control: max-age=3600+600]

This Surrogate-Control example directs the surrogate to cache the response for an
hour, but allows stale content to be served for another ten minutes, while revalidation

happens.

Although it’s nice to have revalidation teatures within the Surrogate-Control
syntax, it diverges from the conventional stale-while-revalidate syntax that
is part of the Cache-Control header.

There’s even an extra directive to control caching behavior, and that’s the no-store-
remote directive. no-store-remote will instruct remote caches not to store a response
in cache, whereas local caches are allowed to store the response in cache.

4)

The implementation of no-store-remote is a bit arbitrary, and depends on

whether or not a surrogate considers itself a remote cache or a local cache. It’s up
to the surrogate to decide, but generally, surrogates that are more than one or two
hops from the origin server can call themselves remote. In most cases, CDNG fit

that description.
_ J

Here’s an example of no-store-remote:

[Sur‘r‘ogate—Contr‘ol: no-store-remote, max-age=3600]

In this example, local caches with surrogate capabilities are allowed to cache the response
for an hour, whereas remote caches aren’t allowed to store this response in cache.

Surrogate targeting

The idea behind surrogates is that they can be deployed in various locations and can be
part of a tiered architecture. When using a mixture of CDNs and local caches, various
devices can have various capabilities.

Targeting specific surrogate devices is important when you want to control their indi-
vidual capabilities. Each device emits its own device keys containing their individual
capabilities.

120

CHAPTER 3: IT'S ALL ABOUT HTTP

Devices that are further along the chain may append capabilities to the Surrogate-Ca-
pability header aslong as the device key remains unique.

Here’s such an example:

Surrogate-Capability: varnish="Surrogate/1.0 ESI/1.0", cdn="Surro-
gate/1.0"

In this case, a device named varnish supports both the Surrogate/1.0 specification
and has ESJ capabilities. There’s also a device named cdn that only supports Surro-
gate/1.0.

These values were appended to the Surrogate-Capability header by the various sur-
rogates in the content delivery chain and will be interpreted by the origzn.

The origin can then issue the following Surrogate-Control header to control both
devices:

Surrogate-Control: max-age=60, max-age=86400;varnish, max-
age=3600;cdn, content="ESI/1.0";varnish

Let’s break this down:

* Any surrogate device that is not matched will store the response in cache for a min-
ute (max-age=60).

* Thesurrogate device named varnish will store the response in cache for a day
(max-age=86400;varnish).

* The surrogate device named cdn will store the response in cache for an hour (max-
age=3600;cdn).

¢ Additionally, the varnish surrogate device also has to process one or more EST tags
in this response.

Here’s another combined example:

Surrogate-Control: max-age=3600, max-age=86400;varnish, no-store-re-
mote

121

CHAPTER 3: IT'S ALL ABOUT HTTP

And here’s the breakdown:

* Any surrogate device that is not matched will store the response in cache for an hour
(max-age=3600).
* Thesurrogate device named varnish will store the response in cache for a day

(max-age=86400;varnish).

* Any remote surrogate will not be allowed to store this response in cache (ho-store-
remote).

Surrogate support in Varnish

Out-of-the-box, Varnish’s support for surrogates is very limited. However, because capa-
bilities and controlling features are so diverse, there is no one-size-fits-all solution. The
VCL language is the perfect fit for the implementation of custom edge logic.

Varnish does respect the Surrogate-Control: no-store directive in its built-in be-
havior. Any other behavior should be declared using VCL.

In chapter 8, we’ll be talking about decision-making on the edge, which is exactly
the goal of surrogates.

3.24 TIL header precedence in Varnish

There’s the Expires header, there’s the Cache-Control header, and within
Cache-Control there’s max-age and s-maxage. Plenty of ways to set the 77, but
what is the order of precedence?

1. TheCache-Control header’s s-maxage directive is checked.
2. When there’s no s-maxage, Varnish will look for max-age to setits T7TL.

3. When there’s no Cache-Control header being returned, Varnish will use the Expires
header to setits TTL.

4. When none of the above apply, Varnish will use the default_ttl runtime param-
eter as the 7'7TL value. Its default value is 120 seconds.

5. Only then will Varnish enter vcl_backend_response, letting you change the
TTL.

6. Any TTL being setin VCL using set beresp.ttl will get the upper hand, re-
gardless of any other value being set via response headers.

122

CHAPTER 3: IT'S ALL ABOUT HTTP

3.2.5 Cacheable request methods

You’ve probably heard the term idempotence before. It means applying an operation
multiple times without changing the result.

In math, multiplying by zero has that effect. But in our case, we care about idempotent
request methods.

An HTTP request method explicitly states the intent of a request:

* AGET request’s purpose is to retrieve a resource.

* A HEAD request’s purpose is to only retrieve the headers of a resource.
* APOST request’s purpose is to add a new resource.

° A PUT request’s purpose is to update a resource.

* A PATCH request’s purpose is to partially update a resource.

e ADELETE request’s purpose is to remove a resource.

This should sound quite familiar if you’ve ever worked with RESTful APIs.

The only idempotent request methods in this list are GET and HEAD because executing
them does not inherently change the resource.

This is not the case with POST, PUT, PATCH, and DELETE.

That’s why Varnish only serves objects from cache when they are requested via GET or

HEAD.

4)
Caching non-idempotent requests is possible in Varnish, but it’s not convention-
al behavior. Using custom VCL code and some VM ODs, it can be done. But it
depends heavily on your use case. See chapter 8 for a section about caching POST

}"€qlzlé’.ft5.

Note: because of HTTP’s flexibility, you can of course design idempotent POST
requests and non-idempotent GET ones, but the REST approach is the overwhelm-
ing norm.

\ J

3.3.6 Cacheable status codes

As described in the previous section: when receiving a client request, a reverse caching
proxy should be picky as to what request methods it deems cacheable.

123

CHAPTER 3: IT'S ALL ABOUT HTTP

The same thing applies for backend responses: only backend responses containing certain

status codes are deemed cacheable. These are all defined in section 6.1 of RFC 7231.
Varnish only caches responses that have the following status code:
. 200 OK

* 203 Non-Authoritative Information

* 204 No Content

* 300 Multiple Choices

* 301 Moved Permanently

* 302 Moved Temporarily

* 307 Temporary Redirect

* 304 Not Modified

* 404 Not Found

* 410 Gone

* 414 Request-URI Too Large

Responses containing any other status code will not be cached by default.

3.2.7 Cache variations

Throughout this chapter, we talk about HT'TP, and more specifically in this section,
about the caching aspect of it. Through a variety of headers, we can instruct Varnish
what to cache and for how long.

But there’s another instruction we can assign to a cache: how to store the object. A
cached object should be retrieved through its unique identifier. From an HTTP per-
spective, each resource already has a conventional way to be identified: tbe URL.

HTTP caches like Varnish will use the URL as the hash key to identify an object
in cache.

If the URL is the unique identifier, but the content differs per user, it seems as though
you’re in trouble, and the response will not be cached. But that’s not really the case be-
cause HT'TP has a mechanism to create cache variations.

[Cache variations use a secondary key to identify variations of the object in cache.]

124

CHAPTER 3: IT’'S ALL ABOUT HTTP

It’s basically a way for the origin to add information to the hash key to complement the
cache’s initial hashing.

The vary header

The way HTTP requests a cache variation is through the Vary response header. The
value of this Vary header should be a valid request header.

For each value of the request header that is used in the Vary response header , a second-
ary key will be created to store the variation.

Accept-Language variation example
A very common example: langunage detection.

Although in most cases, splash pages with a language selection option are used for mul-
tilingual websites, HT TP does provide a mechanism to automatically detect the lan-
guage of the client.

Web browsers will expose an Accept-Language header containing the language the
user prefers. When your website, or API, detects this, it can automatically produce mul-
tilingual content, or automatically redirect to a language-specific page.

But without a cache variation, the cache is unaware of this multilingual requirement
and would store the first occurrence of the page. This will result in a language mis-
match for parts of the audience.

GET /HTTPAA GET / HTTP/11
Host: example.com Host: example.com
Accept-Language: en Accept-Language: nl

example.com/

DObject

EN version NL version

v
HTTP/1.1 200 OK HTTP/11 200 OK
Cache-Control: max-age=3600 Cache-Control: max-age=3600
Content-Length: 648 Content-Length: 730
Vary: Accept-language Vary: Accept-language

Cache variations

125

CHAPTER 3: IT'S ALL ABOUT HTTP

By issuing Vary: Accept-Language, Varnish is aware of the variation and will create a
separate secondary key for each value the Accept-Language may have.

Disclaimer: this is an oversimplified example. In reality there are more things to
consider before creating an Accept-Language cache variation, which will be cov-
ered in the next section.

One thing to note, which will become important for cache invalidation: variants actual-
ly share the hash key, so they can be invalidated in one go.

Hit-rate considerations

When dealing with personalized content, you try to cache as much as possible. It may
be tempting to jam in cache variations wherever you can.

However, it is important to consider the potential hit rate of each variation.

Take for example the following request:

GET / HTTP/1.1
Host: example.com
Cookie: language=en

The language cookie was set, which will be used to present multilingual content.

You could then create the following cache variation:

[Vary: Cookie]

There are so many risks involved, unless you properly sanitize the user input.

Problem number one: the user can change the value of the cookie and deliberately, or
even involuntarily, increase the number of variations in the cache. This can have a sig-
nificant impact on the hit rate.

In reality there will probably more cookies than just this language cookie. An average
website has numerous tracking cookies for analytics purposes, and the value of some of
these cookies can change upon every request.

This means every request would create a new variation. This wouldn’t just kill the hit
rate, but it would also fill up the cache to a point that Varnish’s LRU eviction mechanism
would forcefully have to evict objects from cache in order to free up space.

126

CHAPTER 3: IT'S ALL ABOUT HTTP

That’s why it’s imperative to sanitize user input in order to prevent unwarranted varia-
tions.

Because this is what a browser could send in terms of Accept and Accept-Language
headers:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp, image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Language: nl-NL,nl;q=0.9,en-US;q=0.8,en;q=0.7

It’s very tricky to create variations based on either of those headers because the second-
ary key that will be created is the literal string value of the varied header.

Without proper sanitization, this will create too many variations, which will drive
down your hit rate.

Sanitizing user input

The solution is to clean up the user input using VCL.

We know we’re getting ahead of ourselves here, because VCL will be properly cov-
ered in the next chapter. However, it is interesting to know, from a practical point
of view, how to properly sanitize user input for these accept headers.

Here’s some example V'CL that leverages vmod_accept:

vcl 4.1;
import accept;

sub vcl_init {
new lang = accept.rule("en");
lang.add("nl");

}

sub vcl_recv {
set req.http.Accept-Language = lang.filter(req.http.Accept-Lan-
guage);
}
G J

vmod_accept will simplify the values of Accept-Language to make variations more
controllable. It does this based on a whitelist.

127

CHAPTER 3: IT'S ALL ABOUT HTTP

The whitelist is named 1ang and lists the allowed values for the Accept-Language
header.

By executing the 1ang.filter() function, vmod_accept will look the input for the Ac-
cept-Language header, sent by the browser, and will keep the first match. If no match
is found, the filter will take the default value.

In this case the allowed values are en and nl. If either of these languages is found in the
Accept-Language header, one of them will be selected, based on the first occurrence. If
none of them are found, the default language will become en.

This is what comes in:

[Accept-Language: nl-BE;q=0.9,en-US;q=0.8,en;q=0.7]

And because the first match is n1-BE, vmod_accept will turn this into:

[Accept—Language: nl]

You can then safely return a Vary: Accept-Language, knowing that only two varia-

tions will be allowed.

This can also be done for other headers, using other modules or VCL constructs.

Varying on custom headers

Unfortunately, it’s not always possible to sanitize the headers you want to vary on.
Cookies are a perfect example: you cannot sanitize certain parts for the sake of cache
variations. You risk losing valuable data.

A potential solution is to create a custom request headler that contains the value you want
to vary on.

Imagine the following cookie header:

Cookie: sessionid=615668EQ-FC89-4A82-B7C1-0822E4BE3F87, lang=nl, ac-
cepted_cookie_policy=1

You want to create a cache variation on the value of the language cookie, but you don’t
want to lose the other cookies in the process.

What you could do is create a custom X-Language header that contains the value of the
language cookie. You could then perform the following cache variation:

128

CHAPTER 3: IT'S ALL ABOUT HTTP

[Var‘y: X-Language]

Here’s the VCL code to achieve this:

sub vcl_recv {
set req.http.x-language = regsub(req.http.cookie,"”.*1a
ng=([";1%);*.*$","\1");
if(req.http.x-language !~ "~en|nl$") {
set req.http.x-language = "en";

}
}
& J

The VCL code has a similar effect to the Accept-Language sanitization example:
* Only the en and n1 values are allowed

¢ Ifanother value is used, we default back to en

As a developer, you can then opt to vary on X-Language.

This custom variation can also be processed using VCL only, without the need for an
explicit cache variation in HTTP.

Here’s the VCL code:

sub vcl_recv {
set req.http.x-language = regsub(req.http.cookie,"~.*1a
ng=([*31%);*.*$","\1");
if(req.http.x-language !~ "“en|nl$") {
set req.http.x-language = "en";
}
}

sub vcl_backend_response {
set beresp.http.vary = beresp.http.vary +

, X-language";

}
g J

Attheend of vcl_backend_response, Varnish will check the vary header and create
the secondary key, as if the header had been provided by the origin directly.

Although this makes life easier for developers, it’s not a portable solution. We al-
ways prefer using HT TP as much as possible and then resort to V'CL when HTTP
cannot solve the problem.

129

CHAPTER 3: IT'S ALL ABOUT HTTP

3.3 Varnish built-in VCL behavior

In the previous section, we talked about how Varnish deals with the Cache-Control

header. It talked about how Varnish deals with the different values internally.

Parts of this behavior are implemented in the Varnish core, but other parts are imple-
mented in the so-called buzlt-in VCL.

The built-in VCL contains a set of rules that will be executed by default, even if they
are not specified in your own VCL file. It is possible to bypass the buzlt-in VCL through
a return statement, but this chapter assumes that this does not happen. The built-in
VCL provides much of the safe-by-defaunlt behavior of Varnish, so be very careful if you
decide to skip it.

The VCL language is tightly connected with the Varnish finite state machine, where the
various VCL subroutines correspond to states in the machine. Since the buzlt-in VCL
executes last, each VCL subroutine ends with a return statement, which controls the
flow of the machine. Fully understanding the finite state machine requires an under-
standing of the built-in VCL, and vice versa. Luckily, a basic understanding of both is
sufficient to solve most use cases for VCL.

4 N
We won’t be going over the built-in VCL code in this section, only the built-in VCL
bebavior. In the next chapter we’ll cover VCL in detail, including the syntax. The

corresponding buzlt-in VCL code will be presented in the next chapter, which will
make a lot more sense.

It is important to note that the buzlt-in VCL is very cautious in its implementation.
This prevents Varnish from caching anything that shouldn’t be cached, but this
can result in a very low hit rate when the backend does not provide good caching

headers or uses cookies. How to mitigate this is explained in chapter 4.
g J

Let’s look at the concrete behavior that the built-in VCL implements.

3.3.1 When is a request cacheable?

The first task for the buzlt-in VCL is to decide if a request is cacheable.

When Varnish receives an HTTP request from the client, it first looks at the HT7TP
request method to decide what needs to happen.

130

CHAPTER 3: IT'S ALL ABOUT HTTP

Cacheable request methods

In the previous section, we talked about cacheable request methods. This logic is also
part of the built-in VCL.

If it turns out the request method equals GET or HEAD, Varnish will allow the request to
be served from cache. Other request methods will immediately result in a pass or pipe to

the backend.

A small side note about GET requests: although it’s not that common, a GET re-
quest can contain payload in its request body. However, Varnish will strip the
request body from a GET request before sending it to the backend.

Invalid request methods

The cacheability of a request method isn’t the only thing Varnish cares about. Varnish
will only deal with request methods it can handle.

If the request method is PRI, which shouldn’t normally happen, Varnish will stop exe-
cution with an HTTP 405 Method not allowed error. That’s because PRI is part of
HTTP/2, and is handled in the Varnish core when HTTP/2 is enabled.

If you receive a request with such a method, it means HTTP/2 wasn’t properly config-
ured, and you’re receiving an HTTP/2 request on an HTTP/1.1 server.

By default Varnish will only handle the following request methods:

* GET

* HEAD

* POST

* PUT

* PATCH

* DELETE

* OPTIONS
* TRACE

For any other request method, other than PRI of course, the buzlt-in VCL will turn the
connection into a pzpe.

131

CHAPTER 3: IT'S ALL ABOUT HTTP

This means that Varnish doesn’t only pass the request to the backend, but it no longer
treats the incoming request as an HT TP request.

Varnish opens up a pzpe to the backend, and just sends the incoming request through as
regular 7CP, without adding any notion of HTTP.

Please note that there is no pipe in HTTP/2. For HTTP/1.1, websockets is the main use
case.

State getting in the way
As mentioned before, caching when szaze is involved is tricky.

Stateful data is usually personalized data. Storing this kind of data in the cache doesn’t
make sense. Previously we mentioned cache variations as a potential solution.

But by default, Varnish doesn’t serve any content from cache that either contains a
Cookie request header, or an Authorization request header.

In the real world, cookies will almost always be used. That’s why you’ll need to
write custom VCL for your specific application, which caches certain cookies, and
strips off others. In the next chapter, we’ll show you how to do this.

3.3.2 How does Varnish identify objects in cache?

Once Varnish decides that an incoming request is cacheable, it needs to look up the
corresponding object in cache.

When an object is stored in cache, a hash key is used to identify the object in cache. As
previously explained, the hostname and the URL are used as identifiers to create this

hash.

The hostname is the value that comes out of the Host request header. When the request
doesn’t contain a Host header, Varnish will use the £s own server IP address instead.
This can only happen when a request uses an old version of HTTP.

As of HTTP/1.1, a Host header is no longer optional. Varnish will return an HTTP 400
error when it notices an HTTP/1.1 request without a Host header.

3.3.3 Dealing with stale content

One of the core caching principles is the #me to live (TTL). This is not part of the buzlt-
in VCL, but part of the core caching logic of Varnish.

132

CHAPTER 3: IT'S ALL ABOUT HTTP

We talked about Cache-Control values, and about the Expires header. We even talk-
ed briefly about overriding the 77 in VCL code.

Varnish will use these mechanisms to come up with the 77 of an object. And as long
as the TTL is greater than zero, the object is deemed fresh, and will be served from
cache.

Varnish will check the freshness of an object upon every cache hit. If it turns out the
T'TL has become zero or less, the object is deemed stale and revalidation needs to hap-
pen.

Because of the so-called grace mode, Varnish is able to serve stale data to the client while
asynchronously revalidating the content with the backend server. We already talked
about this when explaining stale-while-revalidate behavior.

Varnish will check the sum of the 77Z and the grace value, and if it is greater than zero,
it will still serve the stale data while performing a background fetch.

If the sum is zero or less than zero, the content will cause a cache miss, and a synchronous

fetch will happen.

The default_grace runtime parameter defines the default grace period when the grace
period is not specified in a response header from the backend. The default value for de-
fault_grace is ten seconds, but it can be changed in the command line or dynamically
when Varnish is running. If an object’s grace is ten seconds on insertion, then the object
will be asynchronously revalidated until ten seconds after the 77'L has expired. When
the grace period has passed, a request to this object will be a cache miss and will trigger a
synchronous fetch to the origin.

The grace period can also be set in /CL by assigning a value to the beresp.grace
variable, but this will be discussed in the next chapter. As mentioned before: the
Cache-Control header also has the stale-while-revalidate directive to set the
grace period.

3.34 When does Varnish store a response in cache?

There’s a difference between a cacheable request, and deciding that a response should be
stored in cache.

The former decision is made when Varnish receives an incoming request. Chances are
that the object is already stored in cache, which results in a bzz. If that’s not the case, it’s

a miss.

133

CHAPTER 3: IT'S ALL ABOUT HTTP

When a request is not served from cache, a backend request is made. When the backend
responds, Varnish will receive the HTTP response and will decide what to do with it.

The decision-making process as to whether or not to cache is based on response headers

sent by the backend.

The first step in the decision-making process is interpreting the 77L. If the TTL, com-
ing from Cache-Control or Expires headers is zero or less, Varnish will decide not to
store this response in cache.

In the next step, the buzlt-in VCL will check if there’s a Set-Cookie in the response.
The Set-Cookie header is used to store state in the client, and is usually used for pri-
vate information or as a unique identifier for the user. For this reason the built-in VCL
will mark the response as #ncacheable, so that no other clients can get the same, poten-
tially private, Set-Cookie header.

In the previous section we talked about surrogates. Varnish checks whether or not a
Surrogate-Control: no-store is set. If this is the case, Varnish will not store the
response in cache.

When there’s no Surrogate-Control header being returned, Varnish will also look at
the semantics of the Cache-Control header, beyond the interpretation of the 77L. If
terms like no-cache, no-store, or private occur in this header, Varnish will decide
not to store this response in cache.

And finally, ifaVary: * header is sent by the origin, Varnish won’t cache the response
either. Because varying on all headers makes no sense if you want to cache a response.

3.3.5 What happens if the response couldn’t be stored in cache?

When Varnish decides that a response is not cacheable, for the reasons mentioned
above, the response is directly served to the client that requested it without being

cached.

However, Varnish will store some metadata in the cache for uncacheable resources. Var-
nish will create a hit-for-miss object to recognize the fact that the response was #ncache-

able.

The purpose of this hit-for-miss object is to bypass the waiting list for future requests to
this resource.

Requests for cacheable resources can be put on the waiting list while request coalescing

happens.

134

CHAPTER 3: IT'S ALL ABOUT HTTP

Request coalescing was explained in chapter 1. It makes sure that multiple requests
that can be satisfied by a single backend request are not sent to the backend, but
instead are put on a waiting list. When the backend response is received, the re-
sponse is sent to all satisfiable requests that were queued in the waiting list.

By marking a request for a specific resource #ncacheable through a hit-for-miss object, we
avoid the waiting list and immediately issue a backend request. We do this knowing that
a request for this resource will probably not be satisfied through reguest coalescing.

As a consequence, we avoid potential request serialization. This term refers to requests
being processed % a serial manner instead of in parallel. Request serialization causes
extra latency and even becomes a bottleneck when there are enough clients requesting
the same URL.

Request coalescing is otherwise a powerful Varnish feature, and the waiting list is
part of this implementation. But for uncacheable content, the waiting list would
become counterproductive. That’s why the bit-for-miss is there to deliberately by-
pass it.

The hit-for-miss logic is actually quite forgiving: bit-for-miss objects can be replaced
with actual cached responses when the next backend response is considered cacheable.

A hit-for-miss object is kept in cache for a certain amount of time. By default a hiz-for-

miss object has a TTL of two minutes. This 77L represents the upper limit, but if the
next response is cacheable, the hzt-for-miss object is replaced with the actual cacheable

response.

135

CHAPTER 3: IT'S ALL ABOUT HTTP

34 Range requests

As mentioned in the first section of this chapter: HTTPis the go-to protocol these days.
It’s true for all kinds of implementations, which are surely beyond the scope of the ini-
tial HTTP/1.1 use cases.

The speed of internet connections has gone up, and greater bandwidth allows for larger
data transfers. At this point in time, about 80% of the internet’s bandwidth is con-
sumed by online video.

In chapter 10 we’ll be talking about OT T video streaming, and how Varnish can be
used to accelerate these streams.

It’s realistic that you’ll see output like this, where the size of the Content-Length re-
sponse header is massive:

HTTP/1.1 200 OK
Content-Length: 354648464

This is a 338 MB response. For OTT video streaming, youw’ll want to chop this up into
several smaller files to improve the user experience, to improve your bandwidth con-
sumption, and to reduce the strain on your backend systems.

HTTP already has a built-in mechanism to serve partial content. This mechanism is
called byte serving and allows clients to perform range requests on resources that support
serving partial content.

Another use case for range request is a download manager that can pause and resume
downloads. Maybe you want to download the first 300 M B right now, and continue
downloading the remaining 38 M B tomorrow. That’s perfectly realistic using range
requests.

34.1 Accept-Ranges response header

A web server can advertise whether or not it supports 7ange requests by returning the
Accept-Ranges response header.

When range request support is active on the web server, the following header can be
returned:

136

CHAPTER 3: IT'S ALL ABOUT HTTP

[Accept—Ranges: bytes]

This means the range unit is expressed in byzes.

The value could also be zone in case the server actively advertises it doesn’t support
range requests:

[Accept—Ranges: none]

Based on either of these values, a client can decide whether or not to send a range re-

quest.

34.2 Range request header

A client can send a Range request header and let the server know which range of bytes it
wishes to receive.

Here’s an example:

[Range: bytes=0-701615]

This example fetches a byte range starting at the beginning up to and including the
701615-th byte.

Here’s another example:

[Range: bytes=701616-7141367]

Whereas the previous range ended at the 701615-th byte, this example picks up from the
701616-th byte until the 7141367-th byte.

When you perform a range request, you’re not requesting the full response body. The
server acknowledges the fact that you're receiving partial content through the HTTP 206
Partial Content status code.

34.3 Content-Range response header

Whereas an Accept-Ranges response header is returned regardless of the type of re-
quest, a Content-Range response header is only sent when an actual range request oc-
curs.

137

CHAPTER 3: IT'S ALL ABOUT HTTP

Here’s an example of a Content-Range header that is based on the Range:
bytes=701616-7141367 range request:

[Content—Range: bytes 701616-7141367/354648464]

The header matches the range that was requested, but it also contains the tozal byte size
of the resource.

If we do the math, we can come to two conclusions:

e 7141367 - 701616 = 6439752, which corresponds to the value of the Con-
tent-Length header we also receive from the server

* 354648464 that is part of the Content-Range value matches the value of the Con-
tent-Length header if you performed a regular request on this resource

Basically, the Content-Range header confirms the range you're receiving, and the upper
range limit you can request.

344 What if the range request fails?

The consequences of a range request failure depend on the implementation. But if the
web server failed to deliver the requested range, it will return an HTTP 416 Range Not
Satisfiable error.

But that is typically used when your range request goes oxz of bounds. It is also possible
that the client is performing a range request on a web server that doesn’t support this.

In that case, there various outcomes:
* Youcould receive an HTTP 406 Not acceptable error.
* You could receive any other 400-style HT'TP error.

* You could receive regular H7TP 200 output, containing the full payload if the
server ignores your range request, which is usually what happens.

* Butif you want to properly perform range requests, and avoid failures, it’s a bit of a
chicken or egg situation:

* Do you first perform a check to see if the server returns an Accept-Ranges:
bytes header?

¢ Ordo youjust send a range request and deal with the consequences?

You could send a HEAD request first, instead of a GET request, and look for an Ac-
cept-Ranges header before performing the actual range request.

138

CHAPTER 3: IT'S ALL ABOUT HTTP

34.5 Range request support in Varnish

Varnish supports czent-side range requests. This means that if a client sends a Range
header that Varnish can satisfy, the client will receive the requested range, whether the
origin supports it or not.

However, Varnish disables backend range requests for cached requests by default. This
means that if a range request for a resource results in a cache miss, a regular HI'TP re-
quest is sent to the origin. Varnish will store the full response in cache and will return
the requested range to the client.

In most cases, this allows efficient collapsing of the requests, but for large objects, it can
lack efficiency.

Impact on the origin

If the requested resource is a really large file, Varnish will need to ingest and cache the
beginning of the file before it reaches the requested range that it will then serve.

If network throughput between Varnish and the origin is poor, the client will experi-
ence additional latency. Also, if returning this resource consumes a lot of server resourc-
es at the origin, it will also add latency.

However, if the requested range for this cache miss starts at the first byte, Varnish will
leverage content streaming. This means that the client will not have to wait until the
complete resource is stored in Varnish and will receive the data in chunks, as it is re-

ceived by Varnish.

If you don’t want to support ranges, you can just disable the http_range_support
runtime parameter.

Backend range requests using VCL

Although Varnish doesn’t natively support backend range requests, we can write some
VCL to get the job done.

As mentioned before, VCL will be covered in detail in the next chapter. We’ll just ex-
plain the concept of the example below, without focusing too much on syntax:

139

CHAPTER 3: IT'S ALL ABOUT HTTP

sub vcl_recv {
if there’s no Range header we like, use
"0-" which means "from the @-th byte till the end"
if (req.http.Range ~ "bytes=") {
set req.http.x-range = "req.http.Range";
} else {
set req.http.x-range = "bytes=0-";
}

sub vcl hash {
hash_data(req.http.x-range);

sub vcl_backend_fetch {
set bereq.http.Range = bereq.http.x-range;

sub vcl_backend_response {
if (beresp.status == 206) {
set beresp.ttl = 10m;
set beresp.http.x-content-range = beresp.http.Content-Range;

sub vcl_deliver {
if (resp.http.x-content-range) {
set resp.http.Content-Range = resp.http.x-content-range;
unset resp.http.x-content-range;

}
- J

When Varnish receives a Range request header, it will store its value in a custom
x-range request header. This value will also be added to the hash key to create a new
cached entry per range.

Because Varnish will remove the Range header before initiating a backend fetch, we will
explicitly set a new Range header containing the value of x-range.

When the backend responds with a Content-Range header and an HTTP 206 status
code, we’ll store the value of the Content-Range header in a custom x-range header,
knowing that Varnish will strip off the original Content-Range header.

Before returning the range to the client, we set the Content-Range response header
with the value that was captured from the origin.

140

CHAPTER 3: IT'S ALL ABOUT HTTP

At some point in time, Varnish will support native backend range requests and will
probably store ranges separately in the cache. There might even be a more efficient
solution than the VCL example above. But until then, you need to be aware of the
limitations, potentially use the /CL example, and plan accordingly.

141

CHAPTER 3: IT'S ALL ABOUT HTTP

3.5 Conditional requests

Caching can alleviate a lot of stress from your origin servers, and as a consequence your
overall stability increases and latency gets reduced.

But caches don’t fill themselves up: content needs to be fetched from the origin. De-
pending on the hit rate of your cache, this can still result in heavy load on the origin,
increased latency, and an overall decrease in stability.

Even when revalidating stale content, or when performing range requests, the full result
needs to be fetched. This can be resource intensive on the origin side.

But if you optimize your origin for conditional requests, origin fetches will become a lot
more efficient.

3.5.1 304 Not Modified

As this chapter is all about HT'TDP, it should come as no surprise to learn that HTTP
has built-in support for conditional requests.

The idea is that you present the origin a fingerprint of stale content that you want to
revalidate. When the corresponding fingerprint sent by the client matches the current
fingerprint of the content, the origin can return an HTTP 304 Not Modified status.

An HTTP 304 response doesn’t require a body to be sent, as it implies that whatever the
client has stored in cache is the most recent version of the content.

If the fingerprint doesn’t match, a regular HTTP 200 OK is returned instead.

3.5.2 Etag: the fingerprint

The fingerprint referred to is an arbitrary value that is set by the origin, which is re-
turned through an Etag response header.

There is no conventional format for this header; the only requirement is that it is
unique for the content that is returned.

Most web servers can automatically generate an Etag for resources that are files on disk.
For web applications that use URL rewriting, it is up to the application itself to generate
the Etag.

142

CHAPTER 3: IT'S ALL ABOUT HTTP

If you use an MVC framework, generating an Etag is quite simple. You could take a
hash of the content before returning it, and use this hash as the value of the Etag re-
sponse header. You can use algorithms like md5 or sha256 to create the hash.

Here’s an example of an HT TP response containing an Etag:

HTTP/1.1 200 OK
Cache-Control: max-age=3600, s-maxage=86400
Etag: "5985cb907f843bb60f776d385eea6c82"

3.5.3 If-None-Match

When a client receives an HTTP response that contains an Etag header, it can keep
track of the Etag value, and send it back to the server via an If-None-Match header.

Based on the value of the If-None-Match header, the server can compare this value to
the Etag value it was about to send. If both values match, the client has the most recent
version of the content. The request can be satisfied by an HTTP 304 Not Modified
response.

If the values don’t match, an HTTP 200 OK will be returned, containing the full pay-
load.

The If-None-Match request header is automatically added to requests by typical
web browsers. When performing command-line HT TP requests using curl for
example, the If-None-Match header should be added manually.

3.54 The workflow

On the one hand you have an Etag response header, on the other hand, you have an If-
None-Match request header, and somehow the HTTP 304 Not Modified fits into the
story as well.

Here’s the workflow that will help you make sense of it all:

143

CHAPTER 3: IT'S ALL ABOUT HTTP

Client Server

GET /foo
200 0K
Etag: 1234
GET /foo
[f-None-Match: 1234 4

304 Not Modified

Conditional request workflow

7.
8.
9.

10.
11.
12.
13.
14.

15.
16.
17.

The client sends a first request to the server for /foo.

The server replies with an HTTP 200 OK.

The server attaches an Etag: 1234 header.

The client keeps track of the 1234 value.

The client sends another request to the server for /foo.

The client attaches an If-None-Match: 1234 request header to that request.
The server recognizes the fact that If-None-Match: 1234 was set by the client.

The server matches the 1234 value to whatever the Etag is supposed to be for this
response.

The server notices that 1234 is still the #p-to-date fingerprint of the content.
The server sends an HTTP 304 Not Modified to the client without any payload.

The client recognizes that the content hasn’t been modified, and keeps serving
whatever is stored in its cache.

3.5.5 Strong vs weak validation

An Etag is a specific validator in HT'TP. So-called strong validation implies that the

content that is represented by this validator is byte-for-byte identical.

Weak validation implies that the response is not byte-for-byte identical to the version it

is comparing itself to, yet the content can be considered the same. For example, the un-

compressed and compressed versions of an object.

144

CHAPTER 3: IT'S ALL ABOUT HTTP

A weakened Etag is prefixed with a W/. Here’s an example:

[Etag: "W/5985cb907{843bb60f776d385eea6c82"]

This means that if an If-None-Match request header is received containing this value,
the server should know how to validate the content, knowing it will not be byze-for-byte
identical.

A practical use case is when the main content of a page remains the same, but certain
ads, and certain information in the footer, might differ.

Weak validation can get quite complicated. It requires the validating system to be
aware of the subtleties of content, and it must be able to spot content that is not
modified, even if the payload differs.

Varnish also emits weakened Etags, when the requested content encoding differs from
what was stored in cache. We’ll talk about this in just a minute.

3.5.6 Conditional request support in Varnish

Varnish supports conditional requests in both directions. This means Varnish will return
an HTTP 304 Not Modified when a client sends a matching If-None-Match header.

But it also means that Varnish will send an If-None-Match header to the origin on
certain cache misses, hoping to receive an HTTP 304 Not Modified.

Conditional request workflow in Varnish

Here’s a diagram that illustrates the workflow within Varnish:

145

CHAPTER 3: IT’'S ALL ABOUT HTTP

Client
GET /foo
200 0K
Etag: 1234
+ ___________
GET /foo

If-Nane-Match: 1234

GET ffoo
If-None-Match: 1234

304 Mot Modified

Conditional request workflow in Varnish

Let’s walk through it:

Varnish

Origin

Cache miss

GET ffoo

200 OK
Cache-Control: s-maxage=10
Etag: 1234

Cache hit

o
GET [foo
If-None-Match: 1234

Cache miss

GET /foo
If-None-Match: 1234

Still a conditional request]

18. When a dlient requests a resource for the first time, it will be a cache miss.

19. Varnish will fetch the content from the origin.

20. The origin returns the content, and adds a Cache-Control: s-maxage=10
header to indicate that the content should be cached for ten seconds.

21. The origin also includes an Etag: 1234 header to announce the fingerprint of

the resource.

146

CHAPTER 3: IT'S ALL ABOUT HTTP

22.

23.
24.

25.

26.

27.

28.
29.

30.

31

32.

33.
34.

35.

Varnish stores the object in cache for ten seconds and returns the response, includ-

ing the Etag.
The client receives the response from Varnish, and keeps track of the Erag.

The client sends a new request to Varnish within ten seconds and adds If-None-
Match: 1234.

Varnish can deliver the object directly from cache because it is a b7z, and the con-
tent is fresh.

Because the Erag matches, Varnish will not return a response body and will use
the HTTP 304 Not Modified status code to indicate that the client has the most
recent version of the object.

Sometime later, the c/ient does another request for the same resources with the
same If-None-Match header.

Varnish finds the object in cache, but it has expired, so it results in a cache miss.

Varnish will send a backend request to the origin, including the If-None-Match:
1234 header.

The origin notices this header coming from Varnish, matches it to the Ezag, and
returns a bodyless H1TTP 304 Not Modified response.

Varnish knows it still has the most recent version of the object in cache and can
safely return a HTTP 304 Not Modified to the client.

For some reason the c/zent no longer sends the If-None-Match header to Varnish
for its next request.

Varnish finds the object in cache, but notices it has expired.

Because Varnish still has the Etag stored internally, it will pass it to the origin using
the If-None-Match: 1234 request header.

The origin acknowledges that this is still the latest version of the content and re-
sponds with an HTTP 304 Not Modified response.

Varnish supports conditional requests at the client level and at the backend level. But

what is even more interesting is that once Varnish stores an Ezag, it can use it for

conditional requests to the backend for client requests that didn’t contain an If-
None-Match header.

147

CHAPTER 3: IT'S ALL ABOUT HTTP

Grace vs keep

When the TTL of an object is still greater than zero, the content is still fresh, and it can
be served from cache.

As we’ve seen in a previous section, expired objects that still have some grace left can be
revalidated asynchronously. This revalidation can also be done conditionally.

If the grace period hasn’t expired, and Varnish has an Etag for this object, Varnish will
send a background fetch to the origin, including the If-None-Match header. If the Etag
matches, the origin will reply with an HTTP 304 Not Modified status code.

All of this happens in the background, while incoming client requests receive the stale
object.

When the grace period has expired, the keep period kicks in, and revalidations to the ori-
gin become synchronous, meaning that clients will have to wait until the revalidation is

finished.

But when that keep time has expired, the revalidation is unconditional, meaning that
the response is supposed to be a regular HTTP 200 OK. This makes sense since after the
keep period has expired, the object isn’t in cache any more, so it needs to be fetched fully
again.

Here’s an overview to summarize 77L, grace, and keep:

4 N
TTL > © == fresh

TTL + grace > © == stale, (condtional) revalidation with background
fetch possible

TTL + grace + keep > @ == stale, conditional synchronous revalidation
possible

TTL + grace + keep <= @ == stale, unconditional synchronous revalida-
tion

- J

3.5.7 Optimizing the origin for conditional requests

If you optimize your web application for conditional requests, you can take away a lot of
stress from the origin system.

Some context

The fact thata HTTP 304 Not Modified has no response body reduces the size of the
response on the wire. The first observation is that conditional requests are good for your

bandwidth.

148

CHAPTER 3: IT'S ALL ABOUT HTTP

But in a web acceleration context, the real problems are increased CPU usage, running
out of memory, and dzsk /0. When a web application is under heavy load, latency can
severely increase, and at a certain point the application can become non-responsive,

which affects stability.

The point of running Varnish is to avoid latency and stability issues, but even with a
properly configured Varnish server, there can still be plenty of traffic to the origin sys-
tem:

* You can have alow hit rate because of diverse traffic patterns hitting zon-cached
resources.

* You can have a low bit rate because of low TTLs.

In each of these situations, there will be more traffic on the origin, which can increase
the load on that system.

Exit early

The crux of conditional requests is to send an HTTP 304 Not Modified as early as pos-
sible. In order to take advantage of this in your web application, you need your applica-
tion framework to validate the Ezag as quickly as possible and exit as early as possible.

This means that you should have quick access to the Ezag without having to go through
your entire application logic.

When content is created or edited, your application should store the Etag in a key-value
store or database that has very quick read access. When your application logic has to
validate the Etag, a very low overbead call is made to the Etag storage, the If-None-
Match header is matched to the Ezag, and if they match, an HTTP 304 Not Modified is
returned immediately.

This so-called key-value store can either be the local memory of the application
server, or well-known products like Redis or Memcached. As long as read access is
fast, and the overhead for retrieval is low, you’ve got yourself a good solution.

When properly optimized, the application will exit correctly, without a full bootstrap
of the framework being required, and without access to typical database systems. This
will result in very quick response times, and a very low-resource footprint on the server.

When the Etag doesn’t match, the regular application flow takes place, resulting in an
HTTP 200 OK response, and no real performance gain.

149

CHAPTER 3: IT'S ALL ABOUT HTTP

Client Application KV store

¢ Fetch Etag

GET /foo Check Etag
Compare Etag
200 0K
Etag: 1234 Regular
e e =m0 RS U= application
waorkflow
GET /foo

If-None-Match: 1234

i Query content

HTTP 304

304 Not Modified

Conditional requests - application workflow

As you can see in the image above, there is a separate component that takes care of the
Etag check. This component can be part of your regular application code, under the
torm of a pre-dispatch hook in your MVC framework.

It could also be a separate service, if need be.

Leveraging Varnish

As mentioned, Varnish supports conditional requests both on the dlient side and the back-
end side. But if you know how to optimize your web application for conditional requests,
you can leverage Varnish to get even better results.

You could lower your TTLs, without the risk of destabilizing your origin with increased
requests. For HTTP resources that are updated on a frequent basis, you could even set
the 7'TL to one second, and still have a stable origin:

* Grace mode will ensure asynchronous revalidation happens, while clients receive
stale data.

* Reguest coalescing will ensure that only one request per URL is sent to the origin
server.

150

CHAPTER 3: IT'S ALL ABOUT HTTP

Varnish has purging and banning capabilities to remove specific objects from the
cache, which we’ll cover in chapter 6. But by leveraging conditional requests in con-
junction with low 7"TLs, there would be no need to actively remove content from
the cache because the cache lifetime could just be a couple of seconds.

3.5.8 Lasi-Modified and If-Modified-Since as your backup plan

Etags aren’t the only way to perform conditional requests. There’s also the Last-Modi-
fied header to indicate when the content was last changed.

Here’s an example:

HTTP/1.1 200 OK
Cache-Control: max-age=3600, s-maxage=86400
Last-Modified: Mon, 24 Aug 2020 22:35:02 GMT

The origin indicates that the response is cacheable and can be cached by Varnish for a
day, and by the browser for an hour. But the response also indicates that the content
was last modified on Monday August 24th ar 22:35:02 GMT.

The Last-Modified value can be stored by the client and will be sent to the server in the
form of the If-Modified-Since header.

If the content wasn’t modified since the value of the If-Last-Modified header, an HTTP
304 Not Modified can be returned without any payload.

Here’s the diagram to illustrate the flow:

Client Server

GET ffoo
200 OK
Last-Modified: Mon, 24 Aug 2020 22:35:02 GMT

GET /foo

304 Not Modified

151

CHAPTER 3: IT'S ALL ABOUT HTTP

As you can see it’s quite similar to Etag and If-None-Match, but with timestamps in-
stead of a content fingerprint.

Varnish supports both Etag/If-None-Match and Last-Modified/If-Modi-
fied-Since. I personally prefer using Ezags because it’s more precise, but both
mechanisms do the job just fine.

3.5.9 Conditional range requests

In one of the previous sections we talked about range requests. The goal is to receive
partial content by requesting one or more byte ranges from a resource.

The client issues a Range header to indicate which portion of the content. When suc-
cessful,an HTTP 206 Partial Content status is returned.

Range requests can also be done conditionally to ensure that the up-to-date version of a

byte range is fetched.

The If-Range header can be used for validation purposes. This header either con-
tains an Etag value or a Last-Modified value. If the If-Range matches the Etag or
Last-Modified header, an HTTP 206 Partial Content is returned. If there’s no
match, the full payload is sent via an HTTP 200 OK status code.

Here’s an example:

HTTP/1.1 200 OK

Etag: "5985cb907f843bb60f776d385eeabc82"
Accept-Ranges: bytes

Content-Length: 43

The response contains an Etag that can be used for conditional requests
* Because of the Accept-Ranges: bytes header, we know the server supports range
requests

* The Content-Length header indicates the size response, which is 43 bytes. This is
the upper limit that can be used for range requests

* Because both the Etag and Accept-Ranges: bytes headers are there, we know
we can perform conditional range requests

152

CHAPTER 3: IT'S ALL ABOUT HTTP

Here’s such a conditional range request:

GET / HTTP/1.1
Range: bytes=0-19
If-Range: "5985cb9071843bb60f776d385eeabc82"

This conditional range request will retrieve the first 20 bytes from the / resource, but will
only do this if the Etag matches "5985cb907f843bb60f776d385eeabc82".

If that is the case, the following response can be expected:

HTTP/1.1 206 Partial Content

Etag: "5985cb907f843bb60f776d385eeabc82"
Accept-Ranges: bytes

Content-Range: bytes 0-19/43
Content-Length: 20

If the Etag doesn’t match, this means the content has changed. As a consequence, no
partial content can be returned, and instead the full payload is returned:

HTTP/1.1 200 OK

Etag: "9985cb2a7f8413b60f7789aa5eeabc4l”
Accept-Ranges: bytes

Content-Length: 43

Because Varnish only has built-in rzange support on the client side, conditional range re-
quests are only performed on the client side.

153

CHAPTER 3: IT'S ALL ABOUT HTTP

3.6 Compression

In an attempt to reduce the size of the response payload over the wire, various compres-
sion algorithms are used to compress the response body.

The most popular compression algorithm by far is gzip. HI'TP has the mechanisms in
place to perform content negotiation, and to request either the plain-text or the com-
pressed version.

3.6.1 (Content negotiation

In terms of content negotiation, the browser can advertise its content encoding capabilities
by issuing an Accept-Encoding header containing the compression/encoding algo-
rithms it supports.

Here’s what my browser advertises:

[Accept—Encoding: gzip, deflate, br]

Basically, my browser supports gzip compression, deflate compression, and br com-
pression. br is short for Brotls.

A server can choose one of the supported compression algorithms and return the algo-
rithm it used for compression in the form of a Content-Encoding header.

Because gzip is the most popular web compression algorithm, web servers are likely to
return the following response header:

[Content-Encoding: gzip]

3.6.2 Gzip compression in Varnish

Varnish natively supports gzip compression and encourages servers to send compressed

responses to Varnish.

It does so by modifying the Accept-Encoding header to Accept-Encoding: gzip for
every miss, regardless of the Accept-Encoding value that the client may have set.

Responses will be stored in cache in a compressed format. If it turns out that the client
doesn’t support gzzp, Varnish will decompress the response on-the-fly.

154

CHAPTER 3: IT'S ALL ABOUT HTTP

Because gunzip is very fast, it is more efficient to decompress o7-the-fly than to store two
versions of the object in cache.

When a client doesn’t support gzzp, the plain-text version is returned, the Content-En-
coding: gzip header is stripped off, and Etags get weakened.

When a gzip'ed object is stored in cache, a Vary: Accept-Encoding header will be re-
turned to the client. Any attempt by the origin to issue a Vary: Accept-Encoding will
be ignored because only the compressed version is kept.

If the origin doesn’t respond with a compressed response, Varnish will trust that
it’s because the compression wasn’t worth it. This is the case for images, video and
other binary resources. In such cases, the object is stored as-is, and user requests
for compression will be ignored. The next section explains how to override this.

To explicitly disable gzip support in Varnish, the http_gzip_support runtime parame-
ter can be disabled.

3.6.3 Gzip and VCL

Even though Varnish handles gzip compression behind the scenes, the VCL program-
ming language still allows you to override the default behavior.

Imagine that your origin server doesn’t support gzzp, but you still want to serve com-
pressed content. In that case you can use the following VCL snippet:

sub vcl_backend_response {
if (beresp.http.content-type ~ "text") {
set beresp.do_gzip = true;

}

As you can see, there is an if-condition in there to ensure that only plain-text content gets
compressed. Binary content, such as /PEG images, shouldn’t be compressed.

You can also decompress gziped content in VCL by setting set beresp.do_gunzip
= true;. You can even check whether or not the client supports gzzp through the req.
can_gzip variable, which returns a boolean.

155

CHAPTER 3: IT'S ALL ABOUT HTTP

3.6.4 Brotli compression in Varnish

As of version 6.0.6r10 Brotli compression is supported in Varnish Enterprise. It is not
available by default but requires vmod_brot1i to be initialized.

The module can handle brotli-compressed responses from the origin, but it can also turn
gzip-compressed data into Brotli.

Here’s a VCL example that will store gzip-compressed or plain-text objects into brot-
li-compressed objects:

vcl 4.1;
import brotli;

sub vcl_init {
brotli.init(BOTH, transcode = true);
}

sub vcl_backend_response {
if (beresp.http.content-encoding ~ "gzip" ||
beresp.http.content-type ~ "text") {
brotli.compress();

}

}
- J

By initializing vmod_brotli with BOTH as the encoding value, it can normalize the
Accept-Encoding request header and support plain-text encoding, gzip encoding and
Brotli encoding.

By setting the transcode argument to true, the module will decompress objects when
the client doesn’t support Brotli, or transcode the object to gzip when the client only

supports gzip.

156

CHAPTER 3: IT'S ALL ABOUT HTTP

3.7 (ontent streaming

Streaming in an HTTP context is often associated with video streaming. And although
OTT video streaming is an important use case for Varnish, this section is not about that.

[In chapter 10 we will be talking about OT T video streaming in detail.]

Here, it means that Varnish avoids buffering, in the sense that it doesn’t need to receive
the full response from the origin before starting to send it to the user.

Instead, Varnish can start streaming the origin data to users as soon as it’s available.
This can significantly reduce latency when delivering live video, where certain origins
can start delivering video chunks before they are completely processed. If Varnish were
to buffer the chunk, the low-latency benefit of the origin would be lost.

3.7.1 Chunked transfer encoding

An HTTP server that wants to send the response in chunks, which implies not sending
a Content-Length header, signals this by sending the following header to the client:

[Transfer—Encoding: chunked]

When all the headers have been sent to the client, the server starts sending HT'TP
chunks.

Each chunk is prefixed by its chunk length followed by a \r\n sequence, then there’s
the chunk itself, also followed by a \r\n sequence. A web server sending a chunked
response will typically write one chunk at a time to the network socket, and this flushes
the chunk to the client. Then it’s a matter of repeating the process until all chunks are
sent. Finally the server sends a zero-length chunk to mark the end of the transaction, and
the HT'TP connection can be used to request more resources.

This may sound very confusing, so here’s an example:

()
HTTP/1.1 200 OK

Content-Type: text/plain
Transfer-Encoding: chunked

8\r\n
Varnish\n\r\n

157

CHAPTER 3: IT'S ALL ABOUT HTTP

9\r\n
supports\n\r\n
8\r\n
chunked\n\r\n
9\r\n
transfer\n\r\n
9\r\n
encoding\n\r\n
o\r\n

\r\n

G J

The chunk length consists of the number of characters in each chunk, but the \r\n
shouldn’t be accounted for. However, any new lines that are part of the chunk output

should be part of the chunk length.

In this case Varnish is seven characters long, but the new line results in a chunk

length of eight.

The output of this HT'TP response will be:

Varnish
supports
chunked
transfer
encoding

In total there are five chunks that are flushed to the client one at a time unless the kernel
helpfully combines some of the chunks into a single TCP package. If we know that it
takes one second for each chunk to be rendered, output will start appearing as of sec-
ond one.

If this were done using regular buffered output, the client would have to wait for five
seconds before the output were to appear.

For time-consuming processes, content streaming using chunked transfer encoding will
have a positive impact on the quality of experience for the end-user.

3.7.2 Streaming support in Varnish

Streaming delivery support in Varnish goes beyond the support for chunked transfer
encoding. When Varnish tetches from a server, it will start sending the response body
to the clients while still fetching from the backend, independently of chunked transfer
encoding being used or not.

158

CHAPTER 3: IT'S ALL ABOUT HTTP

When Varnish does not know the length of the body while streaming because the serv-
er is using chunked transfer encoding, and the fetch is still ongoing, it will use chunked
transfer encoding when sending the response to clients.

Once the response is fully processed, Varnish will know the content length, and no lon-
ger use chunked encoding when sending the response to new clients.

This means that a cache miss will be streamed to the client using the Transfer-Encod-
ing: chunked response header. But for the next request, if it is a hit, and the object
has been fully fetched from the backend, the entire response body is sent at once, and a
Content-Length header is included.

Varnish switches to Content-Length as soon as it can because it is cheaper in terms of
resource usage. When the entire object is in memory, Varnish can send all of the data to
the kernel in a single call, and the overhead associated with chunked encoding is eliminat-

ed.

In VCL, you can enable or disable streaming by toggling the value for the beresp.
do_stream variable. The default value for this variable is true.

Here’s an example of a situation in which streaming for streamable content is disabled:

sub vcl _backend_response {
if(bereq.url == "/my-page") {
set beresp.do_stream = false;

}

This snippet will disable streaming if the request URL is /my-page.

You can also check on delivery whether or not streaming was used by reading the value
of resp.is_streaming, which will return a boolean.

It happens that backends suddenly fail, or stop sending data in the middle of a trans-
action. If Varnish is streaming, and data stops coming from the backend, it can only
signal this to the client by hanging up, leaving the client with a partial response. On the
other hand, if streaming has been disabled for the given transaction, Varnish will be
able to send an HTTP 503 error code to the client when it realizes that the full response
cannot be sent to the client.

159

CHAPTER 3: IT'S ALL ABOUT HTTP

3.8 Summary

HTTP is undeniable: obviously web browsers use HT'TP to retrieve website data.
HTTP is also a very dominant protocol for server-to-server communication, with
HTTP-based APIs as the main driver.

Whereas in the past applications would use a custom protocol, HT'TP is now the stan-
dard for dient-server communication.

We used to say that TCP/IP powered the internet, but for the last decade, people are
aiming higher in the network stack, and have made H7TP their protocol of choice.

As the internet changes, and as HT'TP is used for a lot of new and challenging applica-
tions, HT'TP is slowly adapting to these modern-day needs.

From a web performance point of view, HTTP already comes with quite a bit of syntax
to control how responses can be cached.

Varnish, as all good caching citizens, will comply with these standards and best practic-
es.

This chapter was all about HTTP, and how it can be leveraged for caching. Not just for
the sake of it, but to illustrate how little customization is required in Varnish to gain
control over your content delivery flow.

In the next chapter, we’ll talk about the Varnish Configuration Language, and how it
can be used to customize the behavior of Varnish. But the most important lesson of this
chapter is: the less 'CL you have to write, the better. Because a lot of it is covered by
HTTP already.

From the Cache-Control header, to cache variations, and even streaming, compression,
and conditional requests: HTTP already offers so many valuable caching features.

But in most real-world scenarios, HTTP doesn’t have all the answers. And that’s where
VCL comes into play. Get ready for chapter 4.

160

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Chapter 4: The Varnish
Configuration Language

Welcome to chapter 4, in which we’ll discuss the Varnish Configuration Language, or
VCL as we’ll refer to it.

In chapter 1, we explained what Varnish is. In chapter 2, we went into detail about what’s
new in Varnish 6. In chapter 3, we showed you how to control Varnish’s behavior using
HTTP’ built-in caching mechanisms.

HTTP has solid caching features, as you’re aware after having read chapter 3. But in
real-world scenarios you’ll often fall short, and you need some sort of configuration
mechanism that allows you to customize the system beyond what’s possible in standard

HTTP.

Varnish can do even better: instead of a configuration file, you get a programming lan-
guage. If your question is: "Does this make Varnish edge computing technology?”, the
answer is definitely "yes".

161

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.1 What is VCL again?

VCL is a domain-specific language, meaning that it can only be used for Varnish and has
no other application.

The Varnish Configuration Language has a curly braces syntax style and feels familiar to
languages like C, C++, C#, Java, and many more.

VCL code is written in a VCL file, which is picked up by the varnishd process on start-
up. The -f runtime parameter refers to the VCL file that needs to be loaded.

Upon startup, VCL code is translated into C code, which in turn gets compiled. The
shared object that results from this compilation process is loaded into the Varnish server

process.

The fact that the code gets compiled and is not interpreted at runtime makes VCL a
very fast programming language. This is not a side effect, but a design goal, since Var-
nish is all about speed and scalability.

VCL is not a typical top-down programming language. VCL is a language that hooks
into various states of a finite state machine. This allows VCL to extend the buzlt-in VCL
behavior of Varnish.

We’ll cover the finite state machine in the coming sections, and the buzlt-in VCL
code will be covered at the end of this chapter.

VCL is primarily used for request and response manipulation, backend routing, and the
execution of caching policies.

In more advanced use cases, V'CL will be used to control web application firewall tea-
tures, to offload authentication, to parse and process edge side includes, and to modify
the response body based on interaction with third-party services. And that is what we

call edge computing.

162

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.2 The finite state machine

As mentioned earlier, the V'CL language allows you to extend the behavior of various
Varnish states that are part of the Varnish finite state machine.

This probably makes sense to some extent, but without a visual representation, it is a
tough concept to grasp.

Here’s the flowchart that describes the states and the state transitions of this finite state
machine. The diagram below represents the interaction between a client and Varnish.

Deliver

Deliver

~

Deliver

vel_deliver

Varnish’s finite state machine on the client side

163

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.2.1 The client-side flow

It all starts when Varnish receives a request from a client. vcl_recv gets called, and

depending on certain request criteria, a couple of different actions can be taken.

These actions control which path is taken through the finite state machine:

The vcl_recv, vcl_hash, vcl_hit, vcl_deliver path represents the desired
outcome: a cache hit.

The vcl_recv, vcl_hash, vcl_miss, Backend fetch, vcl_deliver path rep-
resents an acceptable outcome: a cache miss.

The vcl_recv, vcl_hash, vcl_pass, Backend fetch, vcl_deliver path rep-
resents an undesirable outcome: bypassing the cache.

The vcl_recv, vcl_pipe path represents an escape plan: bypassing H77TP entire-
ly and switching to T7CP.

The vcl_recv, vcl_hash, vcl_purge, vcl_synth path represents a cache purge,
which explicitly removes an object from cache.

The dotted lines represent potential transitions to return synthetic output at any
point in time.

Remember: cache misses aren’t a bad thing. A miss is just a bit that didn’t happen

yet.

There’s always the incoming request that triggers the start of the flow, but there must

also be something that ends the transaction. In HTTP, we always expect a response to

be returned.

From VCL, we can return(abandon), which will just drop the connection. This
can be desirable in some cases but breaks the HT TP transaction, and that’s anoth-
er story.

And that’s how the finite state machine ends the transaction: by delivering a response
to the client. It could be a cached object, it could be a backend fetch, or it could just be
synthetic output.

What you don’t see in this diagram is the backend flow. When there is a cache miss, or

the cache is bypassed, you’ll need to connect to the origin and fetch the result. In this

diagram, backend interaction was abstracted into a single backend-fetch state.

Let’s have a look at the backend flow in some more detail.

164

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.2.2 The backend flow

The backend flow represents the communication between Varnish and the origin server.

As you can see in the diagram below, the flow is a lot simpler compared to the dzent-side

flow:

>4

vcl_backend_fetch i

vecl_backend_error " Backand synth

vel_backend_response
Ratzh '"..’II*\.‘..\' Eelbver
- ~

Varnish’s finite state machine on the backend side

Invcl_backend_fetch, the request to the backend is prepared, and the original czent
request is turned into a backend request.

Depending on what happens on the backend, you either end up in vcl_backend_re-
sponse when the request is successfully processed, or in vcl_backend_error when an
€rror occurs.

In vcl_backend_response a number of checks happen to decide whether or not to
cache the response. Eventually the response is sent back to the dzent-side logic of Var-
nish, which will send the response to the client.

The vcl_backend_error stage is reached when Varnish fails to connect to a backend,
when a backend is considered as sick, or when the backend doesn’t respond in time. You
can also reach this stage from vcl_backend_fetch or vcl_backend_response by
using a return(error) statement.

The result is that a synthetic error is returned and sent back to Varnish’s czent-side logic
with an HTTP 503 Service Unavailable error.

Surprisingly, other 500-range errors that were received from the backend aren’t consid-
ered errors. They can be cached, vcl_backend_error is not triggered, and the response
is sent to the client without any interference from Varnish.

Whether you have a successful response, or an error, a backend response is returned,
which in its turn will be sent to the client.

165

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.3 Hooks, subroutines, and buil-in VCL

The previous section featured the Varnish finite state machine. Every state has a corre-

sponding subroutine that allows you to hook into that state to modify its behavior.

In this section, we’ll cover the various subroutines and their corresponding VCL code,
and we’ll explain how this code fits into the Varnish finite state machine.
4)
The VCL code you're about to see is all part of what we call the built-in VCL.
We’ve covered this behavior in the previous chapter; now you’ll see the actual

code.

Remember: even if this code is not part of your VCL file, it will still be executed

by Varnish if you don’t perform an explicit return call.
g J

431 vel_recv

vcl_recv is the first subroutine that is used in the buzlt-in VCL. It hooks into the re-
quest-handling logic. Based on certain criteria, it transitions to another state by returning
a specific action.

Let’s have a look at the vcl_recv VCL code:

sub vcl_recv {
if (req.method == "PRI") {
/* This will never happen in properly formed traffic (see:
RFC7540) */
return (synth(405));
}
if (!req.http.host &&
req.esi_level == 0 &&
req.proto ~ "A(?i)HTTP/1.1") {
/* In HTTP/1.1, Host is required. */
return (synth(400));

}

if (req.method != "GET" &&
req.method != "HEAD" &&
req.method != "PUT" &&
req.method != "POST" &&
req.method != "TRACE" &&
req.method != "OPTIONS" &&
req.method != "DELETE" &&

166

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

req.method != "PATCH") {
/* Non-RFC2616 or CONNECT which is weird. */
return (pipe);

}

if (req.method != "GET" && req.method != "HEAD") {
/* We only deal with GET and HEAD by default */
return (pass);

}

if (req.http.Authorization || req.http.Cookie) {
/* Not cacheable by default */
return (pass);

}

return (hash);

}
- J

Error cases
There are two error cases that will result in synthetic responses being returned:

When the request method is PRI, this means an HTTP/2 request is received, whereas
Varnish wasn’t configured to handle H7TP/2. This is not supposed to happen, and a
HTTP 405 Method Not Allowed error is synthetically returned.

Here’s the VCL code for that:

if (req.method == "PRI") {

/* This will never happen in properly formed traffic (see:
RFC7540) */

return (synth(4e5));
}

The other error case is when a top-level HTTP/1.1 request is made without a Host head-
er. This goes against the rules of the protocol and results in an HTTP 460 Bad Re-
quest error being returned synthetically.

Here’s the corresponding VCL code:

if (!req.http.host &&
req.esi_level == 0 &&
req.proto ~ "A(?1)HTTP/1.1") {
/* In HTTP/1.1, Host is required. */
return (synth(4e0));

167

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4)
We referred to the term top-level request. This is the main HT TP request. Varnish

can also trigger subrequests, which are part of the ESI parsing logic.

The top-level check is done by checking the value of the req.esi_level
N J

To pipe or not fo pipe

The next check that is performed in vcl_recv is also related to the reguest method.
There is a series of HTTP request methods that Varnish accepts. If the header that is re-
ceived doesn’t match this list, then return(pipe) is executed, as illustrated below:

if (req.method != "GET" && h
req.method != "HEAD" &&
req.method != "PUT" &&
req.method != "POST" &&
req.method != "TRACE" &&
req.method != "OPTIONS" &&
req.method != "DELETE" &&
req.method != "PATCH") {
/* Non-RFC2616 or CONNECT which is weird. */
return (pipe);
}
_ J

Piping means that Varnish no longer considers this an HTTP request. Instead, it just
treats the data as 7CP and shuffles the payload over the wire, without further interfer-
ence. If dealing with HTTP requests, always consider using a pass instead of a pipe, as
piping relinquishes your ability to manipulate the transaction in further steps, and your

logs will be blind to the backend response.

Only GET and HEAD

Varnish tollows HTTP best practices. When it comes to caching, only idempotent requests
may be cached. This means: request methods that don’ explicitly change the state of
the resource.

As aresult, GET and HEAD are the only two cacheable reguest methods. This rule is en-
forced using the following VCL snippet in vcl_recv:

168

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

if (reqg.method != "GET" && req.method != "HEAD") {
/* We only deal with GET and HEAD by default */
return (pass);

}

So if the request method is for example POST, the return(pass) logic will kick in, and
you’ll be sent to the vcl_pass subroutine. Requests that end up in vcl_pass will by-
pass the cache, and will result in a backend fetch.

Stateless

Stateful content is always difficult to cache. As mentioned in chapter 3, cache variations
allow you to have multiple variations on the same resource. But when content is for your
eyes only, usually you will not cache this content.

In HTTP, there are two common ways to keep track of state:

¢ Through a Cookie header, which contains key-value pairs of user data

¢ Through an Authorization header, which contains an authentication token that
authorizes the client

Technically, the Authorization header isn’t automatically conveying a state, but
like a Cookie, it denotes a customization of the content and that without deeper
knowledge, it may be dangerous to cache the data.

In vcl_recv, any request containing a Cookie header, or an Authorization will re-
sultin a return(pass) too. Here’s the VCL code to prove it:

if (req.http.Authorization || req.http.Cookie) {
/* Not cacheable by default */
return (pass);

Anything else gets cached

So in the end, if you jumped through all those hoops, Varnish will consider your re-
quest cacheable and will look the corresponding object up in cache.

In VCL, this means performing a return(hash), which is exactly what happens at the
end of the vcl_recv subroutine.

169

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Once a hash is created to identify the object in cache, it means that you have a stateless

and idempotent request that complies with the HTTP spec in terms of the request meth-
od and the host header.

4.3.2 vcl_hash

Although the diagram of the Varnish finite state machine uses vcl_hash as a point-of-
entry for many other states, there is only one rezurn statement that is actually used in the
built-in VCL, and that is return(lookup).

Here’s the VCL:

sub vcl_hash {
hash_data(req.url);
if (req.http.host) {
hash_data(req.http.host);
} else {
hash_data(server.ip);
}

return (lookup);

}
g J

This subroutine will use the hash_data() function to create the hash of the object that
is requested.

As you know from chapter 3, the hash is composed using the request URL and the
bhost beader. If there is no bost beader, the server IP address will be used instead.

What happens next all depends on the result of return(lookup):
e Iftheobjectis found, we’ll end up in vcl_hit.

e Ifthe object is found, but was marked as uncacheable, we will transition to vcl_
pass.

¢ Ifthe object is found, but the request was a purge request, we’ll end up in vel_
purge.

¢ Ifthe objectis not found, we’ll end up in vcl_miss.

4.3.3 vel_hit

Whenever a requested object is found in cache, a transition will happen from vcl_hash
tovcl hit.

170

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

In the diagram, a multitude of return actions are available for this state. However, the
built-in VCL only has two default outcomes for vcl_hit:

~
sub vcl_hit {
if (obj.ttl >= @s) {
// A pure unadulterated hit, deliver it
return (deliver);
}
if (obj.ttl + obj.grace > 0s) {
// Object is in grace, deliver it
// Automatically triggers a background fetch
return (deliver);
}
// fetch & deliver once we get the result
return (miss);
}
_ J

If it turns out the object still has some 77L left, the object will be delivered. This
means we’ll transition to vcl_deliver.

If the TTL has expired, but there’s still some grace left, the object will also be delivered
while a background fetch happens for revalidation. This is the typical stale while revali-
date behavior we discussed in the previous chapter.

If none of these conditions apply, we can conclude that the object has expired without
any possibility of delivering a stale version. This is the same thing as a cache miss, so we
fetch and deliver the new version of the object.

A dirty little secret about vel_hit

A dirty little secret about the VCL code in vcl_hit is that it doesn’t really behave the
way itis set up. The if (obj.ttl + obj.grace > @s) {} conditional will always
evaluate to true.

In reality, the built-in VCL for vcl_hit could be replaced by the following snippet:

sub vcl_hit {
return (deliver);

}

The VCL is just there to show the difference between a pure hit and a grace hit.

171

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

In newer Varnish versions, it’s actually what vcl_hit looks like, as grace is handled
internally.

434 vd_miss

There’s not a lot to say about vcl_miss, really. Although a transition to vcl_pass is
supported, the buzlt-in VCL just does a return(fetch) for vcl_miss.

Here’s the VCL:

sub vcl_miss {
return (fetch);

}

4.3.5 vd_purge

When you enter the vcl_purge stage, it means that you called a request to purge an
object from cache. This is done by calling return(purge) in vcl_recv.

Based on the URL and hostname of the corresponding request, the object hash is
looked up in cache. If found, all objects under that hash are removed from cache, and
the transition to vcl_purge happens. If the hash didn’t exist we still transition to vcl_
purge because the outcome is the same: not having an object in cache for that hash.

Asillustrated in the VCL example below, vcl_purge will return a synthetic response:

sub vcl_purge {
return (synth(200, "Purged"));
}

The response itself is very straightforward: HTTP/1.1 200 Purged.

4.3.6 vcl_pass

A lot of people assume that there is just it or miss when it comes to caches. Hit or miss
is the answer to the following question:

[Did we find the requested object in cache?

172

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

But there are more questions to ask. The main question to ask beforehand is:

[Do we want to serve this object from cache?]

And that is where pass enters the proverbial chat.

As you know from the built-in VCL: when you don’t want something to be served from
cache, you just execute return(pass). This is where you enter vcl_pass.

Apart from its intention, the built-in VCL implementation of vcl_pass is identical to
vcl_miss: you perform a return(fetch) to fetch the content from the origin.

Here’s the VCL:

sub vcl_pass {
return (fetch);
}

And during the lookup stage, when a hit-pass object is found, instead of a regular one, an
immediate transition to vcl_pass happens as well.

4.3.7 vd_pipe

The built-in VCL code for vcl_pipe has a big disclaimer in the form of a comment:

~N
sub vcl _pipe {
By default Connection: close is set on all piped requests, to
stop
connection reuse from sending future requests directly to the
(potentially) wrong backend. If you do want this to happen, you
can undo
it here.
unset bereq.http.connection;
return (pipe);
}
_ J

The implementation, and the comment are a bit special. But then again, pzping only
happens under special circumstances.

The fact that you ended up in vcl_pipe, means that Varnish is under the impression
that the request is not an HTTP request. We’ve learned from the buzlt-in VCL that re-
turn(pipe) is used when the request method is not recognized.

173

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Piping steps away from the layer 7 HT'TP implementation of Varnish and goes all the
way down to layer 4: it treats the incoming request as plazn TCP, it no longer processes
HTTP, and just shoves the TCP packets over the wire.

When the transaction is complete Varnish will close the connection with the origin to
prevent other requests from reusing this connection.

A lot of people think that return(pass) and return(pipe) are the same in terms
of behavior and outcome. That’s clearly not the case, as vcl_pass is still aware of
the HTTP context, whereas vcl_pipe has no notion of HT'TP.

4.3.8 vcl_synth

You enter the vcl_synth state when you execute a return(synth()) using the neces-
sary function parameters for synth().

As mentioned before, synthetic responses are HT TP responses that don’t originate from a
backend response. The output is completely fabricated within Varnish.

In the built-in VCL, the vcl_synth subroutine adds some markup to the output:

~
sub vcl_synth {
set resp.http.Content-Type = "text/html; charset=utf-8";
set resp.http.Retry-After = "5";
set resp.body = {"<!DOCTYPE html>
<html>
<head>
<title>"} + resp.status + " " + resp.reason + {"</title>
</head>
<body>
<h1>Error "} + resp.status + " " + resp.reason + {"</h1>
<p>"} + resp.reason + {"</p>
<h3>Guru Meditation:</h3>
<p>XID: "} + req.xid + {"</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
"}
return (deliver);
}
_ J

The assumption of the buzlt-in VCL is that the output should be in HTAML, which is
also reflected in the Content-Type response header that is set.

174

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Imagine the following synth call:

(: return(synth(200,"0K")); :)

The corresponding synthetic response would be the following:

()
HTTP/1.1 208 OK

Date: Tue, 08 Sep 2020 07:34:25 GMT
Server: Varnish

X-Varnish: 5

Content-Type: text/html; charset=utf-8
Retry-After: 5

Content-Length: 224

Accept-Ranges: bytes

Connection: keep-alive

<IDOCTYPE html>
<html>
<head>
<title>200 OK</title>
</head>
<body>
<h1>Error 200 OK</hl>
<p>0K</p>
<h3>Guru Meditation:</h3>
<p>XID: 5</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
g J

The Content-Type and the Retry-After headers were set in vcl_synth, whereas all
other headers are set behind the scenes by Varnish.

When using the buzlt-in VCL untouched, this is the HTML output that will be re-
turned to the client.

439 vd_deliver

Before a response is served back to the client, served from cache or from the origin, it
needs to pass through vcl_deliver.

The built-in VCL is not exciting at all:

175

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

sub vcl _deliver {
return (deliver);

}

Most people use vcl_deliver to decorate or clean some response headers before deliver-
ing the content to the client.

4.3.10 vcl_backend_fetch

When an object cannot be served from cache, a backend fetch will be made. As a result,
you’ll end up in vcl_backend_fetch, where the original request is converted into a
backend request.

Here’s the built-in VCL:

sub vcl_backend_fetch {
if (bereq.method == "GET") {
unset bereq.body;

¥
return (fetch);

The fact that return(fetch) is called in this subroutine is not surprising at all. But
what is surprising is that the reguest body is removed when a GET request is made.

Although a request body for a GET request is perfectly allowed in the HTTP spec, Varnish
decides to strip it off.

The reason for that makes a lot of sense from a caching point of view: if there’s a request
body, the URL is no longer the only way to uniquely identify the object in cache. If the
request body differs, so does the object. To make this work, one would have to perform a
cache variation on the request body, which could seriously decrease the hit rate.

Since request bodies for GET requests aren’t all that common, Varnish protects itself by
conditionally running unset bereq.body.

Also, if the request is a cache miss, Varnish will automatically turn the request into a GET
request. If the request was a HEAD request, this is what we expect because Varnish must
have the response body to operate correctly. However, if the request was a POST request
or something else, and you want to cache the response, you must save the request meth-
od in a header and put it back in this subroutine.

176

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

You probably noticed that we’re using the bereq object to identify the request,
instead of the req object we used earlier. That’s because we’re now in backend con-
text, and the original request has been copied over into the backend request. You’ll
learn all about objects and variable in VCL later in this chapter.

4.3.11 vel_backend_response

The vcl_backend_response subroutine is quite a significant one: it represents the
state after the origin successfully returned an HT TP reponse. This means the request
didn’t result in a cache bit.

It is also the place where Varnish decides whether or not to store the response in cache.
Based on the built-in VCL code below, you’ll see that there’s some decision-making in

place:

sub vcl_backend_response {
if (bereq.uncacheable) {
return (deliver);
} else if (beresp.ttl <= 0s ||
beresp.http.Set-Cookie ||
beresp.http.Surrogate-control ~ "(?i)no-store" ||
(!'beresp.http.Surrogate-Control &&
beresp.http.Cache-Control ~ "(?i:no-cache|no-store|private)")

beresp.http.Vary == "*") {
Mark as "Hit-For-Miss" for the next 2 minutes
set beresp.ttl = 120s;
set beresp.uncacheable = true;
}

return (deliver);

}
- J

Uncacheable

There are two ways to mark an object as uncacheable. The first and more common way
isto set beresp.uncacheable = true;. This marks the object as hit-for-miss.

You can also use the return(pass) syntax in this subroutine, which marks the object
as hit-for-pass. Hit-for-pass and hit-for-miss are very similar in that they both instruct
Varnish that the current object is not to be inserted into cache and to disable request
serialization for future requests. The difference is that bzt-for-miss is allowed to change
its mind and insert a cacheable object into cache in the future. Hit-for-pass cannot: this

177

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

object can never be cached, now, or in the future. This trade-oft gives hzt-for-pass slight-
ly better performance when dealing with uncacheable objects.

The built-in VCL will perform a series of checks to decide whether or not the response
is cacheable.

If it turns out it is not, the set beresp.uncacheable = true; logic is triggered,
which marks the object as hit-for-miss.

As explained earlier in the book, we’re caching the decision not to cache, which pre-
vents future requests for this object ending up on the waiting list.

And vcl_backend_response checks for uncacheable objects with the following bult-
in VCL code:

if (bereq.uncacheable) {
return (deliver);

}

This logic can be triggered when a return(pass) is called in the dient-side logic, or for
a hit-for-pass object. But by default, we don’t perform hit-for-pass, but hit-for-miss, which
is a more forgiving approach.

Lero TTL

The built-in VCL will make a response uncacheable when the 77L is zero (or less).
This can be caused by three things:

* set beresp.ttl = 0sended up in the VCL file, without performing a re-
turn(deliver).

* Themax-age or s-maxage value of the Cache-Control header was set to zero.
* TheExpires header contains a timestamp in the past.

This is the check that happens in the #f-statement to validate the TTL:

[if(beresp.ttl <= 0s) {]

As expected, this is the result:

[set beresp.uncacheable = true; j

178

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

A cookie was set

When the origin adds a Set-Cookie header to the response, it implies that the state of a
cookie needs to change.

Whenever state is present, let alone changed, Varnish decides to bypass the cache. Both
at the client side, and the backend side.

This is the cookie check that happens in the if-statement of the built-in VCL:

[if(beresp.http.Set-Cookie) {]

And again, this is the outcome:

[set beresp.uncacheable = true;]

Surrogate conirol

A Surrogate-Control header takes precedence over any other caching header. When
such a header is set and its value contains no-store, the buzlt-in VCL will make the
response uncacheable.

Here’s the if-check:

[i-F(ber‘esp.http.Sur‘r‘ogate—contr‘ol ~ "(?i)no-store") {]

And once again, here’s the outcome:

[set beresp.uncacheable = true;]

Cache control says no

When your response doesn’t contain a Surrogate-Control header, the buzlt-in VCL
will check if your response has a Cache-Control header.

If that is the case, the built-in VCL will make the response uncacheable if the
Cache-Control header contains one of the following statements:

179

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

. no-cache
. no-store
* private

If you went through chapter 3, you already know about this. So, here’s the VCL code to
perform the check:

if(!beresp.http.Surrogate-Control &&
beresp.http.Cache-Control ~ "(?i:no-cache|no-store|private)") {

The outcome is:

[set beresp.uncacheable = true;]

Vary all the things
Cache variations are good, but as with all things in life, you shouldn’t exaggerate.

If you vary on all headers, there’s no point caching the response, which is exactly what
the built-in VCL thinks as well. Here’s the code:

[if(ber‘esp.http.Var\y == "¥v) []

Very predictably, the outcome is:

[set beresp.uncacheable = true;]

4.312 vcl_backend_error

When you reach vcl_backend_error, it means you didn’t receive a valid HTTP re-
sponse from the selected backend. There’s a multitude of reasons why that could be the
case. Not being able to connect to the backend is also part of that.

When this happens, we cannot return a regular response, and we have to return a syn-
thetic response again. That’s why the buzlt-in VCL code for vcl_backend_error is near-
ly identical to the vcl_synth one.

The main difference is that resp.http.Content-Type becomes beresp.http.Con-
tent-Type because we’re operating in a backend-side context, not a client-side context.

Here’s the built-in VCL code:
180

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

sub vcl _backend_error {
set beresp.http.Content-Type = "text/html; charset=utf-8";
set beresp.http.Retry-After = "5";
set beresp.body = {"<!DOCTYPE html>
<html>
<head>
<title>"} + beresp.status +
</head>
<body>
<h1>Error "} + beresp.status +
<p>"} + beresp.reason + {"</p>
<h3>Guru Meditation:</h3>
<p>XID: "} + bereq.xid + {"</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
"}

return (deliver);
¥

+ beresp.reason + {"</title>

non

+ beresp.reason + {"</hl>

&

And here’s the output you’ll probably get when you run into a backend error:

(
HTTP/1.1 503 Backend fetch failed

Date: Tue, 08 Sep 2020 12:16:31 GMT
Server: Varnish

Content-Type: text/html; charset=utf-8
Retry-After: 5

X-Varnish: 5

Age: ©

Via: 1.1 varnish (Varnish/6.0)
Content-Length: 278

Connection: keep-alive

<IDOCTYPE html>
<html>
<head>
<title>503 Backend fetch failed</title>
</head>
<body>
<h1>Error 503 Backend fetch failed</h1>
<p>Backend fetch failed</p>
<h3>Guru Meditation:</h3>
<p>XID: 6</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>

&

181

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

There are slightly more response headers, but apart from that, it’s the same output tem-

plate.

4.313 v_init

vcl_init isasubroutine that is called when the VCL is initialized, before requests are
processed. It is the place where VAMODs can be initialized, or where VCL objects can be

created.

Out-of-the-box, no VMODS are initialized, and no objects are created. As a result, it
just performs a return(ok), as you can see in the example below:

sub vcl_init {
return (ok);

}

4.3.14 vcl_fini

Whereas vcl_init is used when VCL is loaded, vcl_fini is used before the VCL is dis-
carded.

This is the place where VA ODS and VCL objects are cleaned up. By default we just per-
form a return(ok). This is reflected in the example below:

sub vcl_fini {
return (ok);

}

182

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

44 V(L syntax

All this talk about the illustrious Varnish Configuration Langunage, and yet it took us

until this section to talk about the syntax. We’d apologize for this, but really it’s all part
of the plan.

Although this is a domain-specific language with no real other applications, the syntax
is pretty easy to understand, particularly in the previous section where we showed the
built-in VCL code, where it should make enough sense to comprehend.

In this section, we’ll take a look at some of the basics of VCL. We won’t focus too much
on the subroutines, and the finite state machine because we’ve just done that. Let’s just
talk about how you can get things done within one of those subroutines.

44.1 VCL version declaration

Every VCL file starts with a version declaration. As of Varnish 6, the version declaration
you’ll want to use is the following:

[vcl 4.1;]

4)

The VCL version declaration does not reflect the Varnish version it runs on, but

instead ensures compatibility of the VCL syntax. In Varnish 6, Unix domain sSock-
et support introduced a backwards compatibility break: the .path variable in the
backend declaration is not supported on older versions of Varnish and VCL syntax
version 4.0.

- J

The vcl 4.0; declaration will still work on Varnish 6, but it prevents some specific
Varnish 6 features from being supported.

44.2 Assigning values

The VCL language doesn’t require you to program the full behavior, but rather allows
you to extend pre-existing buzlt-in behavior. Given this scope and purpose, the main
objective is to set values based on certain conditions.

Let’s take the following line of code for example:

[set resp.http.Content-Type = "text/html; charset=utf-8";]

183

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

It comes from the vcl_synth built-in VCL and assigns the content type text/html;
charset=utf-8 to the response HT TP header resp.http.Content-Type.

We’re basically assigning a string to a variable. The assigning is done by using the set
keyword. If we want to unset a variable, we just use the unset keyword.

Let’s illustrate the unset behavior with another example from the buzlt-in VCL:

[unset bereq.body;]

We’re unsetting the bereq.body variable. This is part of the vcl_backend_fetch logic
of the built-in VCL.

44.3 Strings

VCL supports various data types, but the string type is by far the most common.

Here’s a conceptual example:

[set variable = "value";]

This is the easiest way to assign a string value. But as soon as you want to use newlines

or double quotes, you’re in trouble.

Luckily there’s an alternative, which is called long strings. A long string begins with {"
and ends with "}.

They may include newlines, double quotes, and other control characters, except for the
NULL (0x00) character.

A very familiar usage of this is the buzlt-in VCL implementation of vcl_synth, where
the HTML template is composed using long strings:

(N
set resp.body = {"<!DOCTYPE html>

<html>

<head>
<title>"} + resp.status +

</head>

<body>
<h1>Error "} + resp.status +
<p>"} + resp.reason + {"</p>
<h3>Guru Meditation:</h3>
<p>XID: "} + req.xid + {"</p>
<hr>

+ resp.reason + {"</title>

+ resp.reason + {"</h1l>

184

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

<p>Varnish cache server</p>
</body>
</html>
"}

There is also an alternate form of a long string, which can be delimited by triple double

quotes,

This example also shows how to perform string concatenation and variable interpolation.
Let’s reimagine the vcl_synth example, and create a version using simple strings:

set beresp.body = "Status: + resp.status + ", reason: +

resp.reason";

And again we’re using the +-sign for string concatenation and variable interpolation.

444 Conditionals

Although the VCL language is limited in terms of control structures, it does provide con-
ditionals, meaning if/else statements.

Let’s take some built-in VCL code as an example since we’re so familiar with it:

if (req.method != "GET" && req.method != "HEAD") {
/* We only deal with GET and HEAD by default */
return (pass);

This is just a regular ifstatement. We can also add an else clause:

if (req.method != "GET" && req.method != "HEAD") {
/* We only deal with GET and HEAD by default */
return (pass);

} else {
return (hash);

}

And as you’d expect, there’s also an elsesf clause:

185

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

if (req.method == "GET") { R
return (hash);

} elseif (req.method == "HEAD") {
return (hash);

} else {
return (pass);

}

_ _J
elsifielif and else if can also be used as an equivalent for elseif.

44.5 Operators

VCL has a number of operators that either evaluate to true or to false:

e The = operator is used to assign values.

¢ The==,!5,<, <=, > and >= operators are used to compare values.

¢ The ~ operator is used to match values to a regular expression or an ACL.
e The ! operator is used for negation.

* &&is the logical and operator.

e || is the logical or operator.

And again the built-in VCL comes to the rescue to clarify how some of these operators
can be used:

if (req.method != "GET" && req.method != "HEAD") {
/* We only deal with GET and HEAD by default */
return (pass);

You can clearly see the negation and the logical and, meaning that the expression only
evaluates to true when condition one and condition two are false.

We've already used the = operator to assign values, but here’s another example for refer-
ence:

[set req.http.X-Forwarded-Proto = "https";]

This example assigns the https value to the X-Forwarded-Proto request header.

186

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

A logical orlooks like this:

if(req.method == "POST" || req.method == "PUT") {
return(pass);

}

At least one of the two conditions has to be true for the expression to be true.

And let’s end this part with a less than or equals example:

if(beresp.ttl <= 0s {
set beresp.uncacheable = true;

}

44.6 Comments

Documenting your code with comments is usually a good idea, and VCL supports
three different comment styles.

We’ve listed all three of them in the example below:

~
sub vcl_recv {
// Single line of out-commented VCL.
Another way of commenting out a single line.
/*
Multi-line block of commented-out VCL.
*/
}
_ J
So you can use // or # to create a single-line comment. And /* ... */ can be used for

multi-line comments.

Pretty straightforward, not all that exciting, but definitely noteworthy.

44.7 Numbers

VCL supports numeric values, both zntegers and real numbers.

Certain fields are numeric, so it makes sense to assign literal integer or real values to
them.

Here’s an example:

187

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

[set resp.status = 200;]

But most variables are strings, so these numbers get cast into strings. For real numbers,

their value is rounded to three decimal places (e.g. 3.142).

44.8 Booleans

Booleans can be either true or false. Here’s an example of a VCL variable that expects
aboolean:

[set beresp.uncacheable = true;]

This example probably looks familiar. It comes from the buzlt-in VCL and makes a re-
sponse uncacheable.

When evaluating values of non-boolean types, the result can also be a boolean.

For example strings will evaluate to true or false if their existence is checked. This
could result in the following example:

if(!req.http.Cookie) { R
//Do something
}
if(req.http.Authorization) {
//Do something
}
_ _J

Be aware that the header variable must be undefined or unset for it to be evaluated as
false. If the header variable is defined with an empty value, it will evaluate as true.

Integers will evaluate to false if their value is 8; the same applies to duration types when
their values are zero or less.

Boolean types can also be set based on the result of another boolean expression:

[set beresp.uncachable = (beresp.http.do-no-cache == "true");]

188

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

449 Time & durations

Time is an absolute value, whereas a duration is a relative value. However, in Varnish
they are often combined.

Time

You can add a duration to a time, which results in a new time. It admittedly sounds
confusing, but here’s some code to clarify this statement:

[set req.http.tomorrow = now + 1d;]

The now variable is how you can retrieve the current time in F’CL. The now + 1d state-
ment means we’re adding a day to the current time. The returned value is also a tzme

type.

But since we’re assigning a time type to a string field, the time value is cast to a string,
which results in the following string value:

[Thu, 10 Sep 2020 12:34:54 GMT]

Duration

As mentioned, durations are relative. They express a time change and are expressed nu-
merically, but with a time unit attached.

Here are a couple of examples that illustrate the various time units:
* 1ms equals I millisecond.

* 5sequals 5 seconds.

e 10mequals 10 minutes.

e 3hequals 3 hours.

* 9dequals 9days.

* 4wequals 4 wecks.

* 1lyequals I year.

In string context their numeric value is kept, and the time unit is stripped off. This is
exactly what a real number looks like when cast to a string. And just like real numbers,
they are rounded to three decimal places (e.g. 3.142).

189

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Here’s an example of a VCL variable that supports durations:

[set beresp.ttl = 1h;]

So this example sets the 77'L of an object to one hour.

4410 Regular expressions

Pattern matching is a very common practice in V’CL. That’s why VCL supports Perl
Compatible Regular Expressions (PCRE), and we can match values to a PCRE regex
through the ~ operator.

Let’s immediately throw in an example:

if(req.url ~ "~/[a-z]{2}/cart") {
return(pass);

}

This example is matching the request URL to a regex pattern that looks for the shopping
cart URL of a website. This URL is prefixed by two letters, which represent the user’s
selected language. When the URL is matched, the request bypasses the cache.

4411 Backends

Varnish is a proxy server and depends on an origin server to provide (most of) the con-
tent. A backend definition is indispensable, even if you end up serving synthetic content.

The basics
This is what a backend looks like:

backend default {
.host = "127.0.0.1";
.port = "8080";

It has a name, default in this case, and uses the .host and .port properties to define
how Varnish can connect to the origin server.

The first backend that is defined will be used by Varnish.

190

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

If you're not planning to use a backend, or if you are using a dynamic backend like
goto, you’ll have to define the following backend configuration:

[backend default none;]

This bypasses the requirement that you must define a single backend in your VCL.

Optional values

Backends also support the following options:

e .connect_timeout is how long to wait for a connection to be made to the back-
end.

e .first_byte_timeout is how long to wait for the first byte of the response.

* .between_bytes_timeout is the maximum time to wait between bytes when

reading the response.
¢ .last_byte_timeout is the total time to wait for the complete backend response.

* .max_connections is the maximum number of concurrent connections Varnish
will hold to the backend. When this limit is reached, requests will fail into vcl_
backend_error.

Probes

Knowing whether or not a backend is healthy is important. It helps to avoid unneces-
sary outages and allows you to use a fallback system.

When using probes, you can perform health checks at regular intervals. The probe sets
the internal value of the health of that backend to healthy or sick.

Backends that are sick always result in an HTTP 503 error when called.

If you use vmod_directors to load balance with multiple backends, sick backends will
be removed from the rotation until their health checks are successful and their state

changes to healthy.

A sick backend will become healthy when a threshold of successful polls is reached with-
in a polling window.

This is how you define a probe:

191

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

probe healthcheck {
}

Default values

The probe data structure has a bunch of attributes; even without mentioning these attri-
butes, they will have a default behavior:

. .urlis the URL that will be polled. The default value is /.

e .expected_response is the HTTP status code to that the probe expects. The de-
fault value is 200.

. .timeout is the amount of time the probe is willing to wait for a response before
timing out. The default value is 2s.

J .interval is the polling interval. The default value is 5s.

. .window is the number of polls that are examined to determine the backend
health. The default value is 8.

J .initial is the number of polls in .window that have to be successful before Var-
nish starts. The default value is 2.

. .threshold is the number of polls in .window that have to be successful to con-

sider the backend healthy. The default value is 3.

e .tcponly is the mode of the probe. When enabled with 1, the probe will only
check for available TCP connections. The default value is @. This property is only
available in Varnish Enterprise.

Extending values

You can start extending the probe by assigning values to these defaults.

Here’s an example:

probe healthcheck {
.url = "/health";
.interval = 10s;
.timeout = 5s;

This example will call the /health endpoint for polling and will send a health check
every ten seconds. The probe will wait for frve seconds before it times out.

192

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Customizing the entire HTTP request

When the various probe options do not give you enough flexibility, you can even choose
to fully customize the HTTP request that the probe will send out.

The .request property allows you to do this. However, this property is mutually ex-
clusive with the .url property.

Here’s an example:

probe healtcheck {)
.request =
"HEAD /health HTTP/1.1"
"Host: localhost"
"Connection: close"
"User-Agent: Varnish Health Probe";
.interval = 10s;
.timeout = 5s;
}
_ J

Although a lot of values remain the same, there are two customizations that are part of
the request override:

e The request method is HEAD instead of GET.

* We're using the custom Varnish Health Probe User-Agent.

Assigning the probe to a backend
Once your probe is set up and configured, you need to assign it to a backend.

It’s a matter of setting the .probe property in your backend to the name of the probe, as
you can see in the example below:

vcl 4.1; R
probe healthcheck {
.url = "/health";
.interval = 10s;
.timeout = 5s;
}
backend default {
.host = "127.0.0.1";
.port = "8080";
.probe = healthcheck;
¥
_ J

193

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

By defining your probe as a separate data structure, it can be reused when multiple back-
ends are in use.

The verbose approach is to define the .probe property inline, as illustrated in the ex-
ample below:

~
vcl 4.1;
backend default {
.host = "127.0.0.1";
.port = "8080";
.probe = {
.url = "/health";
.interval = 10s;
.timeout = 5s;
}
}
g J
TCP-only probes

Probes usually perform HT TP requests to check the health of a backend. By using
TCP-only probes, the health of a backend is checked by the availability of the TCP con-

nection.

This can be used to probe non-HTTP endpoints. However, TCP-only probes cannot
be used with .url, .request, or .expected_response properties.

Here’s how you define such a probe:

probe tcp_healtcheck {
.tcponly = 1;

}
g J

Keep in mind that TCP-only probes are only available in Varnish Enterprise.

UNIX domain sockets

The backend data structure has additional properties that can be set with regard to the
endpoint it is connecting to.

If you want to connect to your backend using a UNIX domain socket, you’ll use the
.path property. It is mutually exclusive with the .host property and is only available
when you use the vcl 4.1; version declaration.

194

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Here’s an example of a UDS-based backend definition:

backend default {
.path = "/var/run/some-backend.sock";

}

Overriding the host header

If for some reason the Host header is not set in your HTTP requests, you can use the
.host_header property to override it.

Here’s an example:

backend default {
.host = "127.0.0.1";
.port = "8080";
.host_header = "example.com";

This .host_header property will be used for both regular backend requests and health
probe checks.

44.12 Access control lists

An access control list (ACL)is a VCL data structure that contains hostnames, IP address-
es, and subnets. An ACL is used to match dlient addresses and restrict access to certain
resources.

Here’s how you define an ACL:

acl admin {
"localhost";
"secure.my-server.com";
"192.168.0.0/24";
| "192.168.0.25";

This ACL named admin contains the following rules:

e Access from localhost is allowed.

* Access from the hostname secure.my-server.com is also allowed.

195

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

e AIllIP address in the 192.168.0.0/24 subnet are allowed.
¢ The only IP address from that range that is not allowed is 192.168.0.25.

In your VCL code, you can then match the client IP address to that list, as you’ll see in
the next example:

~
acl admin {
"localhost";
"secure.my-server.com";
"192.168.0.0/24";
1 "192.168.0.25";
}
sub vcl_recv {
if(req.url ~ "~/admin/?" && client.ip !~ admin) {
return(synth(403, "Forbidden"));
}
}
\ J

In this example, we’re hooking into vcl_recv to intercept requests for /admin or any
subordinate resource of /admin/. If users try to access this resource, we check if their
client IP addyress is matched by acl admin.

If it doesn’t match, an HTTP 403 Forbidden error is returned synthetically.

4.4.13 Functions

Complex logic in a programming language is usually abstracted away by functions.
This is also the case in VCL, which has a number of native functions.

The number of functions is limited, but extra functions are available in the wide range
of VMOD:s that are supported by Varnish.

In chapter 5, we’ll talk about VAODs and how their functions extend the capabil-
ities of Varnish.

ban()

ban() is a function that adds an expression to the ban list. These expressions are
matched to cached objects. Every matching object is then removed from the cache.

In essence, the ban() function exists to invalidate multiple objects at the same time.

196

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Although banning will be covered in detail in chapter 5, here’s a quick example:

[ban("obj.age > 1h");]

Multiple expressions can be chained using the && operator.

hash_data()

The hash_data() function is used within the vcl_hash subroutine and is used to ap-
pend string data to the hash input that is used to lookup an object in cache.

Let’s just revisit the buzlt-in VCL for vcl_hash where hash_data() is used:

sub vcl_hash {
hash_data(req.url);
if (reqg.http.host) {
hash_data(req.http.host);
} else {
hash_data(server.ip);

}

return (lookup);

}
g J

synthetic()

The synthetic() function prepares a synthetic response body and uses a string argument
for its input. This function can be used within vcl_synth and vcl_backend_error.

Here’s an example for vel_synth:

[synthetic(resp.reason);]

However, this function is no longer used in the buzlt-in VCL. As of Varnish Cache 5.0, it
is recommended to instead use set beresp.body = {""};.

regsub()

The regsub() function is a very popular function in Varnish. This function performs
string substitution using regular expressions. Basically, do find/replace on the first occurrence
using a regex pattern.

This is the AP of this function:

197

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

[r‘egsub(str‘ing, regex, sub)]

¢ The stringargument is your input.

* The regex argument is the regular expression you’re using to match what you're
looking for in the input string.

e The sub argument is what the 7nput string will be substituted with.

A practical example

Here’s a really practical example where we use regsub() to extract a cookze value:

vcl 4.1;

sub vcl_hash {
hash_data(regsub(req.http.Cookie,"(;|~)language=([a-z]{2})

GI1$)","\2"));5

}

Let’s break it down because it looks quite complex.

This vcl_hash subroutine is used to extend the built-in VCL and to add the value of
the 1anguage cookie to the hash. This creates a cache variation per language.

We really don’t want to hash the entire cookie because that will drive our hit rate down,
especially when there are tracking cookies in place.

In order to extract the exact cookie value we need, we’ll match the req.http.Cookie
header to a regular expression that uses grouping. In the substitution part, we can refer
to those groups to extract the value we want.

Here’s the regular expression:

[(;|")1anguage=([a-Z]{2})(;|$)]

This regular expression looks for a 1anguage= occurrence, followed by two letters.
These letters represent the language. This language cookie can occur at the beginning
of the cookie string, in the middle, or at the end. The (;|*) and (;|$) statements ensure
that this is possible.

198

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Because we’re using parentheses for grouping, the group where we match the language
itself; is indexed as group rwo. This means we can refer to it in the regsub() function as

\2.

So if we look at the entire regsub() example:

[regsub(req.http.Cookie, " (;|~)language=([a-z]{2})(|$)","\2")]

And let’s imagine this is our Cookie header:

[Cookie: privacy_accepted=1;language=en;sessionid=03F1C5944FF4]

Given the regular expression and the group referencing, the output of this regsub()
function would be en.

This means that en will be added to the hash along with the URL and the host header.

When the Cookie header doesn’t contain a 1anguage cookie, an empty string is re-
turned. When there is no Cookie header, an empty string is returned as well. This
means we don’t risk hash-key collisions when the cookie isn’t set. #### regsuball()

The regsuball() function is very similar to the regsub() function we just covered.
The only difference is where regsub() matches and replaces the first occurrence of the
pattern, regsuball() matches all occurrences.

Even the function API is identical:

[r‘egsuball(str‘ing, regex, sub)]

¢ The string argument is your input.

* The regex argument is the regular expression you’re using to match what you're
looking for in the znput string.

¢ The sub argument is what the input string will be substituted with.

A practical example

Let’s have a look at a similar example, where we’ll strip off some cookies again. Instead
of matching the values we want to keep, we’ll match the values we want to remove. We
need to ensure that all occurrences are matched, not just the first occurrence. That’s
why we use regsuball() instead of regsub():

199

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

[regsuball(req.http.Cookie," g[a-z0-9_J+=[";]1*($|;\s*)","")]

What this example does, is remove all Google Analytics cookies. This is the list of cookies
we need to remove:

.« ga
e _gid
° _gat
* _gac_<property-id>

Instead of stripping them off one by one, we can use the _g[a-z0-9_J+=[";1*($|;\s*)
regular expression to match them all at once. In the end we’ll replace the matched cook-
ies with an empty string.

This could be the raw value of your req.http.Cookie header:

cookiel=a; _ga=GA1.2.1915485056.1587105100;cookie2=b; _gid=-
GA1.2.873028102.1599741176; _gat=1

And the end result is the following:

[cookiel=a;cookie2=b]

44.14 Subroutines

At this point, the term subroutine in a VCL context is hopefully not a foreign concept.

We’ve been through the Varnish finite state machine multiple times, you’ve seen the
corresponding built-in VCL code. But what you might not know is that you can define
your own subroutines.

Need an example? Here you go:

vcl 4.1;

sub skipadmin {
if(req.url ~ "~/admin/?") {
return(pass);

}

200

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

sub vcl recv {
call skipadmin;

}

The skipadmin subroutine is entirely custom and is called within vcl_recv using the
call statement. The purpose of custom subroutines is to allow code to be properly
structured and functionality compartmentalized.

The example above groups the logic to bypass requests to the admin panel in a separate
subroutine, which is then called from within vcl_recv.

You are free to name your custom subroutine whatever you want, but keep in
mind that the vcl_ naming prefixes are reserved for the Varnish finite state ma-
chine. Please also keep in mind that a subroutine is not a function: it does not accept
input parameters, and it doesn’t return values. It’s just a procedure that is called.

44.15 Include

Not all of your VCL logic should necessarily be in the same VCL file. When the line
count of your VCL file increases, readability can become an issue.

To tackle this issue, V'CL allows you to include VCL from other files. The nclude syntax
is not restricted to subroutines and fixed language structures, even individual lines of
VCL code can be included.

The include "<filename>;" syntax will tell the compiler to read the file and copy its
contents into the main VCL file.

When including a file, the order of execution in the main VCL file will be determined
by the order of inclusion.

This means that each include can define its own VCL routing logic and if an included
file exits the subroutine early, it will bypass any logic that followed that return state-
ment.

The built-in VCL follows this logic and can be thought of as an included file at the end
of your VCL. This means that if you put a return statement anywhere in your VCL,
the built-in VCL logic will be skipped since it is always appended at the end of your
VCL.

So let’s talk about the previous example, where the skipadmin subroutine is used and
put the custom subroutine in a separate file:

201

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

#This is skipadmin.vcl

sub skipadmin {
if(req.url ~ "~/admin/?") {
return(pass);

}
}
N\ J

In your main VCL file, you’ll use the include syntax to include skipadmin.vcl:

vcl 4.1;
include "skipadmin.vcl";

sub vcl_recv {
call skipadmin;

}
g J

And the resulting compiled V'CL would be:

vcl 4.1,

sub skipadmin {
if(req.url ~ "~/admin/?") {
return(pass);

}
}

sub vcl_recv {
call skipadmin;

}
g J

44.16 Import

The import statement can be used to import VM ODs. These are Varnish modules,
written in C-code, that are loaded into Varnish and ofter a VCL interface. These modules
basically enrich the VCL syntax without being part of the Varnish core.

[We’ll cover all the zns and outs of VAMOD:s in the next chapter. j

Here’s a quick example:

202

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

~
vcl 4.1;
import std;
sub vcl_recv {
set req.url = std.querysort(req.url);
}
g J

This example uses import std; to import Varnish’s standard library containing a set
of utility functions. The std.querysort() function will alphabetically sort the guery
string parameters of a URL, which has a beneficial impact on the hit rate of the cache.

203

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.5 VCL objects and variables

VCL, the finite state machine, hooks and subroutines: you know what it does and how it

works by now. Throughout this chapter, you’ve seen quite a number of VCL examples
that override the behavior of Varnish by checking or changing the value of a VCL vari-
able.

In this section, we’ll give you an overview of what is out there in terms of VCL variables
and what VCL objects they belong to.

You can group the variables as follows:

* Connection-related variables. Part of the 1local, server, remote and client
objects

* Request-related variables. Part of the req and req_top objects

* Backend request-related variables. Part of the bereq object

* Backend response-related variables. Part of the beresp object

* Cache object-related variables. Part of the obj object

* Response-related variables. Part of the resp object

* Session-related variables. Part of the sess object

* Storage-related variables. Part of the storage object

4)

This book is not strictly reference material. Although there is a lot of educational
value, the main purpose is to inspire you and show what Varnish is capable of.
That’s why we will not list all VCL variables: we’ll pick a couple of useful ones,
and direct you to the rest of them, which can be found at http://varnish-cache.

org/docs/6.0/reference/vcl.htmlgvcl-variables.

- J

4.5.1 Connection variables

There are four connection-related objects available in VCL, and their meaning depends
on your topology:

e client: the client that sends the HTTP request

e server: the server that receives the HTTP request

¢ remote: the remote end of the TCP connection in Varnish

¢ local: the local end of the TCP connection in Varnish

204

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

PROXY vs no PROXY

PROXY protocol connections were introduced in Varnish 4.1. The main purpose is to
allow a proxy node to provide the connection information of the originating client re-

questing the connection.

In a setup where Varnish is not using the PROXY protocol, the client and remote ob-
jects refer to the same connection: the client is the remote part of the TCP connection.

The same applies to server and local: the server is the local part of the TCP connec-

tion.

The following diagram illustrates this:

client
remote

Client Varnish

Connections without PROXY

A variable like client.ip will be used to get the IP address of the client. But as ex-
plained, the value of remote.ip will be identical. And server.ip will match the lo-

cal.ip value.

But when the PROXY protocol is used, there is an extra hop in front of Varnish. This
extra node communicates with Varnish over the PROXY protocol. In that kind of setup,
the variables each have their own meaning, as you can see in the diagram below:

Client Varnish

Connections with PROXY

client.ip is populated by the information of the PROXY protocol. It contains the IP
address of the original client, regardless of the number of hops that were used in the

process.

205

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

server.ip is also retrieved from the PROXY protocol. This variable represents the IP
address of the server to which the client connected. This may be a node that sits many
hops in front of Varnish.

remote.ip is the IP address of the node that sits right in front of Varnish.

local.ipis Varnish’s IP address.

The IP type

For values like client.ip and other variables that return the IP type, they are more
than a string containing the IP address. These types also contain the port that was used
by the connection.

The way you can extract the integer value of the port is by using the std.port() func-
tion that is part of vmod_std.

Here’s an example:

vcl 4.1;
import std;
sub vcl_recv {
if(std.port(server.ip) == 443) {
set req.http.X-Forwarded-Proto = "https";
} else {
set req.http.X-Forwarded-Proto = "http";
}
}
_ J

This example will extract the port value from server.ip. If the value equals 443, it
means the HTTPS port was used and the X-Forwarded-Proto header should be set to
https. Otherwise, the value is http.

When connections are made over UNIX domain sockets, the IP value will be
0.0.0.0, and port value will be 0.

206

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Local variables

The local object has two interesting variables:

* local.endpoint

* local.socket

Both of these variables are only available using the vcl 4.1 syntax.
local.endpoint contains the socker address for the -a socket.

If -a http=:80 was setin varnishd, the local.endpoint value would be :80.

Whereas local.endpoint takes the socket value, 1ocal.socket will take the socket
name. If we take the example where -a http=:80 is set, the value for local.socket
will be http.

If; like many people, you don’t name your sockets, Varnish will do so for you.

The naming pattern that Varnish uses for this is a:%d. So the name of the first socket
will be a0.

|dentities
Both the client and the server object have an identity variable that identifies them.

client.identity identifies the client, and its default value is the same value as c1i-
ent.ip. This is a string value, so you can assign what you like.

This variable was originally used by the client director for client-based load balancing.
However, the last version of Varnish that supported this was version 3.

Naturally, the server.identity variable will identity your server. If you specified -i
as a runtime parameter in varnishd, this will be the value. If you run multiple Varnish
instances on a single machine, this is quite convenient.

But by default, server.identity contains the hostname of your server, which is the
same value as server.hostname.

4.5.2 Request variables

The req object allows you to inspect and manipulate incoming HTTP requests.

The most common variable is req.url, which contains the reguest URL. But there’s
also req.method to get the request method. And every request header is accessible
through req.http.*.

207

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

A request example

Imagine the following HTTP request:

GET / HTTP/1.1

Host: localhost
User-Agent: curl
Accept: */*

Varnish will populate the following request variables:
* reg.method will be GET.

* req.url will be /.

* req.protowill be HTTP/1.1.

* req.http.host will be localhost.

* reqg.http.user-agent will be curl.

* reqg.http.accept will be */*,

* req.can_gzip will be false because the request didn’t contain an Accept-En-
coding: gzip header.

There are also some internal variables that are generated when a request is received:

req.hash will be 3k@fOyRKtKt7akzkyNsTGSDOJAZOQowTwKWhu5+kIu@= if we base64
encode the blob value.

req.hash is the hash that Varnish will use to identity the object in cache upon
lookup. vmod_blob is needed to convert req.hash into a readable base64 repre-
sentation.

req.is_hitmiss and req.is_hitmiss will be true if there’s a uncacheable object
stored in cache from a previous request.

If that’s the case, the waiting list will be bypassed. Otherwise this value is false.

req.esi_level will be @ because this request is not an internal subrequest. It was trig-
gered by an actual client.

208

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Top-level requests and Edge Side Includes

Edge Side Includes (ESI) was introduced in chapter 3 and there are some VCL variables in
place to facilitate £S1.

At the request level, there is a req.esi_level variable to check the level of depth and a
req.esi variable to toggle ESI support.

Parsing EST actually happens at the backend level and is done through beresp.do_esi,
but we’ll discuss that later on when we reach backend request variables.

An EST request triggers an internal subrequest in Varnish, which increments the req.
esi_level counter.

When you’re in an EST subrequest, there is also some context available about the zgp-lev-
el request that initiated the subrequest. The req_top object provides that context.

* req_top.url returns the URL of the parent request.
* req_top.http.* contains the request headers of the parent request.
* req_top.method returns the request method of the parent request.

* req_top.proto returns the protocol of the parent request.

If req_top is used in a non-ESI context, their values will be identical to the req
object.

If you want to know whether or not the top-level request was requesting the homepage,
you could use the following example VCL code:

~
vcl 4.1;
import std;
sub vcl_recv {

if(req.esi_level > @ && req_top.url == "/") {

std.log("ESI call for the homepage");

}
}
This example will log EST call for the homepage to Varnish’s Shared Memo-
ry Log, which we’ll cover in chapter 7.

J

209

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.5.3 Backend request variables

Backend reguests are the requests that Varnish sends to the origin server when an object
cannot be served from cache. The bereq contains the necessary backend request infor-
mation and is built from the req object.

In terms of scope, the req object is accessible in c/ient-side subroutines, whereas the
bereq object is only accessible in backend subroutines.

Although both objects are quite similar, they are not identical. The backend requests do
not contain the per-hop fields such as the Connection header and the Range header.

Allin all, the bereq variables will look quite familiar:

* bereq.url is the backend request URL.

* bereqg.method is the backend request method.

* bereq.http.* contains the backend request headers.

* bereq.proto is the backend request protocol that was used.

On the one hand, bereq provides a copy of the dient request information in a backend
context. But on the other hand, because the backend request was initiated by Varnish,
we have a lot more information in beregq.

Allow us to illustrate this:

bereq.connect_timeout, bereq.first_byte timeout, and bereq.between_
bytes_timeout contain the timeouts that are applied to the backend.

They were either set in the backend or are the default values from the connect_time-
out, first_byte_timeout, and between_bytes_timeout runtime parameters.

bereq.is_bgfetch is a boolean that indicates whether or not the backend request is
made in the background. When this variable is true, this means the client hit an object
in grace, and a new copy is fetched in the background.

bereq.backend contains the backend that Varnish will attempt to fetch from. When it
is used in a string context, we just get the backend name.

4.5.3 Backend response variables

Where there’s a backend request, there is also a backend response. Again, this implies that
an object couldn’t be served from cache.

The beresp object contains all the relevant information regarding the backend re-
sponse.

210

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

beresp.proto contains the protocol that was used for the backend response.
beresp.status is the HTTP status code that was returned by the origin.
beresp.reason is the HTTP status message that was returned by the origin.

beresp.body contains the response body, which can be modified for synthetic re-
sponses.

beresp.http.* contains all response headers.

VFP-related backend response variables

There are also a bunch of backend response variables that are related to the Varnish Fetch

Processors (VFP). These are booleans that allow you to zoggle certain features:

beresp.do_esi can be used to enable ESI parsing.
beresp.do_stream can be used to disable HT TP streaming.
beresp.do_gzip can be used to explicitly compress #on-gzip content.

beresp.do_gunzip can be used to explicitly uncompress gzip content and store
the plain text version in cache.

Timing-related backend response variables

beresp.ttl contains the objects remaining time to live (TTL) in seconds.
beresp.age (read-only) contains the age of an object in seconds.
beresp.grace is used to set the grace period of an object.

beresp.keep is used to keep expired and out of grace objects around for condition-
al requests.

These variables return a duration type. beresp.age is read-only, but all the others can

be set in the vcl_backend_response or vcl_backend_error subroutines.

Other backend response variables

beresp.was_304 indicates whether or not our conditional fetch got an HT'TP 304
response before being turned into an HTTP 200.

beresp.uncacheable is inherited from bereq.uncacheable and is used to flag
objects as uncacheable. This results in a hit-for-miss, ora hit-for-pass object
being created.

beresp.backend returns the backend that was used.

21

VARNISH

beresp.backend returns a backend object. You can then use beresp.backend.
name and beresp.backend.ip to get the name and IP address of the backend that
was used.

4.54 Object variables

The term object refers to what is stored in cache. It’s read-only and is exposed in VCL via
the obj object.

Here are some obj variables:

e obj.proto contains the HTTP protocol version that was used.

e obj.status stores the HTTP status code that was used in the response.
* obj.reason contains the HTTP reason phrase from the response.

e obj.hits isa bit counter. If the counter is @ by the time vcl_deliver is reached,
we’re dealing with a cache miss.

* obj.http.* contains all HTTP headers that originated from the HT'TP response.
* obj.ttlis the object’s remaining #me to live in seconds.

* obj.age is the objects age in seconds.

* obj.grace is the grace period of the object in seconds.

* obj.keep is the amount of time an expired and out of grace object will be kept in
cache for conditional requests.

* obj.uncacheable determines whether or not the cached object is uncacheable.

4)
As explained earlier, even non-cacheable objects are kept in cache and are marked

uncacheable. By default these objects perform hit-for-miss logic, but can also be
configured to perform hit-for-pass logic.

For the sake of efficiency, uncacheable objects are a lot smaller in size and don’t

contain all the typical response information.
_ J

212

VARNISH

4.5.5 Response variables

In HTTP, and in Varnish too for that matter, there is always a request and always a re-

sponse. The resp object contains the necessary information about the response that is

going to be returned to the client.

In case of a cache hit the resp object is populated from the obj object. For a cache miss

or if the cache was bypassed, the resp object is populated by the beresp object.

When a synthetic response is created, the resp object is populated from synth.

And again, the resp variables will look very familiar:

resp.proto contains the protocol that was used to generate the HTTP response.
resp.status is the HTTP status code for the response.

resp.reason is the HTTP reason phrase for the response.

resp.http.* contains the HTTP response headers for the response.

resp.is_streaming indicates whether or not the response is being streamed while

being fetched from the backend.

resp.body can be used to produce a synthetic response body in vcl_synth.

4.5.1 Storage variables

In varnishd you can specity one or more storage backends, or stevedores as we call them.

The -s runtime parameter is used to indicate where objects will be stored.

Here’s a typical example:

[var‘nishd -a :80 -f /etc/varnish/default.vcl -s malloc,256M

This Varnish instance will store its objects in memory and will allocate a maximum
amount of 256 MB.

In VCL you can use the storage object to retrieve the free space and the used space of

stevedore.

In this case you’d use storage.s@.free_space to get the free space, and storage.

s0.used_space to get the used space.

When a stevedore is unnamed, Varnish uses the s%d naming scheme. In our case the

stevedore is named s@.

213

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Let’s throw in an example of a named stevedore:

[var‘nishd -a :80 -f /etc/varnish/default.vcl -s memory=malloc,256M

To get the free space and used space, you’ll have to use storage.memory.free_space
and storage.memory.used_space.

214

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.6 Making changes

In the previous section of the book, we took a deep dive into all the VCL variables. We
also covered the buzlt-in VCL and the Varnish finite state machine extensively.

In this section, we’ll cover some basic scenarios on how to make meaningful changes in
your VCL.

4.6.1 Excuding URL patterns

You want to cache as much as possible, but in reality you can’t: resources that are szate-
ful are often hard or impossible to cache.

When caching a stateful resource would result in too many variations, it’s not worth
caching.

A very common pattern in VCL is to exclude URL patterns and do a return(pass)
when they are matched.

This one comes right out of the Magento 2 VCL file:

~
vcl 4.1,
sub vcl _recv {
if (req.url ~ "/checkout") {
return (pass);
}
}
g J

Because the /checkout URL namespace is a very personalized experience, it’s not really
cacheable: you’re dealing with logins and payment details. You really have to pass here.

And here’s another example coming from Word Press:

~
vcl 4.1;
sub vcl_recv {
if (req.url ~ "wp-(login|admin)" || req.url ~ "preview=true") {
return (pass);
}
¥
_ _J

215

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

If the URL starts with /wp-login or /wp-admin, you’re trying to access the admin
panel, which is not cacheable.

This is also the case when you’re previewing cacheable pages when being logged in. As a
result, pages containing preview=true in the URL won’t be cached either.

Notice that only slight modifications were required to achieve our goal. Because
we only return(pass) for specific patterns, the rest of the application can still
rely on the built-in VCL. As always, the built-in VCL is your safety net.

4.6.2 Sanitizing the URL

Cache objects are identified by the URL. The URL is not just the identifier of the

resource, it can also contain query string parameters. But in terms of hashing, Varnish
treats the URL as string.

This means that the slightest change in any of the guery string parameters will result in a
new hash, which in its turn results in a cache miss.

There are some strategies where the URL is sanitized in order to avoid too many cache
misses.

Here’s some VCL to sanitize your URL:

vcl 4.1;
import std;

sub vcl_recv {
Sort the query string parameters alphabetically
set req.url = std.querysort(req.url);

Remove third-party tracking parameters
if (req.url ~ "(\?|&)(utm_source|utm_medium|utm_campaign|utm_con-
tent)=") {
set req.url = regsuball(req.url, "&(utm_source|utm_medi-
um|utm_campaign|utm_content)=([A-z0-9 \-\.%25]+)", "");
set req.url = regsuball(req.url, "\?(utm_source|utm_medi-
um|utm_campaign|utm_content)=([A-z0-9 \-\.%25]+)", "?");
set req.url = regsub(req.url, "\?&", "?");
set req.url = regsub(req.url, "\?$", "");

}

Remove hashes from the URL
if (req.url ~ "\#") {
set req.url = regsub(req.url, "\#.*$", "");

216

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

}

Strip off trailing question marks
if (req.url ~ "\?$") {
set req.url = regsub(req.url, "\?$", "");
}
}
_ J

Alphabetic sorfing

The first step is to sort the query string parameters alphabetically. If you change the order
of a query string parameter, you change the string, which results in a cache miss.

The std.querysort function from vmod_std does this for you. It’s a simple modifica-
tion that can have a massive impact.

Removing tracking query string parameters

Marketing people are keen to figure out how their campaigns are performing. Google
Analytics can add campaign context to URL by adding tracking URL parameters.

Here’s a list of these parameters:
° utm_source

* utm_medium

* utm_campaign

° utm_content

In the example above we’re stripping them off because they are meaningless to the serv-
er, and they mess with our hit rate. Because these parameters are processed c/zent-side,
removing them server-side has no negative impact.

The regsub() and regsuball() functions in the example above strip off unwanted
tracking query string parameters using regular expressions.

Removing URL hashes

In HTML, we can mark page sections using anchors, as illustrated below:

[]

217

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

You can directly scroll to this section by adding a hash to the URL. Here’s how that
looks:

[http://example.com/#my-section]

We’ve said it 100 times at least, and we’ll have to repeat it again: changing the URL
changes the lookup hash for the cache. These URL hashes are also meaningless in a serv-
er-side context and also mess with our hit rate.

Your best move is to strip them off. The set req.url = regsub(req.url, "\#.*$",
""); does this for you.

Removing trailing question marks

In the same vein as the previous example, we want to avoid cache misses by stripping oft
trailing question marks.

The ? ina URL indicates the start of the query string parameters. But if the question
mark is at the end of the URL, there aren’t any parameters, so we need to strip off the 2.
This is done by set req.url = regsub(req.url, "\?$", "");

4.6.3 Stripping off cookies

Cookies are indicators of state. And stateful content should not be cached unless the varia-
tions are manageable.

But a lot of cookies are there to personalize the experience. They keep track of session
identifiers, and there are also tracking cookies that change upon every request.

There are two approaches to get rid of them:

* Identify the cookies you want to remove

¢ Identify the cookies you want to keep

218

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Removing select cookies

vcl 4.1;

sub vcl_recv

{

Some generic cookie manipulation,

follow
Remove the

set reqg.http.

)27, ")

Remove any

set req.http.

D

set req.http.

D% 5

set req.http.

)?n, uu);

set req.http.

)75 T

set req.http.

M 5

set req.http.

D

"has_js" cookie

Cookie
Google
Cookie
Cookie
Cookie
Cookie
Cookie

Cookie

regsuball(req.
Analytics based
= regsuball(req.
= regsuball(req.
= regsuball(req.
= regsuball(req.
= regsuball(req.

= regsuball(req.

useful for all templates that

http.

Cookie,

cookies

http.
http.
http.
http.
http.

http.

Remove DoubleClick offensive cookies

set reqg.http.

D 5

Cookie

= regsuball(req.

http.

Cookie,
Cookie,
Cookie,
Cookie,
Cookie,

Cookie,

Cookie,

"has_js=[";1+(;

_utm.=[~;]+(
"_ga=[" 1+
"_gat=[";]+(
"utmetr=[~;]+(;
"utmemd. =[5 1+(;

"utmcen.=[";]+(;

"_gads=[";1+(;

Remove the Quant Capital cookies (added by some plugin, all

qca)

set reqg.http.

)", s

Cookie

= regsuball(req.http.Cookie,

Remove the AddThis cookies
= regsuball(req.http.Cookie, " __atuv.=[";]+(;

set req.http.

D

Remove a

set req.http.

Cookie

Cookie

prefix in the cookie if present

'_qc.=[" 1+

= regsuball(req.http.Cookie, "~;\s*", "");

Are there cookies left with only spaces or that are empty?
if (req.http.cookie ~ "~\s*$") {
unset req.http.cookie;

}

219

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

This VCL snippet will identify every single cookie pattern that needs to be removed. It
ranges from Google Analytics tracking cookies, to DoubleClick, all the way to AddThis.

Every cookie that matches is removed. If you end up with nothing more than a set of
whitespace characters, this means there weren’t any cookies left, and we remove the entire
Cookie header.

Cookies that weren’t removed will remain in the Cookie header and will fall back on
the built-in VCL, which will perform a return(pass);. This is not really a problem
because it’s by design.

Removing all but some cookies
The opposite is actually a lot easier: only keep a couple of cookies, and remove the rest.

Here’s an example that does that:

\
vcl 4.1;
sub vcl_recv {
if (req.http.Cookie) {
set req.http.Cookie = ";" + req.http.Cookie;
set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
set reqg.http.Cookie = regsuball(req.http.Cookie, ";(PHPSESSID)=",
"3 \1=");
set req.http.Cookie = regsuball(req.http.Cookie, ";[~ J[~;]1*",
IIII);
set req.http.Cookie = regsuball(req.http.Cookie, "~[; 1+|[; 1+$",
llll);
if (req.http.cookie ~ "~\s*$") {
unset req.http.cookie;
}
}
g J

Imagine having a PHP web application that has an admin panel. When you create a
sesston in PHP, the PHPSESSID cookie is used by default. This is the only cookie that
matters server-side in our application.

When this cookie is set, you're logged in, and the page can no longer be cached. This
example looks quite complicated, but it just sets up a cookie format where PHPSESSID
can easily be identified, and other cookies are replaced with an empty string,

And again: if you end up with a collection of whitespace characters, you can just re-
move that cookie.

220

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Using vmod__cookie
If you’re on Varnish Cache 6.4 or later, vmod_cookie is shipped by default.

Here’s the first example, where we explicitly remove cookies using vmod_cookie:

vcl 4.1;
import cookie;

sub vcl_recv {
cookie.parse(req.http.cookie);
cookie.filter("_ga,_gat,utmctr,__gads,has_js");
cookie.filter_re("(__utm.|utmemd. |utmcen.|__qc.|__atuv.)");
set req.http.cookie = cookie.get_string();
if (req.http.cookie ~ "~\s*$") {
unset req.http.cookie;

}
}
g J

Here’s the second example, where we only keep the PHPSESSID cookie using vmod_
cookie:

vcl 4.1;
import cookie;

sub vcl_recv {
cookie.parse(req.http.cookie);
cookie.keep("PHPSESSID");
set req.http.cookie = cookie.get_string();
if (req.http.cookie ~ "~\s*$") {
unset req.http.cookie;
}
}
_ _J

You have to admit, this is a lot simpler. There are still regular expressions involved, but
only to match cookie names. The complicated logic to match names, values, and separa-
tors is completely abstracted.

Using vmod__cookieplus

If you’re not on Varnish Cache 6.4, you can still benefit from another cookie VAIOD:
Varnish Enterprise ships vmod_cookieplus. This is an Enterprise version of vimod_
cookie that has more features and a slightly different API.

221

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Here’s the first example, where we explicitly remove cookies using vmod_cookieplus:

~
vcl 4.1;
import cookieplus;
sub vcl_recv {
cookieplus.delete("_ga");
cookieplus.delete("_gat");
cookieplus.delete("utmctr");
cookieplus.delete("__gads");
cookieplus.delete("has_js");
cookieplus.delete_regex("(__utm.|utmemd. |utmcen.|__qgc.|
atuv.)");
cookieplus.write();
}
g J
And here’s how we only keep the PHPSESSID cookie using vimod_cookieplus:
~
vcl 4.1;
import cookieplus;
sub vcl_recv {
cookieplus.keep("PHPSESSID");
cookieplus.write();
}
_ J

As you can see, vmod_cookieplus doesn’t need to be initialized, the Cookie header
doesn’t need to be parsed in advanced, and although there is a cookieplus.write()
function, it doesn’t require writing the value back to req.http.Cookie.

A final note about vmod_cookieplus is that the deletion process doesn’t leave you with
an empty Cookie header, unlike vmod_cookie. If the cookie is empty in the end, it is
stripped off automatically.

4.6.4 Sanitizing content negotiation headers

We already covered this in chapter 3, but sanitizing your content negotiation beaders is
important, especially if you’re planning on varying on them.

By content negotiation headers we mean Accept and Accept-Language. There’s also the
Accept-Encoding header, but Varnish handles this one out of the box.

222

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

The Accept request header defines what content types the client supports. This could be
text/plain, text/html, or even application/json.

The Accept-Language request header defines what languages the client understands.
This is an ideal way to serve multilingual content with explicit language selection.

The problem with these headers is that they can have so many variations. If you would
doaVary: Accept-Language your hit rate might drop massively.

It’s not only the vast number of languages that cause this, but also the order, the priori-
ty and the localization of these languages.

You probably have a pretty good idea which languages your web platform supports.
Just allow them and rely on a default value when the client’s preferred language is not
supported.

Here’s the example we used in chapter 3:

~N
vcl 4.1;
import accept;
sub vcl _init {
new lang = accept.rule("en");
lang.add("nl");
}
sub vcl recv {
set req.http.Accept-Language = lang.filter(req.http.Accept-Lan-
guage);
}
- J
This is the Accept-Language header in my browser:
[Accept—Language: nl-BE,nl;q=0.9,en-US;q=0.8,en;q=0.7]

These settings are personalized, and your browser settings will undoubtedly differ.
Without a proper cleanup, it is impossible to get a decent hit rate when you vary on this

header.

My VCL script will pick nl as the selected language. If nl is nowhere to be found in the
Accept-Language header, en will be the fallback.

vmod_accept also works for the Accept header. Here’s an example:

223

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

~
vcl 4.1;
import accept;
sub vcl_init {
new format = accept.rule("text/plain");
format.add("text/html");
format.add("application/json");
}
sub vcl recv {
set req.http.accept = format.filter(req.http.accept);
}
_ J

In this example we support content that is H7AML or JSON. Anything else will result
in the text/plain MIME type, which just means the document is not parsed and re-
turned as plain text.

By sanitizing your content negotiation headers, you limit the variations per header, and
you can safely issue a Vary: Accept,oraVary: Accept-Language in your web appli-
cation.

4.6.5 Overriding TTLs

Developer empowerment is a term we use a lot when we talk about caching. In chapter 3,
we covered it in great detail: /7TP has so many built-in mechanisms to improve the
cacheability of your web application. If you use the right headers, you’re in control.

However, in the real world, Cache-Control and Expires headers aren’t always used.
And quite often you’ll find Cache-Control: private, no-cache, no-store head-
ers on a perfectly cacheable page.

Refactoring your code and implementing the proper HTTP headers is a good idea. But
every now and then, you’ll run into a legacy application that you wouldn’t want to touch
with a stick: "it works, but don’t ask how".

That’s where VCL comes into play. The beresp.ttl value is determined by the value of
Cache-Control or Expires. But you can override the value if required.

Static data example

The following example will identify zmages and videos based on the Content-Type
header. For those resources we set the 77'L to one year because it’s static data, and it’s
not supposed to change.

224

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

And if the Cache-Control header contains no-cache, no-store, or private, we strip
off the Cache-Control header. Otherwise, the built-in VCL would turn this into a hit-
for-miss:

~
vcl 4.1;
sub vcl_backend_response {
if (beresp.http.Content-Type ~ "~(image|video)/") {
if(beresp.http.Cache-Control ~ "(?i:no-cache|no-store|pri-
vate)")){
unset beresp.http.Cache-Control;
}
set beresp.ttl = 1y;
}
}
g J

Overriding the default TTL

Varnish’s default TTL is defined by the default_ttl runtime parameter. By default
this is 120 seconds.

If you change the value of the default_ttl parameter, Varnish will use that value if
the HTTP response doesn’t contain a T7L.

You can also do itin VCL:

vcl 4.1;

sub vcl _backend_response {
set beresp.ttl = 1h;

}

Zero TTLs are evil

The lifetime of an object is defined by its 77L. If the TTL is zero, the object is stale. If
grace and keep values are set, the 77L can even be less than zero.

An instinctive reaction is to set beresp.ttl = 0s if you want to make sure an object is
not stored in cache. However, you’re doing more harm than good.

The built-in VCL has a mechanism in place to deal with #ncacheable content:

set beresp.ttl = 120s;
set beresp.uncacheable = true;

225

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

By setting beresp.uncacheable = true, were deciding to cache the decision not to
cache, as explained earlier in the book. We call this hit-for-miss and hit-for-pass,
and these objects are kept for two minutes.

This metadata is used to bypass the waiting list, as we explained in the under the hood
section in chapter 1.

By setting beresp.ttl = s, you lose the metadata, requests for this resource are put
on the waiting list, and request coalescing will not satisfy the request.

The end result is serialization, which means that these items on the waiting list are pro-
cessed serially rather than in parallel. The impact of serialization is increased latency for
the clients.

[We said it before, and we’ll say it again: zero TTLs are evil]

4.6.6 Dealing with websockets

Websockets are a mechanism that offers full-duplex communication over a single 7CP
connection. Websockets are used for real-time bi-directional communication between a
client and a server without the typical request-response exchange.

Websockets are initiated via AT TP, but the Connection: Upgrade and Upgrade:
websocket headers will trigger a protocol upgrade. This protocol upgrade results in a
persisted open connection between client and server, where another protocol is used for
communication over the TCP connection.

Here’s an example request:

(")
GET /chat

Host: example.com
Origin: https://example.com
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: Iv8io/9s+1YFgZWcXczP8Q==
Sec-WebSocket-Version: 13
_ _J

This could be the following:

HTTP 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: hsBlbuDTkk24srzEOTBU1ZAlC2g=

226

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

And as soon is the protocol has been switched, we’re no longer communicating over

HTTP.

If you remember the Varnish finite state machine, and the various return statements, then
you’ll probably agree that return(pipe) is the way to go here.

The vcl_pipe subroutine is used to deal with traffic that couldn’t be identified as
HTTP. The built-in VCL uses it when Varnish notices an unsupported request method.
The pipe we refer to is the TCP connection between Varnish and the backend. When a
return(pipe) is executed, the raw bytes are shuffled over the wire, without interpret-

ing anything as HTTP.

Here’s how you detect websockets in VCL, and how you successfully pipe the request to
the backend without the loss of the connection upgrade headers:

~
sub vcl_recv {
if (req.http.upgrade ~ "(?i)websocket") {
return (pipe);
}
}
sub vcl_pipe {
if (req.http.upgrade) {
set bereq.http.upgrade = req.http.upgrade;
set bereq.http.connection = req.http.connection;
}
}
_ J

4.6.7 Enabling ESI support

Edge Side Includes are a powerful hole-punching technique to dissect web pages into sepa-
rate blocks that are processed as individual HTTP requests.

The ESI tag is a placeholder that is interpreted by Varnish and is replaced by the re-

source it refers to.

We already talked about this, but as a reminder, this is what an £57 zag looks like:

[<esi:inc1ude src="/header" />]

Varnish can interpret these tags, but this needs to be triggered through set beresp.
do_esi = true. Because this is more computationally intensive, you don’t want to
keep this turned on all the time.

227

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Inspect the URL

In alot of cases, people will match the UR Ls where ESI parsing is required, which
might look like this:

~
vcl 4.1;
sub vcl_backend_response {
if(bereq.url == "/" || bereq.url ~ "~/articles") {
set beresp.do_esi = true;
}
}
- J

Unfortunately, this doesn’t offer you a lot of flexibility: whenever changes in the origin
application occur, the VCL file needs to be modified. From a developer empowerment
point of view, this is a poor implementation.

Inspect the Content-Type header

Another approach is to make an assumption about what kind of content would require
ESI parsing.

The example below looks at the Content-Type, and assumes that all HTAML pages are
ESI parsing candidates. So if Content-Type: text/html is set, ESI parsing is enabled:

~
vcl 4.1;
sub vcl_backend_response {
if (beresp.http.content-type ~ "text/html") {
set beresp.do_esi = true;
}
}
- J

But again, this results in far too many non-ESI pages being processed.

Surrogate headers

The preferred solution takes us all the way back to chapter 3, where we talked about the
capabilities of HTTP. The surrogate headers enable the capability that is most relevant
to this use case: by leveraging the Surrogate-Capability, and the Surrogate-Con-
trol headers, you can negotiate about behavior o the edge.

Varnish can announce ESI support through the following request header:

228

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

[Surrogate-Capability: varnish="ESI/1.0"]

When the origin has detected ESI support on the edge, it can leverage this and request
ESI parsing through the following response header:

[Surrogate-Control: content="ESI/1.0"]

There is in fact a handshake that takes place to negotiate ESI parsing. Here is the VCL
required to support this:

~N
vcl 4.1;
sub vcl_recv {
set req.http.Surrogate-Capability = "varnish=ESI/1.0";
}
sub vcl _backend_response {
if (beresp.http.Surrogate-Control ~ "ESI/1.0") {
unset beresp.http.Surrogate-Control;
set beresp.do_esi = true;
}
}
_ J

And this is a conventional solution that only consumes CPU cycles to parse ESI when
it’s absolutely necessary.

4.6.8 Protocol detection

Varnish Cache doesn’t support native TLS; Varnish Enterprise does. However, the most
common way to support 7LS in Varnish is by terminating it using a T.LS proxy. We’ll
discuss this in-depth in the TLS section of chapter 7.

But for now, it is important to know that Varnish usually only processes plain HTTP.
But thanks to the PROXY protocol, Varnish has more information about the original
connection that was made.

Protocol detection and protocol awareness are important for the origin, because they use
this information to build the right URL schemes. If http:// is used as URL instead of
https://, this might lead to mixed content, which is problematic from a browser point
of view.

229

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

If you use a TLS proxy with PROXY protocol support, and connect it to Varnish using a
listening socket that supports PROXY, VCL will use the connection metadata to popu-
late the endpoint variables we discussed earlier in this chapter.

The following example uses the std.port(server.ip) expression to retrieve the server
port. Because Varnish only does HTTP, this is not always 80. If Varnish receives a con-
nection via the PROXY protocol, the value might be 443 if a T'LS proxy terminated the
connection:

~N
vcl 4.1;
import std;
sub vcl_recv {
set req.http.X-Forwarded-Port = std.port(server.ip);
if(req.http.X-Forwarded-Port == "443") {
set req.http.X-Forwarded-Proto = "https";
} else {
set req.http.X-Forwarded-Proto = "http";
}
}
_ J

The result of this VCL snippet is the X-Forwarded-Proto header being sent to the
origin. This header is a conventional one and contains either http, or https. It’s up to
the origin to interpret this header and act accordingly. This value can be used to force
HTTPS redirection, but also to create the right URLs in hypermedia resources.

Using vmod__proxy

If your TLS proxy communicates with Varnish over the PROXY protocol, you can lever-
age vmod_proxy to easily check whether or not 7LS/SSL was used for the request.

~N
vcl 4.1;

import proxy;

sub vcl_recv {
if(proxy.is_ssl()) {
set req.http.X-Forwarded-Proto
} else {
set req.http.X-Forwarded-Proto

"https";

"http”;
}

230

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

As you can see, it’s only a matter of checking proxy.is_ss1(), and you’re good to go.

Using vmod_tls

If you're using a recent version of Varnish Enterprise, native TLS will be supported. If
you’ve enabled native TLS using the -A flag, there is no 7LS proxy, and the PROXY
protocol isn’t used.

In Varnish Enterprise there is vmod_t1s to check TLS parameters when native TLS is
used.

Here’s the vmod_t1s equivalent of proxy.is_ss1():

vcl 4.1;
import tls;

sub vcl_recv {
if(tls.is_ss1()) {
set req.http.X-Forwarded-Proto
} else {
set req.http.X-Forwarded-Proto

"https";

"http";

}
}
& J

Instead of using proxy.is_ss1(), there’s t1s.is_ss1() to figure out what protocol
was used.

469 VCL cache variations

Cache variations were discussed in chapter 3. Using the Vary header, an origin server
can instruct Varnish to create a cache variation for a specific request header. Vary: Ac-
cept-Language would create a variation per cached object based on the browser lan-

guage.
Although it is a very powerful instrument, a lot of web applications don’t use it. If re-

factoring your application to include Vary is impossible or too hard, you can also create
the variation in VCL.

Protocol cache variations

What better way to illustrate VCL cache variations than by grabbing the previous exam-
ple and creating a cache variation on X-Forwarded-Proto:

231

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

~N
vcl 4.1;
import std;
sub vcl_recv {
set req.http.X-Forwarded-Port = std.port(server.ip);
if(req.http.X-Forwarded-Port == "443") {
set req.http.X-Forwarded-Proto = "https";
} else {
set req.http.X-Forwarded-Proto = "http";
}
}
sub vcl_hash (
hash_data(req.http.X-Forwarded-Proto);
}
_ J

What we’re basically doing is adding X-Forwarded-Proto to the hash using hash_
data(). Because we’re not returning anything in vcl_hash, we’re falling back on the
built-in VCL, which also adds the request URL and the host.

Language cache variations

Let’s grab yet another example from this chapter to illustrate language cache variations.
Remember the example where we sanitized the Accept-Language header? Let’s use this
example to create a cache variation:

~N
vcl 4.1,

import accept;

sub vcl_init {
new lang = accept.rule("en");
lang.add("nl");

}

sub vcl_recv {

set req.http.Accept-Language = lang.filter(req.http.Accept-Lan-
guage);
}

sub vcl_hash (
hash_data(req.http.Accept-Language);

}
- J

232

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Because Accept-Language is sanitized, the number of values are limited, which reduces
the number of cache variations. You can confidently vary on this header. And if you
don’t, you can still use hash_data(req.http.Accept-Language) to doitin VCL.

4.6.10 Language cookie cache variation

However, the majority of multilingual websites use a language selection menu, or a
splash page, instead of the Accept-Language header. The selected language is then
stored in a cookie.

But we know that Varnish doesn’t cache when cookies are present because it implies
stateful content. Varying on the Cookie header is also a bad idea, given the amount of
tracking cookies that are injected.

But all is not lost! We can extract the value of the language cookie, and create a variation
using VCL.

Imagine this being the language cookie:

Cookie: language=en

This is the VCL code you could use to vary on the language value:

vcl 4.1;

sub vcl_recv {
if (req.http.Cookie) {
set req.http.Cookie = ";" + req.http.Cookie;
set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
set req.http.Cookie = regsuball(req.http.Cookie, ";(lan-
guage)=", "; \1=");
set req.http.Cookie = regsuball(req.http.Cookie, ";["]
(%1% ")
set req.http.Cookie = regsuball(req.http.Cookie, "~[; 1+|[;
143", ");

if (req.http.cookie ~ "A\s*$") {

unset req.http.cookie;

}
return(hash);

}

sub vcl hash {
if(req.http.Cookie ~ "~.*language=(nl|en|fr);*.*$") {

233

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

hash_data(regsub(req.http.Cookie, "~.*language=(nl|en]|-
fr);*.*$", "\1"));
} else {
hash_data("en");

}

}
- J

In the vcl_recv subroutine, we’re doing the typical find and replace magic where we
delete all the cookies, except the ones that matter. In our case that’s the language cookie.

Instead of doing a return(pass) when there are still cookies left, we deliberately call
return(hash), and consider the content cacheable.

In vcl_hash, we check whether or not the cookies have been set. If not, we add en as
the default language cache variation. Otherwise, we just extract the value from the cook-
ie using the regsub() function.

Because we explicitly defined the list of supported languages in the regular expression,
we avoid that too many variations can occur.

Using vmod__cookie

Here’s the same example, but with vmod_cookie for those who are on Varnish Cache
6.4 or later:

~
vcl 4.1;
import cookie;
sub vcl_recv {
cookie.parse(req.http.cookie);
cookie.keep("language");
set req.http.cookie = cookie.get_string();
if (req.http.cookie ~ "~\s*$") {
unset req.http.cookie;
}
}
sub vcl _hash {
if(cookie.get("language") ~ "~(nl|en|fr|de|es)$") {
hash_data(cookie.get("language"));
} else (
hash_data("en");
}
}
_ J

234

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Using vmod__cookieplus

Here’s the vmod_cookieplus implementation for those who use Varnish Enterprise:

~N
vcl 4.1;

import cookieplus;

sub vcl_recv {
cookieplus.keep("language");
cookieplus.write();

}

sub vcl _hash {
if(cookieplus.get("language") ~ "~(nl|en|fr|de|es)$") {
hash_data(cookieplus.get("language"));
} else (
hash_data("en");

}

}
g J

4.6.11 Custom error messages

When a backend response fails, Varnish will return an error page that looks like this:

(. N
Error 503 Backend fetch failed

Backend fetch failed

Guru Meditation:
XID: 3

Varnish cache server

g J

It looks a bit weird, and the guru meditation message doesn’t look that appealing.

The current built-in VCL implementation

These error messages, and the layout for synthetic responses are part of the built-in VCL.
Here’s the VCL code for vel_backend_error, in case of errors:

235

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

sub vcl _backend_error { h
set beresp.http.Content-Type = "text/html; charset=utf-8";
set beresp.http.Retry-After = "5";
set beresp.body = {"<!DOCTYPE html>
<html>
<head>
<title>"} + beresp.status + " " + beresp.reason + {"</title>
</head>
<body>
<h1>Error "} + beresp.status + " " + beresp.reason + {"</hl>
<p>"} + beresp.reason + {"</p>
<h3>Guru Meditation:</h3>
<p>XID: "} + bereq.xid + {"</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
"}
return (deliver);
}
_ J

Regular synthetic responses triggered from client-side VCL logic have a similar VCL imple-

mentation:
~
sub vcl_synth {
set resp.http.Content-Type = "text/html; charset=utf-8";
set resp.http.Retry-After = "5";
set resp.body = {"<!DOCTYPE html>
<html>
<head>
<title>"} + resp.status + " " + resp.reason + {"</title>
</head>
<body>
<h1>Error "} + resp.status + " " + resp.reason + {"</hl>
<p>"} + resp.reason + {"</p>
<h3>Guru Meditation:</h3>
<p>XID: "} + req.xid + {"</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
"}
return (deliver);
}
_ J

236

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Customize error messages using templates

To tackle the issue, you could modify the string that is assigned to beresp.body in
vcl_backend_response, or resp.body in vcl_synth, but that can go wrong really
quickly.

Not only can it become a copy-paste mess, but you also have to take variable interpola-
tions into account.

The ideal solution is to load a template from a file, potentially replace some placeholder
values, and inject the string value into the response body.

Here’s the VCL code:

vcl 4.1;
import std;

sub vcl_synth {

set resp.http.Content-Type = "text/html; charset=utf-8";

set resp.http.Retry-After = "5";

set resp.body = regsuball(std.fileread("/etc/varnish/synth.htm-
1"),"<<REASON>>",resp.reason);

return (deliver);

}

sub vcl_backend_error {

set beresp.http.Content-Type = "text/html; charset=utf-8";

set beresp.http.Retry-After = "5";

set beresp.body = regsuball(std.fileread("/etc/varnish/synth.htm-
1"),"<<REASON>>",beresp.reason);

return (deliver);

}
& J

This example will use std.fileread() to load a file from disk and present it as a string.
Using regsuball() we’re going to replace all occurrences of the <<REASON>> placehold-
er in that file with the actual reason phrase. This will be provided by either resp.rea-
son or beresp.reason.

The cool thing about this implementation is that you can have your frontend develop-
ers compose and style this file to match the branding of the actual website. It can con-
tain images, CSS, JavaScript, and all the other goodies, but it doesn’t fill up your V'CL
with very verbose content.

237

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.6.12 Caching objects on the second miss

Directly inserting an object in cache when a cache miss occurs is the default Varnish
behavior. It also makes sense: we want to avoid hitting the origin server, so caching
something as soon as possible is the logical course of action.

However, when you have a limited cache size, inserting random objects may not be very
efficient. For long-tail content, you risk filling up your cache with objects that will hard-
ly be requested.

A solution could be to only insert an object in cache on the second miss. The following
example leverages vmod_utils, which is a Varnish Enterprise VAMOD.

~
vcl 4.1;
import utils;
sub vcl _backend_response {
if (lutils.waitinglist() && utils.backend_misses() == @) {
set beresp.uncacheable = true;
set beresp.ttl = 24h;
}
¥
_ J

When a cache miss occurs, and we fetch content from the origin, utils.backend_
misses() will tell us whether or not a hit-for-miss has already occurred.

As long as this value is @, we know that this resource has not been requested, and didn’t
result in a bit-for-miss for the last 24 hours. In that case we will enable beresp.unca-
cheable and set the TTL to 24 hours.

This ensures that Varnish keeps track of that bit-for-miss for a full day. When the next
request for that resource is received during that timeframe, we know it’s somewhat pop-
ular, and we can insert the response in cache.

Because of request coalescing, it is possible that other clients are requesting the same
content at exactly the same time. These requests will be put on the wazting list while the
first in line fetches the content. We cannot hit-for-miss when this happens, because that
would cause request serialization. Luckily utils.waitinglist() gives us insight into
the number of wazting requests for that resource.

The end result is that only bor content is cached, and our precious caching space is less
likely to be wasted on long-tail content. Of course you can tune this behavior and
choose to only cache on the third or fourth miss. That’s up to you.

238

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

Keep in mind that this doesn’t work with hzt-for-pass: when you add return(pass)

to this logic to trigger hit-for-pass, the decision not to cache will be remembered for 24
hours and cannot be undone by the next cacheable response. This defeats the purpose
of this feature.

239

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

4.7 Validation and testing

Working with Varnish and writing VCL is just like any other development project:
there’s code involved, and it will be deployed to a runtime that can be configured.

There are a lot of moving parts, so a guality assurance process should be in place.

This QA process ensures that the expectations are met, and that the deployed VCL re-
sults in the desired behavior.

There are a couple of ways to approach this. In this section we’ll discuss syntax valida-
tion and testing.

4.71 Syntax validation

If you want check the syntactical correctness of your VCL code, you can use the var-
nishadm vcl.load command. This command takes two arguments: the name of the
configuration and the VCL file:

~# varnishadm vcl.load myconfig default.vcl
VCL compiled.

When Varnish tails to compile your VCL file, the varnishadm command will show you

an error message:

()

~# varnishadm vcl.load myconfig default.vcl
Message from VCC-compiler:

Expected ¢;’ got ¢}’

(program line 381), at
(¢/etc/varnish/default.vcl’ Line 22 Pos 1)

}
#

Running VCC-compiler failed, exited with 2
VCL compilation failed
Command failed with error code 106

g J

We casually use myconfig as the configuration name. Not only do we advise you to
figure out a more appropriate name, we want to warn you that you’ll get the following
error message when you try to load the same configuration name twice:

240

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

~# varnishadm vcl.load myconfig default.vcl
Already a VCL named myconfig
Command failed with error code 106

After you've done your syntax checks using the vcl.load subcommand, we advise you
to discard the load configurations. Not only do you risk name clashes, but loaded con-
figurations also consume resources.

Here’s how you discard the myconfig VCL configuration:

[var‘nishadm vcl.discard myconfig]

You can also use varnishadm vcl.inline and pass a string containing your V'CL
code. Here’s an example within the varnishadm shell:

()

varnish> vcl.inline myconfig2 << EOF
> vcl 4.1;

>

> backend default {

> .host = "localhost";
> .port = "8080";
>}
> EOF
200
VCL compiled.
g J

You can also do the same from outside of the varnishadm shell, but that requires two
levels of HEREDOC:

In Bash, a Here document allows multiple lines to be passed as input to a com-
mand.

241

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

-

g

~N
~# varnishadm << EOF
> vcl.inline myconfig2 << EOF2
> vcl 4.1;
> backend default {
>. .host = "localhost";
> .port = "8080";
>}
> EOF2
> EOF
200
VCL compiled.
J

4.].2 Testing

A syntax check is good, but you can hardly consider it your only Q4 task. Logical errors

aren’t detected. Testing the behavior of your VCL code is just as important.

The varnishtest program is a script-driven testing tool that uses Varnish Test Case

(VTC)files to test specific scenarios. It is a functional testing tool, where the various ele-

ments of the delivery chain can be defined:

The Varnish server
The client

The origin server
Extra proxy servers
Varnishlog output

Other server processes that are called

Built-in VCL test

The first example of a V'TC file is the following example:

varnishtest "Check that a cache fetch + hit transaction works"
server sl {

rxreq

txresp -hdr "Connection: close" -body "©12345\n"
} -start

varnish vl -vcl+backend { } -start

client cl1 {

242

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

txreq -url "/"

rxresp

expect resp.status == 200
} -run

client c2 {

txreq -url "/"

rxresp

expect resp.status == 200
} -run

Give varnish a chance to update stats

delay .1

varnish vl -expect sess_conn == 2
varnish vl -expect cache_hit == 1
varnish vl -expect cache_miss ==
varnish vl -expect client_req == 2

&

This VTC file is executed using the following command:

~# varnishtest test.vtc
top TEST test.vtc passed (5.446)

And as you can see, the test passed.
But what are we actually testing?

* Aserver is defined that closes the connection after the request and returns the
012345\n response body.

¢ A Varnish server is defined that connects with the backend.
¢ The first client connects to the homepage and expects an H7TTP 200 response.

¢ The second client also connects to the homepage and expects an HTTP 200 re-
sponse.
* Intheend the following expectations have to be met:
— The total number of connections is two.
— There was only one cache hit that occurred.
— There was only one cache miss that occurred.

— Two clients connect to Varnish in total.

If these expectations are met, the test passes.

243

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

A failing test

Imagine the following V"7C where we deliberately cause a failure:

varnishtest "A failing test”
server sl {

rxreq

txresp -status 400
} -start

varnish vl -vcl+backend { } -start

client c1 {

txreq

rxresp

expect resp.status == 200
} -run

The expectation is that the status code will be an HTTP 200. However, the server re-
turns an HTTP 400 status code.

This is the command’s output:

~# /etc/varnish# varnishtest -q failed.vtc
top TEST failed.vtc FAILED (5.245) exit=2

Looking at Varnish’s tests

VTC files aren’t only there for your convenience and to test your implementation. The
testing framework is also used by Varnish core developers for both the open source and
the enterprise version of the software.

The master branch of Varnish Cache has about 850 VTC files in its GitHub repository.
For Varnish Enterprise the number is around 1460.

The GitHub repository for Varnish Enterprise is not open source, of course, but you can
definitely have a look at https://github.com/varnishcache/varnish-cache/tree/master/
bin/varnishtest/tests to get inspired.

Here’s the content from the README file in that repository, which explains the naming
scheme that was used. If you understand the naming scheme, you’ll be able to find the
kind of test you’re looking for.

244

https://github.com/varnishcache/varnish-cache/tree/master/bin/varnishtest/tests
https://github.com/varnishcache/varnish-cache/tree/master/bin/varnishtest/tests

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

()
Naming scheme

The intent is to be able to run all scripts in lexicographic
order and get a sensible failure mode.

This requires more basic tests to be earlier and more complex
tests to be later in the test sequence, we do this with the

prefix/id letter:

[id]%05d.vtc

id ~ "a --> varnishtest(1) tests
id ~ %a@2 --> HTTP2
id ~ b --> Basic functionality tests
id ~ “c --> Complex functionality tests
id ~ ~d --> Director VMOD tests
id ~ "e --> ESI tests
id ~ Af --> Security-related tests
id ~ ~g --> GZIP tests
id ~ ~h --> HAproxy tests
id ~ 71 --> Interoperability and standards compliance
id ~ ~j --> JAIL tests
id ~ 71 --> VSL tests
id ~ *m --> VMOD tests excluding director
id ~ "o --> prOxy protocol
id ~ *p --> Persistent tests
id ~ *r --> Regression tests, same number as ticket
id ~ ~s --> Slow tests, expiry, grace, etc.
id ~ "t --> Transport protocol tests
id ~ ~0@2 --> HTTP2
id ~ Mu --> Utilities and background processes
id ~ v --> VCL tests: execute VRT functions
_ J

AVCL test

Remember that language cookie variation example in the Making changes section of this
chapter?

To be sure the variations are respected by the V'CL, we could run the following test:

varnishtest "Language cookie cache variation"
server sl {
rxreq
expect req.http.Cookie == "language=nl"
txresp -body "Goede morgen"

245

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

rxreq
expect req.http.Cookie != "language=nl"
txresp -body "Good morning"

rxreq
expect req.http.Cookie != "language=nl"
txresp -body "Good morning"

rxreq
expect req.http.Cookie != "language=nl"
txresp -body "Good morning"

} -start

varnish vl -vcl+backend {
vcl 4.1;

sub vcl_recv {
if (req.http.Cookie) {

set req.http.Cookie = ";" + req.http.Cookie;

set req.http.Cookie = regsuball(req.http.Cookie, "; +",
Il;ll);

set req.http.Cookie = regsuball(req.http.Cookie, ";(lan-
guage):", Il; \1=II ;

set req.http.Cookie = regsuball(req.http.Cookie, ";[*]
[h1%, ")

set req.http.Cookie = regsuball(req.http.Cookie, "~[;
1+10 1+%", "");

if (req.http.cookie ~ "~\s*$") {
unset req.http.cookie;

}

return(hash);

}

sub vcl_hash {
if(req.http.Cookie ~ "~.*language=(nl|en]|fr);*.*$") {
hash_data(regsub(req.http.Cookie, "~.*language=(nl|en]|-
fr);*.*¥8", "\1"));
} else {
hash_data("en");

}
}
} -start
client c1 {
txreq -hdr "Cookie: a=1; b=2; language=nl; c=3"
rxresp

246

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

expect resp.body == "Goede morgen"

txreq -hdr "Cookie: a=1; language=en"
rxresp
expect resp.body == "Good morning"

txreq -hdr "Cookie: a=1; language=fr"
rxresp
expect resp.body == "Good morning"

txreq

rxresp

expect resp.body == "Good morning"
} -run

- J

This example has a server that will return Goede morgen in Dutch when the language
cookie equals n1. In all other cases, we will fall back to English and return Good morn-
ing.

The client will send requests containing various cookies: both irrelevant cookies, and
the relevant language cookie. Supported values will be sent, like n1 and en. We’ll also
send an unsupported value, like fr. And we’ll even test what happens if no Cookie
header is sent.

This test passes, so the ’CL matches our expectations and correctly supports language
cookie cache variations.

247

CHAPTER 4: THE VARNISH CONFIGURATION LANGUAGE

48 Summary

Congratulations! You're at the end of chapter 4, in which we covered the ins and outs of
VCL.

At this point, you should be comfortable with VCL. You should be able to understand
its syntax, you should know about the subroutines, the return statements, and the vari-

ables.

The main objective is to understand how Varnish leverages the finite state machine, how
the built-in VCL is used to control states and transitions, and how you can extend that
behavior with VCL.

Although there’s educational value to this chapter, you cannot consider it as documen-
tation. If you need documentation for V'CL, you’ll find it at http://varnish-cache.org/
docs/6.0/reference/vcl. html#varnish-configuration-language.

Every chapter from now on will use V'CL, so be ready to apply what you learned.

Let’s get ready for chapter 5 where we’ll explain what VA1ODs are, which ones are
shipped by default, and how you can use them. We’ll even show you how to write your
own VAOD:s.

248

CHAPTER 5: VARNISH MODULES (VMODS)

Chapter 5:
Varnish Modules (VMOD:s)

The Varnish Configuration Language is a very powerful programming language, but the
scope of its features is entirely focused on the finite state machine, on HT'TP requests,
HTTP responses, caching objects, and backend fetches.

It is a domain-specific language, and due to its scope, you might run into limitations.

For example, you cannot look up a client IP address in a database for access control pur-
poses. It is also not possible to load balance using a pool of backends using pure V'CL.

Luckily Varnish has a good solution for these types of limitations, and the solution
comes in the form of Varnish Modules, or VAMODs as we tend to call them.

VMOD:s are the focus of this chapter.

249

CHAPTER 5: VARNISH MODULES (VMODS)

51 What's a YMOD?

A VMOD is a shared library that is written in C. It has a set of functions, containing the
logic it wants to expose. These functions can then be imported and called from VCL,
which in turn adds new functionality to V'CL.

This is a very powerful concept because anything that can be written in C can in fact be
exposed to VCL.

Varnish isn’t just a cache: by using the right VA4ODs, you can reshape content, route
traffic, use custom authentication mechanisms and implement all kinds of custom logic
using powerful VA1ODs.

5.1.1 Scope and purpose

However, it is important to know that VAODs aren’t a gateway to Varnish’s inner
workings: the A PIs that Varnish provides are quite limited, and there aren’t a lot of
hooks. VMMOD:s are intended to act independently, and usually wrap around some sort
of library or logic in a simple and easy-to-use manner.

Some of the VMM ODs that are shipped with Varnish go beyond basic wrapping and do
interface with the Varnish core. But that’s because the core has patches to open up access
to internal APIs, purpose-built for these VA10Ds

The majority of VM ODs perform the following tasks:
* String manipulation

e Type casting

* Extracting values from complex data types

* Inspecting session and request information

* Safeaccess to third-party libraries

5.1.2 VMOD API

Every VMOD has an API. It is a collection of function calls and objects that the mod-
ule exposes to VCL.

The VCL APl is keptin a .vcc file, and one or more .c files contain the actual code.

Take for example https://github.com/varnishcache/libvmod-example, where you find
the source code of the vimod_example VALOD.

250

https://github.com/varnishcache/libvmod-example

CHAPTER 5: VARNISH MODULES (VMODS)

vmod_example is a sample module for aspiring VAOD writers who need a bit
of inspiration. The module itself doesn’t really do much, but it does lead the way,
contains the necessary files, and scripts to build the module.

In the src directory, you’ll find a vmod_example.vcc file that contains the API.

\
$Module example 3 Example VMOD
DESCRIPTION
This is the embedded documentation for the example VMOD. It should
explain
the purpose and what problems it solves, with relevant examples.
It can span multiple lines and is written in RST format.
You can even have links and lists in here:
* https://github.com/varnish/1libvmod-example/
* https://www.varnish-cache.org/
$Event event_function
$Function STRING info()
Returns a string set by the last VCL event, demonstrating the use of
event functions.
$Function STRING hello(STRING)
The different functions provided by the VMOD should also have their
own
embedded documentation. This section is for the hello() function.
_ J

The $Module line defines the name of the VALOD, and the $Function lines define the
API The example above contains two functions:

e example.info() which returns the information about the last VCL event that
occurred

e example.hello() which performs the typical Hello World, based on an input
argument

The corresponding code can be found in vmod_example.c. The C-code itself isn’t that
important to VMOD users, because the idea is that the VCL functions are the interface,
and the implementation is abstracted by these VCL functions. As long as the documen-
tation for the VMMOD is good, the code is irrelevant.

251

CHAPTER 5: VARNISH MODULES (VMODS)

5.1.3 V(L usage

Our example VAOD can be loaded into our VCL file by using the import statement:

~N
vcl 4.1;
import example;
sub vcl_deliver {
set resp.http.hello = example.hello("Thijs");
}
g J

As you can see the example.hello() function becomes available and can be used in
any of the VCL subroutines. In the example above, we’re using it to set the following
response header:

hello: Hello Thijs

514 VMOD initialization

VMODs aren’t always a collection of utility functions. Often they keep track of state
and are grouped into one or more objects.

Setting them up may require an initialization stage, which is done in the vcl_init sub-
routine. Throughout the book, we haven’t mentioned this subroutine a lot.

Let’s immediately throw in an example where vcl_init initializes vmod_directors:

~
vcl 4.1;

import directors;

backend backendl {

.host = "backendl.example.com";
.port = "80";

}

backend backend2 {
.host = "backend2.example.com";
.port = "80";

}

sub vcl_init {
new vdir = directors.round_robin();
vdir.add_backend(backendl);

252

CHAPTER 5: VARNISH MODULES (VMODS)

vdir.add_backend(backend2);
}

sub vcl_recv {
set req.backend_hint = vdir.backend();

}
& J

This VMMOD creates a director object that groups multiple backends into one. The d7-
rector will distribute load across these backends using a distribution algorithm, and will
expose itself as a single backend using the .backend() function.

Adding backends and choosing the right distribution algorithm is all done in vcl_
init. Asyou can see in the example above, we’re using the directors.round_robin()
function to create a directors object named vdir. This object uses the vdir.add_back-
end() method to assign backends.

vmod_directors is aload-balancing VAOD and will be covered in detail in
chapter 7.

51.5 Installing a VMOD

Installing a VAMOD is a lot like compiling C-code. That’s because a VA OD is written in
C.

VMODs come with an autogen.sh script that will inspect your operating system, and
will determine where to find the 1ibtoolize, autoconf, and automake tools. The
script also looks for the varnishapi library.

After this script finishes its execution, you can run the configure script that was gener-
ated. This script will configure the GCC compiler.

Eventually, all the configurations are in place to run the make command, which will use
aMakefile to compile specific source files.

The final step is running make install, which will turn the compiled files into 1ib-
vmod_example.so, and put this shared object in the right directory. By default this is /
usr/lib/varnish/vmods/.

In order to successfully compile and install a VA1OD your build system will have some
dependencies.

If you’re on a Debian or Ubuntu system, you can use the following command to install
the required dependencies:

253

CHAPTER 5: VARNISH MODULES (VMODS)

apt update && apt install -y \
varnish build-essential automake libtool python3-docutils

If you’re on Red Hat, Fedora, or CentOS, this is the equivalent:

yum check-update && yum install -y \
varnish-devel gcc make automake libtool python3-docutils

It’s worth mentioning that you generally don’t have to compile or install any VA10Ds
yourself, as most of them are packaged either with Varnish Cache or with Varnish Enter-
prise. It’s only for when you are developing your own VA1ODs, or when you are using
non-packaged community VAMOD:s.

254

CHAPTER 5: VARNISH MODULES (VMODS)

5.2 Which VMODs are shipped with
Varnish Cache?

VMODs can be built and installed separately, but Varnish also ships a couple of
VMOD:s on its own.

Varnish Cache has a set of in-tree VA OD:s that are part of the source code. This means
that these VA OD:s are included in the standard installation.

It’s quite easy to spot them. When you go to https://github.com/varnishcache/var-
nish-cache, you’ll see them in the vmod folder:

VMOD name Description

vmod_blob Utilities for encoding and decoding BLOB data in VCL

vmod_cookie Inspect, modify, and delete client-side cookies

vmod_directors pirectors group multiple backends as one,

and load balance backend requests between

these backends using a variety of load-balancing algorithms

vmod_proxy Retrieve TLS information from connections made using the

PROXY protocol

vmod_purge Perform hard and soft purges

vmod_std Alibrary of basic utility functions to perform

conversions, interact with files, perform custom logging, etc.
vmod_unix Get the user, the group, the gid, and the nid

from connections made over Unix domain sockets (UDS)
vmod_vtc A utility module for varnishtest

This list comes from the master branch of this Gz repository. It represents the current
state of the open source project. As mentioned, Varnish Software maintains a 6.0 LTS
version of Varnish Cache. In this version all VA{ODs from the open source project are
included, except vmod_cookie, which has been replaced by vmod_cookieplus.

255

https://github.com/varnishcache/varnish-cache
https://github.com/varnishcache/varnish-cache

CHAPTER 5: VARNISH MODULES (VMODS)

5.21 vmod_blob

A BLOB is short for a Binary Large Object. It’s a data type that is used for the hash keys
and for the response body.

Here’s an example where we transfer req.hash, a BLOB that represents the hash key of
the request, into a string value:

~
vcl 4.1;
import blob;
sub vcl_deliver {
set resp.http.x-hash = blob.encode(encoding=BASE64,blob=req.
hash);
}
_ J

The blob.encode() function is used for the conversion. The name of the function
indicates that an encoding format is required. We use base64, which is a common en-
coding format suitable for use in HTTP header fields.

blob.encode() has three arguments, but we only set two. The second argument
has been omitted. It is the case argument that defaults to DEFAULT. But because
we’re using named arguments, it is perfectly fine to omit arguments.

When we request http://localhost/, the corresponding x-hash header is the follow-
ing:

[x-hash: 3k@fOyRKtKt7akzkyNsTGSDOJAZOQowTwKWhu5+kIu®=]

vmod_blob has plenty of other functions and methods. In the example above we used
blob.encode(); there’s also a blob.decode(), which converts a string into a blob. All
these functions and methods can be found at https://varnish-cache.org/docs/6.0/refer-
ence/vmod_generated.html#vmod-blob.

5.2.2 vmod_ cookie

vmod_cookie is only available as of Varnish Cache 6.4, and it facilitates interaction with
the Cookie header. You've already seen a couple of examples where this VA10D was
used to remove and to get cookies.

Imagine the following Cookie header:

256

CHAPTER 5: VARNISH MODULES (VMODS)

Cookie: language=en; accept_cookie_policy=true;
_ga=GA1.2.1915485056.1587105100; _gid=GA1l.2.71561942.1601365566; _
gat=1

Here’s what we want to do:
e Ifaccept_cookie_policy is not set, redirect to the homepage
e If /friscalled, set the language cookie to fr

* Remove the tracking cookies

Here’s the VCL code to achieve this:

vcl 4.1;
import cookie;

sub vcl_recv {
cookie.parse(req.http.Cookie);
if(!cookie.isset("accept_cookie_policy")) {
return(synth(301,"/"));

}

if (req.url ~ "~/fr/?" & cookie.get("language") != "fr") {
cookie.set("language","fr");

}

cookie.filter_re("~_g[a-z]{1,2}$");
set req.http.Cookie = cookie.get_string();
}

sub vcl_synth {
if (resp.status == 301) {
set resp.http.location = resp.reason;
set resp.reason = "Moved";
return (deliver);

}
-

-
The return(synth(301,"/")) in conjunction with the vcl_synth logic allows
you to create a custom H7T TP 301 redirect.

g

The rest of the API and more vmod_cookie examples can be found here: http://var-
nish-cache.org/docs/trunk/reference/vmod_cookie.html

257

http://varnish-cache.org/docs/trunk/reference/vmod_cookie.html
http://varnish-cache.org/docs/trunk/reference/vmod_cookie.html

CHAPTER 5: VARNISH MODULES (VMODS)

5.2.3 vmod_directors

vmod_directors is a load-balancing VAOD. It groups multiple backends and uses a
distribution algorithm to balance requests to the backends it contains.

We’ll briefly cover two load balancing examples using this VA1OD, but in chapter
7 there will be a dedicated section about load balancing,

You already know the next example because we covered it in the VMOD initialization

section:
~N
vcl 4.1;
import directors;
backend backendl {
.host = "backendl.example.com";
.port = "80";
}
backend backend2 {
.host = "backend2.example.com";
.port = "80";
}
sub vcl_init {
new vdir = directors.round_robin();
vdir.add_backend(backendl);
vdir.add_backend(backend2);
}
sub vcl_recv {
set req.backend_hint = vdir.backend();
}
_ J

We initialize the director in vcl_init, where we choose the round-robin distribution
algorithm to balance load across backend1 and backend2.

For the second example, were going to take the same V'CL, but instead of a round-robin
distribution, we’re going for a random distribution. The changes aren’t that big though:

258

CHAPTER 5: VARNISH MODULES (VMODS)

~
vcl 4.1;
import directors;
backend backendl {
.host = "backendl.example.com";
.port = "80";
}
backend backend2 {
.host = "backend2.example.com";
.port = "80";
}
sub vcl_init {
new vdir = directors.random();
vdir.add_backend(backendl,10);
vdir.add_backend(backend2,20);
}
sub vcl_recv {
set req.backend_hint = vdir.backend();
}
g J

The example above uses a 7andom distribution of the load, but not with equal weight-
ing:
* backend1 will receive 33% percent of all the requests

e backend2 will receive 66% percent of all the requests

And that’s because of the weight arguments that were added to each backend of the
director. The equation for random is as follows: 100 * (weight / (sum(all_add-
ed_weights))).

The rest of the API, and more director examples can be found here: https://var-
nish-cache.org/docs/6.0/reference/vmod_generated.html#vmod-directors

5.24 vmod_proxy

vmod_proxy is used to extract c/zent- and T'LS- information from a request to Varnish
via the PROXY protocol.

Imagine the following Varnish runtime parameters:

[var‘nishd -a:80 -a:8443,PROXY -f /etc/varnish/default.vcl]

259

CHAPTER 5: VARNISH MODULES (VMODS)

Here’s what this means:

¢ Varnish accepts regular HTTP connections on port 80.

* Varnish also accepts connections on port 8443, which are made using the PROXY
protocol.

* The VCL fileis located at /etc/varnish/default.vcl.

Assuming the PROXY connection was initiated by a TLS proxy, we can use vmod_proxy
to extract TLS information that is transported by the PROXY protocol.

Here’s a JCL example that extracts some of the information into custom response

headers:
~
vcl 4.1;
import proxy;
sub vcl_deliver {
set resp.http.alpn = proxy.alpn();
set resp.http.authority = proxy.authority();
set resp.http.ssl = proxy.is_ssl();
set resp.http.ssl-version = proxy.ssl _version();
set resp.http.ssl-cipher = proxy.ssl_cipher();
}
_ J

And this is some example output, containing the custom headers:

alpn: h2

authority: example.com

ssl: true

ssl-version: TLSv1.3

ssl-cipher: TLS_AES_256_GCM_SHA384

This is what we learn about the SSL/TLS connection through these values:
* Asuccessful TLS/SSL connection was made.

¢ The communication protocol is HTTP/2.

* SNIdetermined that example.com is the authoritative hostname.

e TheSSL/TLS version we’re using is TLSV1.3.

e TheSSL/TLS cipher is an Advanced Encryption Standard with 256bit key in Galois/
Counter mode. The hashing was done using a 384-bit Secure Hash Algorithm.

260

CHAPTER 5: VARNISH MODULES (VMODS)

5.2.5 vmod_std

vmod_std is the standard VAOD that holds a collection of utility functions that are
commonly used in everyday scenarios. Although these could have been native VCL
function, they were put in a VM OD nevertheless.

vmod_std performs a variety of tasks, but its functions can be grouped as follows:
* String manipulation

* Type conversions

* Logging

* File access

¢ Environment variables

° Data extraction from COHIpICX tprS

Only a couple of examples for this VA1OD have been added, but the full list of func-
tions can be consulted here: https://varnish-cache.org/docs/6.0/reference/vmod _gener-
ated.html#varnish-standard-module.

Logging
Let’s start with an example that focuses on logging, but that uses other functions as
utilities:
~
vcl 4.1;
import std;
sub vcl_recv {
if (std.port(server.ip) == 443) {
std.log("Client connected over TLS/SSL: " + server.ip);
std.syslog(6,"Client connected over TLS/SSL: " + server.ip);
std.timestamp("After std.syslog");
}
}
o J

¢ std.log() willadd an item to the Varnish Shared Memory Log (VSL) and tag it
with a VCL_Log tag.

* std.timestamp() will also add an item to the VSL, but will use a Timestamp tag,
and will drop in a timestamp for measurement purposes.

¢ std.syslog() will add alog item to the syslog.

261

CHAPTER 5: VARNISH MODULES (VMODS)

Here’s the VSL output that was captured using varnishlog. You clearly see the std.
log() and std.timestamp() string values in there:

- VCL_Log Client connected over TLS/SSL: 127.0.0.1
- Timestamp After std.syslog: 1601382665.510435 0.000147
0.000140

When we look at the syslog, you’ll see the log line that was triggered by std.syslog()

[Sep 29 14:47:05 server varnishd[1260]: Varnish client.ip: 127.0.0.1]

String manipulation

Let’s immediately throw in an example where we combine a few string manipulation

functions:
~
vcl 4.1;
import std;
sub vcl_recv {
set req.url = std.querysort(req.url);
set req.url = std.tolower(req.url);
set req.http.User-Agent = std.toupper(req.http.User-Agent);
}
_ J

So imagine sending the following request to Varnish:

HEAD /?B=2&A=1 HTTP/1.1
Host: localhost
User-Agent: curl/7.64.0

Here’s what’s happening behind the scenes, based on a specific varnishlog command:

$ varnishlog -C -g request -i requrl -I regheader:user-agent R
* << Request >> 23
= ReqURL /?B=28&A=1
- RegHeader User-Agent: curl/7.64.0
- ReqURL /?A=18&B=2
- ReqURL /?a=1&b=2
- RegHeader user-agent: CURL/7.64.0
_ J

262

CHAPTER 5: VARNISH MODULES (VMODS)

¢ Theinput for the URL is /?B=28&A=1
¢ Theinput for the User-Agent header is curl/7.64.0

¢ The URL’s query string arguments are sorted alphabetically, which results in
/?A=1&B=2

e The URL is in lowercase, which results in /?a=1&b=2

e TheUser-Agent header is in uppercase, which results in CURL/7.64.0

Environment variables
The std.getenv() function can retrieve the values of environment variables.

The following example features an environment variable named VARNISH_DEBUG_MODE.
If it is set to 1, debug mode is enabled, and a custom X-Varnish-Debug header is set:

~
vcl 4.1;
import std;
sub vcl_deliver {
if(std.getenv("VARNISH_DEBUG_MODE") == "1") {
if(obj.hits > @) {
set resp.http.X-Varnish-Debug = "HIT";
} else {
set resp.http.X-Varnish-Debug = "MISS";
}
}
}
_ J

You can set environment variables for your systemd service with systemd edit var-
nish, and then add Environment="MYVAR=myvalue" under the [Service] section.

Reading a file

vmod_std has a function called std.fileread(), which will read a file from disk and
return the string value.

We’re not going to be too original with the /'CL example. In one of the previous sec-
tions, we talked about setting a custom HTML template for vcl_synth. Let’s take that
example again:

263

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;
import std;

sub vcl_synth {
set resp.http.Content-Type = "text/html; charset=utf-8";
set resp.http.Retry-After = "5";
set resp.body = regsuball(std.fileread("/etc/varnish/synth.
html"),
"<<REASON>>",resp.reason);
return (deliver);

}
- J

Whenever return(synth()) is called, the contents from /etc/varnish/synth.html
are used as a template, and the <<REASON>> placeholder is replaced with the actual rea-
son phrase that was set in synth().

You could also make this conditional by using std.file_exists():

~
vcl 4.1;
import std;
sub vcl_synth {
if(std.file_exists("/etc/varnish/synth.html")) {
set resp.http.Content-Type = "text/html; charset=utf-8";
set resp.http.Retry-After = "5";
set resp.body = regsuball(std.fileread("/etc/varnish/synth.
html"),
"<<REASON>>",resp.reason);
return (deliver);
}
}
- J

Server ports

The IP type in VCL that is returned by variables like client.ip doesn’t just contain
the string version of the IP address. It also contains the port that was used.

But when IP output is cast into a string, the port information is not returned. The std.
port() function extracts the port from the /P and returns it as an znteger.

Here’s an example:

264

CHAPTER 5: VARNISH MODULES (VMODS)

~
vcl 4.1;
import std;
sub vcl_recv {
if(std.port(server.ip) != 443) {
set req.http.Location = "https://" + req.http.host + req.url;
return(synth(301, "Moved"));
}
}
sub vcl_synth {
if (resp.status == 301) {
set resp.http.Location = req.http.Location;
return (deliver);
}
}
_ J

This example will check if the port that was used to connect to Varnish was 443 or not.
Port 443 is the port that is used for HTTPS traffic. If this port is not used, redirect the
page to the HTTPS equivalent.

5.2.6 vmod_unix

If a connection to Varnish is made over UNIX domain sockets, vmod_unix can be used
to figure out the following details about the UDS connection:

* The username of the peer process owner

* The group name of the peer process owner
* The userid of the peer process owner

e The group id of the peer process owner

In the list, we refer to the peer process owner: this is the user that executes the process
that represents the d/zent-side of the communication. Because connections over UDS are
done locally, the dzent side isn’t represented by an actual client, but another proxy.

A good example of this is Hitch: Hitch is a TLS PROXY that is put in front of Varnish to
terminate the 7S connection. For performance reasons, we can make Hizch connect to

Varnish over UDS.

Because the peer process doesn’t use TCP/IP to communicate with Varnish, we cannot
restrict access based on the client IP address. However, file system permissions can be
used to restrict access.

265

CHAPTER 5: VARNISH MODULES (VMODS)

Here’s how vmod_unix can be used to restrict access to Varnish:

~
vcl 4.1;
import unix;
sub vcl_recv {
Return "403 Forbidden" if the connected peer is
not running as the user "trusteduser".
if (unix.user() != "trusteduser") {
return(synth(403));
}
Require the connected peer to run in the group
"trustedgroup".
if (unix.group() != "trustedgroup") {
return(synth(403));
}
Require the connected peer to run under a specific numeric
user id.
if (unix.uid() != 4711) {
return(synth(403));
}
Require the connected peer to run under a numeric group id.
if (unix.gid() != 815) {
return(synth(403));
}
}
_ J

The unix.user() is used to retrieve the username of the user that is running the peer
process. The example above restricts access if the username is not trusteduser.

You can also use the unix.uid() function to achieve the same goal, based on the user
id, instead of the username. In the example above, we restrict access to Varnish if the
user id is not 4711.

And for groups, the workflow is very similar: user.group() can be used to retrieve the
group name, and user.gid() can be used to retrieve the group id. Based on the values
these functions return, access can be granted or restricted.

266

CHAPTER 5: VARNISH MODULES (VMODS)

5.3 Which VMODs are shipped with
Varnish Enterprise?

Varnish Enterprise ships with a whole bunch of VA1ODs. First of all, all the Varnish
Cache VMOD:s are included except vmod_cookie. On top of that, the varnish-mod-
ules VMOD collection is added. Then there are the VA4ODs maintained by Varnish
Software. And finally, there’s a collection of open source VAIODs, which were developed
by people in the open source community.

Here’s the overview of VA ODs that are developed and maintained by Varnish Software.
These modules are exclusively part of Varnish Enterprise:

VYMOD name Description

vmod_accept A content negotiation and sanitization module that inspects
the content of HTTP request headers, such as Accept and
Accept-Language

vmod_aclplus An advanced ACL module that doesn’t require access control

information to be explicitly defined in /CL, but that can
store ACLs elsewhere as a string

vmod_akamai A module that synchronizes your Akamai CDN with

Varnish

vmod_brotli A VMOD that offers Brotli compression for HT TP responses

vmod_cookieplus An advanced cookie module that allows interacting with

both the Cookie header on the request side and Set-Cookie
header on the response side

vmod_crypto A cryptography module

vmod_deviceatlas A device detection module that uses the DeviceAtlas device

intelligence database that matches User-Agent information
with detailed client-device information

vmod_edgestash A Mustache-based templating engine on the edge that parses

JSON data into Mustache placeholders
vmod_file A module that allows Varnish to interact with the file system,

but also act as a fileserver

267

CHAPTER 5: VARNISH MODULES (VMODS)

vmod_format

vmod_goto

vmod_headerplus

vmod_http

vmod_json

vmod_jwt

vmod_kvstore

vmod_leastconn

vmod_mmdb

vmod_mse

vmod_resolver

vmod_rewrite

vmod_rtstatus

vmod_session
vmod_sqlite3

vmod_stale

vmod_str

vmod_synthbackend

vmod_tls

vmod_urlplus

A module for easy string formatting, based on the ANSI C
printf format

A dynamic backend module that allows Varnish to connect to

non-predefined backends on-the-fly
Add, remove, update or retrieve any HTTP header

A cURL-based HT'TP client that allows you to perform any
HTTP call within VCL

A JSON parsing and introspection module

Inspect, verify, modify and issue JSSON Web Tokens (JWT)
on the edge

A high-performance zn-memory key-value store with optional

TTLs

A director module that load balances traffic to the backend
with the least number of active connections

A geolocation module that leverages the MaxMind GeolP
database to localize users based on their IP address

Control the MSE store selection on a per-request basis

A module that performs Forwarded Confirmed reverse DNS
(FCrDNS) on a client IP

A URL and header rewriting module

A module that presents the real-time status of Varnish in
JSON and HTML. Based on internal Varnish counters

Control the idle timeout of the TCP session
Interact with an SQL:te3 database in VCL

A module that implements Stale If Error logic to serve stale
data if the backend is unhealthy

A string manipulation module

Insert synthetic objects into the cache as if they were generat-

ed by regular backends

Retrieve TLS information from native TLS connections in
Varnish Enterprise

A URL inspection and manipulation module

268

CHAPTER 5: VARNISH MODULES (VMODS)

vmod_utils A collection of utility functions collected in one module

vmod_waf An add-on module that makes Varnish behave like a Web

Application Firewall by leveraging the ModSecurity library
vmod_xbody Access and modify request and response bodies
vmod_ykey

A module that performs tag-based invalidation on top of the
MSE stevedore

Let’s have a look at a couple of these enterprise VAODs, and see how they add value on
the edge.

5.3.1 vmod_accept

No need to go in great detail about vmod_accept because this VAOD was already fea-
tured in the previous two chapters. It is used to sanitize the Accept and Accept-Lan-
guage headers.

Here’s the typical language example:

vcl 4.1;
import accept;

sub vcl_init {
new lang = accept.rule("en");
lang.add("nl");

}

sub vcl_recv {
set req.http.Accept-Language = lang.filter(req.http.Accept-Lan-
guage);
}
_ J

If you want to Vary on Accept-Language, you need to make sure the number of varia-
tions is limited. vmod_accept makes sure that this is the case.

Imagine the following Accept-Language header:

[Accept-Language: nl-BE,nl;q=0.9,en-US;q=0.8,en;q=0.7]

The VCL example above will turn this header into the following one:

269

CHAPTER 5: VARNISH MODULES (VMODS)

[Accept—Language: nl]

Any other variant will result in the following:

[Accept-Language: en]

5.3.2 vmod_aclplus

The typical ACL uses the following syntax:

acl admin {
"localhost";
"secure.my-server.com";
"192.168.0.0/24";
1 "192.168.0.25";

These values are predefined when loading the VCL file and offer limited flexibility.

Advanced ACLs

vmod_aclplus canload 4CLs on-the-fly and represents them as a single-line CSV string.
This means that ACLs can be stored pretty much everywhere:

* Inafile

* Inadatabase

* Inakey-value store

* Inathird-party API

Here’s what an ACL looks like in this single-line CSV format:

[localhost, secure.my-server.com, 192.168.0.0/24, 1192.168.0.25]

A key-value store example

Here’s an example where the ACL is stored in a CSV file and loaded into the key-value
store for quick access:

270

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;

import aclplus;
import kvstore;

sub vcl_init {
new purgers = kvstore.init();
purgers.init_file("/some/path/data.csv", ",");

}

sub vcl_recv {
if (req.method == "PURGE") {
if (aclplus.match(client.ip, purgers.get(req.http.host, "er-
ror")) {

¥
return (synth(4e5));

return (purge);

}

g

The CSV file for this example is as follows:

example.com, localhost, secure.my-server.com, 192.168.0.0/24,
1192.168.0.25

And by calling purgers.init_file("/some/path/data.csv", ","), the first partis
considered the key, and all the other parts are considered the value.

For requests on the example.com hostname, the ACL can be loaded. You can actually
use arbitrary keys, we just happened to use the Host header as the key.

5.3.3 vmod_cookieplus

If you paid attention in chapter 4, you might have seen vmod_cookieplus used there.
This is the example that was used:

vcl 4.1;
import cookieplus;
sub vcl_recv {

cookieplus.keep("language");
cookieplus.write();

271

VARNISH

sub vcl _hash {
if(cookieplus.get("language") ~ "~(nl|en|fr|de|es)$") {
hash_data(cookieplus.get("language"));
} else (
hash_data("en");
}

}
- J

This example will remove all cookies, except the language cookie. Based on the value of
this cookie, language variations are performed.

To some extent, this matches the feature set of vmod_cookie, which was added in Var-
nish Cache 6.4. What vmod_cookie cannot do, and where vmod_cookieplus shines, is
controlling cookies that are sent by the backend through the Set-Cookie header.

Set-Cookie logic

Here’s an example where we will generate a session cookie if it isn’t set:

~
vcl 4.1;
import cookieplus;
import crypto;
sub vcl_deliver
{
set req.http.x-sessid = cookieplus.get("sessid", "");
if (req.http.x-sessid == "") {
set req.http.x-sessid = crypto.uuid_v4();
cookieplus.setcookie_add("sessid", req.http.x-sessid, 3ed,
req.http.Host, "/");
cookieplus.setcookie write();
}
}
_ J

Unless the sessid cookie is set, Varnish will set it itself upon delivery. A unique iden-
tifier is generated using crypto.uuid_v4(). This is what the Set-Cookie header will
look like when Varnish sets it:

Set-Cookie: sessid=063f2f1a-3752-43d3-ble3-fcb2c91f3773;
Expires=Wed, 11 Nov 2020 16:43:15 GMT; Domain=localhost:6081; Path=/

272

VARNISH

5.34 vmod_crypto

vmod_crypto contains a collection of cryptographic functions that perform hashing,
encryption, and encoding. The previous example already contained the crypto.uuid_
v4() function. Let’s have a look at some examples:

Hashing & encoding

vcl 4.1;
import crypto;

sub vcl_deliver {
set resp.http.x-base64 = crypto.base64_encode(crypto.
blob("test"));
set resp.http.x-md5 = crypto.hex_encode(crypto.hash(md5, "test"));
set resp.http.x-shal = crypto.hex_encode(crypto.
hash(shal, "test"));

}
g J

This example encodes the test string in base64 encoding by leveraging the crypto.
base64_encode() function. Because this functions takes a BLOB argument, conversion
using the crypto.blob() function is required.

The VCL snippet also contains two hashing examples:

e crypto.hash(md5,"test") creates an md5 hash of the test string
e crypto.hash(shl,"test") creates a shal hash of the test string

In both cases the output is binary and the data type is BLOB. That’s why the crypto.
hex_encode() function is required to turn the hashes into strings.

Encryption

Here’s the encryption feature of vmod_crypto that you already saw in chapter 2:

vcl 4.1;
import crypto;

sub vcl_recv {
crypto.aes_key(crypto.blob("my-16-byte-value"));
return(synth(200, crypto.hex_encode(crypto.aes_encrypt("pass-
word"))));

}
g J

273

CHAPTER 5: VARNISH MODULES (VMODS)

The output that is returned by this /’'CL example is 60ed8326cfblec02359fff4a-
73fe7e0c. And can be decrypted back into password by running the following
code: crypto.aes_decrypt(crypto.hex_decode("60ed8326cfblec02359fff4a-
73fe7e0c"))

In chapter 7 we’ll talk about content encryption, and vmod_crypto will be used
for that.

5.3.5 vmod_deviceatlas

vmod_deviceatlas can be used to perform device detection, based on the DeviceAtlas
dataset. DeviceAtlas requires a separate subscription though.

Here’s an example in which we will detect mobile users with vmod_deviceatlas:

vcl 4.1;

import deviceatlas;
import std;

sub vcl_init {
deviceatlas.loadfile("/etc/varnish/da.json");

}

sub vcl_recv {
if (deviceatlas.lookup(req.http.User-Agent, "isMobilePhone") ==
"1") {
std.log("The user-agent is a mobile phone");
} else if (deviceatlas.lookup(req.http.User-Agent, "isMobile-
Phone") == "0") {
std.log("The user-agent is not a mobile phone");
} else if (deviceatlas.lookup(req.http.User-Agent, "isMobile-
Phone") == "[unknown]") {
std.log("The user-agent is unknown");
} else {
std.log("Error during lookup");
}
}
N\ J

This script logs whether or not the User-Agent corresponds with a mobile device.

274

CHAPTER 5: VARNISH MODULES (VMODS)

5.3.5 vmod_edgestash

Moustache is a popular web templating system that uses curly braces to identify place-
holders that can be replaced by actual values.

vmod_edgestash is Varnish Enterprise’s VAMOD to handle Mustache syntax, hence the
name Edgestash.

This is what your Mustache template could look like when the web server returns the
HTTP response for /hello:

[Hello {{name}}]

The {{name}} placeholder remains unparsed, and vmod_edgestash will pair its
value to a JSON dataset. This dataset will be loaded via an internal subrequest to /
edgestash.json.

This JSON file could look like this:

"name": "Thijs"

And the following VCL code can be used to parse the Mustache handlebars, and pair
them with /[SON:

vcl 4.1;
import edgestash;

sub vcl backend_response

if (bereq.url == "/edgestash.json") {
edgestash.index_json();
} else if (bereq.url == "/hello") {
edgestash.parse_response();
}
}
sub vcl_deliver
{
if (req.url == "/hello" && edgestash.is_edgestash()) {
edgestash.add_json_url("/edgestash.json");
edgestash.execute();
}
}
g

275

CHAPTER 5: VARNISH MODULES (VMODS)

The end result will be:

[Hello Thijs]

In chapter 8 we’ll have an advanced Edgestash example where the dataset is dynam-

ically loaded.

5.3.7 vmod_file

Although vmod_std has a std.fileread() function to read content from disk, there is
still a lot more that can be done with the file system. vmod_file offers a broader 4Pl and
some cool features.

File backends

Yes, vmod_file can read, write, and delete files. But the coolest feature is the file back-
end.

The following VCL example will use the file system as a backend. Whatever is returned
from the file system is cached in Varnish for subsequent requests:

~N
vcl 4.1;
import file;
backend default none;
sub vcl_init {
new root = file.init("/var/www/html/");
}
sub vcl_backend_fetch {
set bereq.backend = root.backend();
}
g J

If properly configured, file backends can eliminate the need for an actual web server:
Varnish Enterprise can become the web server.

276

CHAPTER 5: VARNISH MODULES (VMODS)

Command line execution

Another cool vmod_file feature is the fact that you can use it to run programs or scripts
on the command line.

Here’s an integrated example where you can use the custom UPTIME request method to
retrieve the operating system’s uptime:

~
vcl 4.1;
import file;
backend default none;
sub vcl_init {
new fs = file.init();
fs.allow("/usr/bin/uptime"”, "x");
}
sub vcl_recv {
if (req.method == "UPTIME") {
return (synth(200, "UPTIME"));
}
}
sub vcl_synth {
if (resp.reason == "UPTIME") {
synthetic(fs.exec("/usr/bin/uptime"));
if (fs.exec_get_errorcode() != 0) {
set resp.status = 404;
}
return (deliver);
}
}
_ _J

fs.exec() executes the command on the command line. However, there are some sig-
nificant security issues involved when you allow random scripts and programs to run.
That’s why the .exec() function cannot run unless the allow_exec runtime param-
eter is set. Commands that are to be executed must also be explicitly allowed through a
whitelist, the .allow() function.

In order for this example to work, you need to run the following command:

[var‘nishadm param.set allow_exec true]

277

CHAPTER 5: VARNISH MODULES (VMODS)

If you want this parameter to be set at runtime, you should add -p allow_exec=true
to your varnishd runtime parameters.

When successfully configured, the uptime service can be called as follows:

[cur‘l -XUPTIME localhost]

And the output could be the following:

[09:53:39 up 2 days, 21:37, © users, load average: 0.79, 0.55, 0.58]

If the /usr/bin/uptime program cannot be successfully called, the service will return
an HTTP 404 status.

Please be careful not to expose too much control or information of your system
by using remote execution. Also, please try to limit external access to these com-
mands through an ACL.

5.3.8 vmod_format

vmod_format isa VAMOD that facilitates string formatting, and it does so using the
ANSI C printf format.

You already saw this example in chapter 2:

~
vcl 4.1;
import format;
sub vcl_synth {
set resp.body = format.quick("ERROR: %s\nREASON: %s\n",
resp.status, resp.reason);
return (deliver);
}
g J

The format.quick() function makes it super easy to perform string interpolation.
Doing it manually by closing the string, and using the plus-sign can become tedious.

The module also offers functions that allow you to interpolate non-string types. Let’s
take the previous example and instead of the format.quick() function, we’ll use the
format.set(), format.get(), format.add_string(), and format.add_int() func-
tions:

278

CHAPTER 5: VARNISH MODULES (VMODS)

~
vcl 4.1;
import format;
sub vcl_synth {
format.set("ERROR: %d\nREASON: %s\n");
format.add_int(resp.status);
format.add_string(resp.reason);
set resp.body = format.get();
return (deliver);
}
g J

As you might have noticed, the %s format for the numeric status code has been replaced
with the actual numeric %d format. The format.add_int() can now be used to pass in
an integer.

When using format.set(), the corresponding format.add_* functions should
be executed in the right order.

5.39 vmod_json

The vmod_json module can parse /SON from a string, or directly from the request
body.

The VCL example for this VMOD will extract the authorization property from the
JSON object that is represented by the request body:

~N
vcl 4.1;
import json;
import std;
sub vcl_recv
{
std.cache_req_body(100KB);
json.parse_req_body();
if (json.is_valid() && json.is_object() &&
json.get("authorization")) {
req.http.X-authorization = json.get("authorization");
} else {
return(synth(401));
}
}
g J

279

CHAPTER 5: VARNISH MODULES (VMODS)

If the authorization property is not set, Varnish returns an HTTP 401 Unautho-
rized status code.

5.3.10 vmod_goto

vmod_goto is a module that allows you to define backends on the fly. Varnish Cache
requires you to define all backends upfront. When your backend inventory is dynamic,
frequent rewrites and reloads of your VCL file are required, which can become cumber-
some.

There are also situations where you want to perform one-off calls to an endpoint and
cache that data. Or situations where the endpoint is dynamic and based on other crite-
ria.

The DNS backend

Here’s an example where the goto.dns_backend() method is used to create backends

on the fly:

~N
vcl 4.1;
import goto;
backend default none;
sub vcl_backend_fetch {
set bereq.backend = goto.dns_backend("backends.example.com");
}
_ J

This doesn’t look very different from a typical backend definition, but internally there is
a big difference: regular backends are static and their respective hostnames are resolved
at compile time. If the DNS name changes while a compiled VCL file is running, that
DNS change will go unnoticed.

Also, traditional backends don’t support hostnames that resolve to multiple IP address-

es. You'd getan Backend host "xyz": resolves to too many addresses error.

However, vmod_goto can handle these types of 4-records, and will cycle through the
corresponding IP addresses at runtime. If at some point your origin architecture needs
to scale, vmod_goto can handle DNS changes without reloading the VCL file.

You can even use the URL as an endpoint:

280

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;
import goto;
backend default none;

sub vcl_backend_fetch {
set bereq.backend =
com:8888");

}
g J

goto.dns_backend("https://backends.example.

This example will connect to backends.example.com, and if multiple IP addresses are
assigned to that hostname, it will cycle through them. The connection will be made
using HTTPS over port 8888.

The DNS director

Here’s an example where the goto.dns_director() method is used to create a director
object that resolves hostnames dynamically:

~N
vcl 4.1;
import goto;
backend default none;
sub vcl_init {
new dyndir = goto.dns_director("backends.example.com");
}
sub vcl_backend_fetch {
set bereq.backend = dyndir.backend();
}
_ J

Extra options

Both goto.dns_backend() and goto.dns_director() have a bunch of extra optional
arguments that allow you to fine-tune some of the connection parameters. They are on
par with the capabilities of regular backends, but they also have TTL settings to control
the DNS resolution.

Because the arguments are named, it doesn’t really matter in which order you use them.
Here’s an example:

281

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;
import goto;
backend default none;

sub vcl_backend_fetch {
set bereq.backend =
com:8888",
host_header="example.com", connect_timeout=2s, first_byte_
timeout=10s,
max_connections=10, ssl verify_ peer=false, ip_version=ipv4,
ttl=1h, ttl_rule=morethan);

goto.dns_backend("https://backends.example.

}
- J

This does the following:

* It connects to backends.example.com

¢ The connection is made over H7TPS on port 8888

* TheHost header that is used for the request will be overridden to example.com
* The connection timeout is two seconds

the first byte timeout is ten seconds

* Weallow ten simultaneous connections to the backend

¢ Although TLS/SSL is used for the connection, peer verification is disabled

* When we resolve the hostname, we only care about /Pv4 addyresses

e The DNS TTL from the record itself will be used, as long as it is more than the tt1
value we set

Dynamic backends example

Although vmod_goto is considered a dynamic backend VAOD, the examples looked a
bit static. The real dynamic behavior is behind the scenes, but it’s not very inspiring.

Let’s throw in a cool example where the origin inventory is stored in a J[SON file.

Imagine every tenant having its own backend configuration file that is located in /etc/
varnish/tenants/xyz.json, where the xyz refers to the hostname of the tenant.

In our case there is a /etc/varnish/tenants/example.com.json file that has the fol-
low content:

282

CHAPTER 5: VARNISH MODULES (VMODS)

{
"origin": {
"addr": "https://backends.example.com”,
"connect": "1s"
)
}

By leveraging vmod_goto, vmod_file, vmod_std, and vmod_json, we can read and
parse the file, extract the parameters, and feed them to vmod_goto:

vcl 4.1;

import goto;
import file;
import std;

import json;

backend default none;

sub vcl_init {
new fs = file.init();
fs.allow("/etc/varnish/tenants/*.json");

}

sub vcl_backend_fetch {
json.parse(fs.read("/etc/varnish/tenants/" + bereq.http.host +
".json"));

if (!json.get("origin.addr")) {
return(abandon);

}

set bereq.backend = goto.dns_backend(json.get("origin.addr"),
connect_timeout = std.duration(json.get("origin.connect"),
3.5s));

}
g J

Based on /etc/varnish/tenants/example.com.json, the backend would be
https://backends.example.com with a connection timeout of one second.

283

CHAPTER 5: VARNISH MODULES (VMODS)

5.3.11 vmod_headerplus

vmod_headerplus was already covered when we discussed the new features of Varnish
Enterprise 6 in chapter 2. Let’s make sure we use a difterent VCL example to show the
power of this VAMOD:

The following example will add stale-if-error support, which Varnish doesn’t support by
default:

~
vcl 4.1;
import headerplus;
sub vcl_backend_response {
headerplus.init(beresp);
set beresp.http.stale-if-error =
headerplus.attr_get("Cache-Control", "stale-if-error");
if (beresp.http.stale-if-error != "") {
set beresp.grace = std.duration(bereq.http.stale-if-error +
ngn s 115) 3
b
unset beresp.http.stale-if-error;
}
_ _J
The headerplus.attr_get() function allows us to retrieve specific attributes from
a header. In this case we’re retrieving the stale-if-error attribute. The value of this
attribute is assigned to beresp.grace, which sets the grace mode.
5.3.12 vmod_http
Being able to perform arbitrary HTTP calls from within V'CL is a very powerful con-
cept. vmod_http ofters us the tools to do this. This module wraps around 1ibcurl,
which is an HTTP client library.
There are many ways in which vmod_http can be leveraged, but in the example we’ll
use feature content prefetching:
~

vcl 4.1;
import http;

sub vcl_recv {
set req.http.X-prefetch = http.varnish_url("/");

}

284

CHAPTER 5: VARNISH MODULES (VMODS)

sub vcl backend _response {
if (beresp.http.Link ~ "<.+>; rel=prefetch") {
set bereqg.http.X-1link = regsub(beresp.http.Link,
AR]F) >R, ML)
set bereq.http.X-prefetch = regsub(bereq.http.X-prefetch,
"/$", bereq.http.X-1link);

http.init(0);

http.req_copy_headers(0);
http.req_set_method(@, "HEAD");
http.req_set_url(e, bereq.http.X-prefetch);
http.req_send_and_finish(0);

}
- J

This example will prefetch a URL that was mentioned in the Link header.

Imagine the following Link response header:

[Link: </style.css>; rel=prefetch]

The VCL example above will match the pattern of this header and use regsub to ex-
tract the URL, concatenate it with the full Varnish URL, and call this URL in the
background.

The http.req_send_and_finish() function call ensures that the HT'TP request is
made in the background, and that we’re not waiting for the response. The fact that the
HEAD request method is used also means we don’t need to process the response body.
Subrequests that are sent to Varnish using HEAD will automatically be converted into a
full GET request. This means the response body will be stored in cache.

When /style.css is eventually called by the client, it is already stored in cache, ready to
be served.

5.3.13 vmod_jwt

vmod_jwt is a module for verifying, creating, and manipulating [SON Web Tokens and
JSON Web Signatures. It was already covered in chapter 2, when we talked about new
teatures in Varnish Enterprise 6.

Here’s one example we had:

285

CHAPTER 5: VARNISH MODULES (VMODS)

~
vcl 4.1;
import jwt;
sub vcl_init {
new jwt_reader = jwt.reader();
}
sub vcl_recv {
if (!jwt_reader.parse(regsub(req.http.Authorization, "~Bearer
Il,llll))) {
return (synth(401, "Invalid JWT Token"));
}
if (!jwt_reader.set_key("secret")) {
return (synth(401, "Invalid JWT Token"));
}
if (!jwt_reader.verify("HS256")) {
return (synth(401, "Invalid JWT Token"));
}
}
g J

This is what one possible /1#T could look like:

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.
eyJzdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6IkpvaG4gRGO1IiwiaWFOIjoxNTE2MjM-
5MDIyfQ.

XbPfbIHMI6arz3Y922BhjWgQzWXcXNrz@ogtVhfEd2o

It consists of three distinct parts, separated by a dot, encoded with base64 This is what
the decoded version looks like:

The first part is the header:

{
"alg": "HS256",
"typ": "IWT"

}

The second part is the actual payload of the token:

286

CHAPTER 5: VARNISH MODULES (VMODS)

{
"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}

The third part is the signature, which contains binary data, and is secured by the secret

key.
The /W T would be used as follows:

Authorization: Bearer eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.
eyJzdWIiOiIXMjMONTY30DkwIiwibmFtZSI6IkpvaG4gRGI1IiwiaWFOIjoxNTE2MjM-
SMDIyfQ.

XbPfbIHMI6arz3Y922BhjWgQzWXcXNrz@ogtVhfEd2o

Our VCL example would verify the token based on the format, but the .verify()
method would ensure the HMAC signature matches.

In chapter 8 we’ll talk more about authentication, and we’ll feature some of the
capabilities of vmod_jwt.

5.3.14 vmod_ kvstore

vmod_kvstore offers a built-in key-value store. This is a simple memory database that
stores keys with their associated value. The key name is always a string; the value is also
a string. By default vmod_kvstore has a global state, so values remain available across
requests.

The K VStore has the typical getters, setters, and counters, but it can also be populated at
startup from a file.

vmod_kvstore was also part of the example we used for vmod_aclplus. Let’s focus on
the KV Store functionality of the example:

~
vcl 4.1;

import aclplus;
import kvstore;

sub vcl_init {
new purgers = kvstore.init();

287

CHAPTER 5: VARNISH MODULES (VMODS)

purgers.init_file("/some/path/data.csv", ",");

}

sub vcl_recv {
if (req.method == "PURGE") {
if (aclplus.match(client.ip, purgers.get(req.http.host, "er-
ror")) {

}
return (synth(405));

return (purge);

}
& J

The .init_file("/some/path/data.csv", ",") will read /some/path/data.csv and

extract the values, using , as a separator. The first value will be used as the key, the rest

is considered the value. The .get() method will fetch the key that was passed, and will
return the corresponding value.

5.3.15 vmod_mmdb

The mmdb in vmod_mmdb is short for MaxMind DB. MaxMind is a company that
provides geol P databases. This VAMOD is a wrapper around 1ibmaxminddb, which con-
tains the APl to access and parse the geo/P database.

This VMOD was also part of the new features of Varnish Enterprise 6, and was covered
in chapter 2. Here’s the example we used there:

~N
vcl 4.1;

import mmdb;

sub vcl init {
new geodb = mmdb.init("/path/to/database");
}

sub vcl_recv {
return(synth(200,
"Country: " + geodb.lookup(client.ip, "country/names/en") +
T
"City: " + geodb.lookup(client.ip, "city/names/en")

))s
}
\§ J

The mmdb.init() function will fetch the geo/P data from a datafile, and results in an
object that contains lookup functionality.

288

CHAPTER 5: VARNISH MODULES (VMODS)

In this example geodb.lookup(client.ip, "country/names/en") isused to extract
the country name from the geo/P data that is associated with the cient IP address.

5.3.16 vmod_mse

The Massive Storage Engine is one of the key features of Varnish Enterprise. As men-
tioned before, it is a stevedore that combines memory and file-backed storage.

MSE’s persistence layer consists of books, which are metadatabases, and stores, which are
the underlying datastores. Books and stores can be tagged, and vmod_mse has the abili-
ty to select a tagged store, and as a result choose where objects get stored.

In chapter 2, vmod_mse was covered when we talked about new features in Varnish En-
terprise. The internal configuration of MSE was also showcased.

Here’s an example that was used in that section to illustrate how zags in MSE can be
used to select where objects get stored:

~
vcl 4.1;
import mse;
import std;
sub vcl_backend_response {
if (beresp.ttl < 120s) {
mse.set_stores("none");
} else {
if (beresp.http.Transfer-Encoding ~ "chunked" ||
std.integer(beresp.http.Content-Length,0) > std.bytes("1M"))
{
mse.set_stores("sata");
} else {
mse.set_stores("ssd");
}
}
¥
_ J

In this case, there are two types of MSE stores: stores that are tagged with sata, and

stores that are tagged with ssd. These tags reflect the type of disks that are used for
these books.

The VCL example forces objects to be stored on sata tagged books, if the Con-
tent-Length header indicates a size bigger than 7 M B, or if we don’t have a Con-
tent-Length header at all, and Transfer-Encoding: chunked is used instead.

289

CHAPTER 5: VARNISH MODULES (VMODS)

Please note that it is not recommended to use MSE with spinning disks on servers

with high load.

5.3.17 vmod_resolver

vmod_resolver is a module that performs Forwarded Confirmed reverse DNS
(FCrDNS). This means that a reverse DNS call is done on the client IP address.

The resulting hostname is then resolved again, and if this matches the original c/ient IP
addpress, the check succeeds.

Here’s the reference example:

vcl 4.1;

import std;
import resolver;

sub vcl_recv {
if (resolver.resolve()) {
std.log("Resolver domain:
} else {
std.log("Resolver error:

+ resolver.domain());

+ resolver.error());
b
}
L J

resolver.resolve() performs the FCrDNS and returns true when it succeeds. In
that case the resolver.domain() returns the domain that came out of this. When the
resolver fails, we can use resolver.error() to retrieve the error message.

5.3.18 vmod_rewrite

UR L matching and rewriting is a very common practice in V’CL. The language itself
offers us the syntax to do this. But the more logic is added, the harder it gets to manage
the rules, and the bigger the complexity. It’s basically like any other software project.

Rewrite rules in V(L

Here’s an example of what it could look like:

290

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;

sub vcl_recv {
if (req.url ~ "/pay") {
set req.url = regsub(req.url, "/pay", "/checkout");
} else if (req.url ~ "(?i)/cart") {
set req.url = regsub(req.url, "(?i)/cart", "/shopping-cart");
} else if (req.url ~ "product\-([0-9]+)") {
set req.url = regsub(req.url, "product\-([@0-9]+)", "cata-
log\-\1");
}
}

g

You have to admit that this workflow gets messy really quickly. However, vmod_re-
write helps you organize your URL rewriting logic through rules.

vmod_rewrite rulesets

You can create a 7ules file that contains all the logic. Here’s what it can look like:

"/pay" " /checkout"
"(?i)/cart" "/shopping-cart"
"product-([0-9]+)" "catalog-\1"

This file can then be loaded into VCL using the following code:

vcl 4.1;
import rewrite;

sub vcl_init {
new rs = rewrite.ruleset("/path/to/file.rules");

}

sub vcl_recv {
set req.url = rs.replace(req.url);

}

g

And that’s all it takes. The logic is separated in a different file, it doesn’t pollute your
VCL, and is easy to manage.

291

CHAPTER 5: VARNISH MODULES (VMODS)

Rulesets as a string

The same logic can also be loaded as a string in the V'CL without compromising too
much on readability:

vcl 4.1;
import rewrite;

sub vcl_init {
new rs = rewrite.ruleset(string = {"
"/pay" "/checkout"
"(?i)/cart" "/shopping-cart"
"product-([0-9]+)" "catalog-\1"
"D
}

sub vcl_recv {
set req.url = rs.replace(req.url);

}
-

Matching URL patterns

So far we’ve been rewriting UR Ls, but we can also match patterns using the .match()
method. Here’s a quick example:

vcl 4.1;
import rewrite;

sub vcl_init {
new rs = rewrite.ruleset(string = {"
"A/admin/"
"~/purge/"
"~/private"
"}, min_fields = 1);
}

sub vcl_recv {
if (rs.match(req.url)) {
return (synth(405, "Restricted");

}
}
g J

The ruleser contains a list of private UR Ls that cannot be accessed through Varnish.
rs.match(req.url) checks whether or not the URL matches those rules.

292

CHAPTER 5: VARNISH MODULES (VMODS)

Extracting ruleset fields

The final example uses rewrite logic, not necessarily to rewrite the URL, but to extract
values from a field in the ruleset.

Here’s the code:

()
vcl 4.1;

import std;
import rewrite;

sub vcl _init {
new rs = rewrite.ruleset(string = {"

pattern ttl grace keep

"\.(jSlCSS)" ulmu "lem" uldu

"\-(jpglpng)" Illwll Illwll ||10w||
"1

}

sub vcl_backend_response {
if there’s a match, convert text to duration
if (rs.match(bereq.url)) {
set beresp.ttl = std.duration(rs.rewrite(@, mode = only_
matching), 0s);

set beresp.grace = std.duration(rs.rewrite(1l, mode = only_
matching), ©s);
set beresp.keep = std.duration(rs.rewrite(2, mode = only_
matching), ©s);
}
}
_ J

If a backend request’s URL matches our ruleset, fields are extracted that represent the
corresponding TTL, grace time, and keep time.

If your VCL has specific logic to assign custom 77L values to certain URL patterns,
vmod_rewrite can take care of this for you.

5.3.19 vmod_sqlite3

As mentioned in chapter 2 when talking about new features in Varnish Enterprise 6:
SQLite is a library that implements a serverless, self-contained relational database sys-
tem.

vmod_sqlite3 wraps around this library and allows you to write SQL statements to
interact with SQLite. The data itself is stored in a single file, as you can see in the exam-

ple below:

293

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;

import sqlite3;
import cookieplus;
backend default none;

sub vcl_init {
sqlite3.open("sqlite.db", "|;");
}

sub vcl_fini {
sqlite3.close();

}

sub vcl _recv {
cookieplus.keep("id");
cookieplus.write();
if(cookieplus.get("id") ~ "~[0-9]+$") {
set req.http.userid = cookieplus.get("id");
set req.http.username = sqlite3.exec("SELECT “name’ FROM us-

ers’
WHERE rowid=" + sqlite3.escape(req.http.userid));
}
if(!req.http.username || req.http.username == "") {
set req.http.username = "guest";
}
return(synth(200, "Welcome " + req.http.username));
}
_ J

This example will fetch the user’s id from the id cookie and fetch the corresponding
row from the database. When there’s a match, the username is returned. Otherwise
guest is returned as a value.

5.3.20 vmod_stale

vmod_stale is also one of the new VAIODS covered in chapter 2. It is a way to revive
stale objects that are about to expire.

Varnish has cascading timers to keep track of an object’s lifetime:

¢ Objects whose 77L hasn’ expired are considered fresh.

e When the T7L of an object has expired, but there is still grace left, the object is
considered stale.

* When even the grace has expired, an object can be kept around if there is keep time

left.

294

CHAPTER 5: VARNISH MODULES (VMODS)

Aslong as the object is still around vmod_stale can resetits 77L, grace, and keep value.

Here’s the example that we used in chapter 2:

vcl 4.1;
import stale;

sub stale_if_error {
if (beresp.status >= 500 && stale.exists()) {
stale.revive(20m, 1h);
stale.deliver();
return (abandon);

}

sub vcl backend_response {
set beresp.keep = 1d;
call stale_if_error;

}

sub vcl_backend_error {
call stale_if error;

}
- J

By setting beresp.keep to one day, we make sure the object is kept around long
enough, even though its 77TL and grace have expired. This allows std.revive() to
revive the object and make it fresh again.

In this case, the object is fresh for another 20 minutes, and after that an hour of grace
is added so Varnish can perform a background fetch for revalidation while the stale is
served.

This revival example only happens when the origin server is responding with HTTP
500-style errors. This is basically a stale-if-error implementation.

5.3.21 vmod_synthbackend

By now, you should be quite familiar with synthetic output. But if you return synth() in
VCL, the response happens oz the fly, and is not cached.

As explained in chapter 2, vmod_synthbackend will allow you to define a synthetic back-
end that caches the synthetic output.

Here’s a code example that illustrates how this can be done:

295

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;

import synthbackend;
backend default none;
sub vcl_backend_fetch {

set bereq.backend = synthbackend.from_string("URL:
"+ now);

+ bereq.url

n

+ ", time:

}
- J
In this case, the synthetic outpur will be stored in cache for the duration of the default_
ttl runtime parameter. By default this is two minutes.

5.3.22 vmod_ils

In the previous section about VA1ODs that are shipped with Varnish Cache, we talked
about vmod_proxy that retrieves TLS information from a PROXY protocol connection.

Varnish Enterprise offers native TLS support, and when activated, no PROXY connec-
tion is needed. In order to support the same functionality as vmod_proxy for local TLS
connections, we developed vmod_t1s.

The APl is identical; it’s just a different module. Here’s the same example as for vmod_
proxy, but using vmod_t1s:

~N
vcl 4.1;
import tls;
sub vcl_deliver {
set resp.http.alpn = tls.alpn();
set resp.http.authority = tls.authority();
set resp.http.ssl = tls.is_ssl();
set resp.http.ssl-version = tls.ssl version();
set resp.http.ssl-cipher = tls.ssl _cipher();
}
_ _J

And this is some example output, containing the custom headers:

alpn: h2

authority: example.com

ssl: true

ssl-version: TLSv1.3

ssl-cipher: TLS_AES_256_GCM_SHA384

296

CHAPTER 5: VARNISH MODULES (VMODS)

5.3.23 vmod_urlplus

vmod_urlplus was extensively covered in the New features in Varnish Enterprise 6 sec-
tion of chapter 2.

We’ll just throw in one of the examples to refresh your memory:

~
vcl 4.1;
import urlplus;
sub vcl_recv
{
//Remove all Google Analytics
urlplus.query_delete_regex("utm_");
//Sort query string and write URL out to req.url
urlplus.write();
}
_ J

This example will remove all guery string parameters that match the utm_ pattern from
the URL. This makes a lot of sense, because these parameters add no value from a cach-
ing point of view. On the contrary, they cause too much variation to be created and
have an detrimental impact on the hit rate.

5.3.24 vmod_ xbody

vmod_xbody is a module that provides access to request and response bodies. It is also
capable of modifying the request and response bodies.

Imagine having the following static content on your website:

[Hello Thijs]

Using vmod_xbody, and some other VA ODs, you can replace the name with any name

you want.

The following example uses the KV Store to store various names, identified by an ID.
The name that is displayed depends on the value of the id cookie. The corresponding
name is retrieved from the KVStore:

297

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;

import xbody;
import kvstore;
import cookieplus;

sub vcl_init {
new people = kvstore.init();
people.set("1","Thijs");
people.set("2","Lex");
people.set("3","Lize");
people.set("4","Lia");

}

sub vcl_backend_response {
xbody.regsub("Thijs", people.get(cookieplus.
get("id", "0")’ Ilguestll));
}
_ J

So if the cookie header is Cookie: id=2, the output will be as follows:

[Hello Lex]

If the cookie header is Cookie: id=4, the output will be:

[Hello Lia]

If the id cookie is not set, or has an unknown value, the output will be:

[Hello guest]

5.3.25 vmod_ykey

vmod_ykey is the Varnish Enterprise version of vmod_xkey. The naming is a bit funny,

we know.

vmod_xkey is an open source module that adds secondary keys to objects. This allows
us to purge objects from cache based on tags rather than the URL. Unfortunately
vmod_xkey proved to be incompatible with A1SE, so vmod_ykey was built to tackle
this issue.

As this VMOD was already featured in chapter 2, we’ll just show you the example:

298

CHAPTER 5: VARNISH MODULES (VMODS)

~
vcl 4.1;
import ykey;
acl purgers { "127.0.0.1"; }
sub vcl_recv {
if (req.method == "PURGE") {
if (client.ip !~ purgers) {
return (synth(403, "Forbidden"));
}
set req.http.n-gone = ykey.purge_header(req.http.Ykey-Purge,
Sep=lI II);
return (synth(200, "Invalidated "+req.http.n-gone+" ob-
jects"));
}
}
sub vcl_backend_response {
ykey.add_header(beresp.http.Ykey);
if (bereq.url ~ "~/content/image/") {
ykey.add_key("image");
}
}
_ _J

An application can add tags by stating them in the Ykey response header, which this
VCL script can parse. Content for which the URL matches the /content/image/ pat-
tern will automatically have an image tag assigned to it.

By invalidating a tag, all tagged objects are removed from cache at once.

You just need to send the following HTTP request to Varnish it you want to remove all
objects that are tagged with the image tag:

~
PURGE / HTTP/1.1
Ykey-Purge: image
The next chapter is all about cache invalidation. We’ll talk about vmod_ykey in a
lot more detail there.
g J

299

CHAPTER 5: VARNISH MODULES (VMODS)

54 Where can you find other VMODs?

The Varnish Cache core contributors and the Varnish Software development team aren’t
the only ones building VA1ODs.

The Varnish Cache website has a section dedicated to third-party VMOD:s: http://var-

nish-cache.org/vmods/.

You can also search on GztHub for repositories that start with 1ibvmod-. Just have a
look at the following results: https://github.com/search?q=libvmod-&type=reposito-

ries.

There are some really interesting ones there, but before you install one, make sure it is
compatible with Varnish 6.

54.1 Third-party VMODs

There are a lot of good third-party VM ODs out there, but there’s also some overlap
with functionality that can be found in Varnish Enterprise VAODs.

Here are two third-party VAODS 1 really like:
* vmod_basicauth

* vmod_redis

vmod_basicauth

The vmod_basicauth module reads a typical Apache .htpasswd file and tries to match
it to the incoming Authorization header.

Here’s an example of this VAOD:

vcl 4.1;
import basicauth;

sub vcl_recv {
if (!basicauth.match("/var/www/.htpasswd",req.http.Authoriza-
tion)) {
return (synth(401, "Restricted"));

}

300

http://varnish-cache.org/vmods/
http://varnish-cache.org/vmods/
https://github.com/search?q=libvmod-&type=repositories
https://github.com/search?q=libvmod-&type=repositories

CHAPTER 5: VARNISH MODULES (VMODS)

sub vcl_synth {
if (resp.status == 401) {
set resp.http.WWW-Authenticate = {"Basic realm="Restricted
area""};
}
}
_ J

If the username and password encoded in the Authorization header don’t match

an entry in .htpasswd, an HTTP 401 status code is triggered, which will resultin a
WWW-Authenticate: Basic realm="Restricted area" response header beingsyn-
thetically returned.

This WWW-Authenticate header will trigger a server-side login popup.

For more information about this ¥AMOD, please visit http://man.gnu.org.ua/man-
page/?3+vmod-basicauth.

vmod_redis

vmod_redis provides a c/ient API to control a Redis server. Redis is an advanced distrib-
uted key-value store and has become somewhat of an industry standard.

Here’s just a very simple example where we set up a connection and fetch the value of
the foo key:

~N
vcl 4.1;
import redis;
sub vcl_init {
new db = redis.db(
location="192.168.1.100:6379",
connection_timeout=500,
shared_connections=false,
max_connections=2);
¥
sub vcl_deliver {
db.command("GET");
db.push("foo");
db.execute();
set resp.http.X-Foo = db.get_string_reply();
¥
G J

But the API for this VMOD is extensive and supports some of the following features:

301

http://man.gnu.org.ua/manpage/?3+vmod-basicauth
http://man.gnu.org.ua/manpage/?3+vmod-basicauth

CHAPTER 5: VARNISH MODULES (VMODS)

* Working with dustered and replicated setups
* Running LUA scripts

* Evaluating various return types

* Request pipelining

* Leveraging the various Redis data types

For more information about this VM OD, please visit https://github.com/carlosabalde/
libvmod-redis.

54.2 The Varnish Software VMOD collection

Varnish Software also has a GitHub repository with some open source VA1ODs. You
can find the code on https://github.com/varnish/varnish-modules.

These modules are also packaged with Varnish Enterprise. Here is the list of VA{ODs
that are part of this collection:

* vmod_bodyaccess

* vmod_header

* vmod_saintmode

e vmod_tcp

e vmod_var

* vmod_vsthrottle

* vmod_xkey

Let’s do a walkthrough, and look at some VCL examples for a couple of these VA1OD:s.

vmod__bodyaccess

vmod_bodyaccess is a very limited version of vmod_xbody. Whereas vmod_xbody has
read and write access to request and response bodies, vmod_bodyaccess only has read
access to the request body.

Here’s a list of features that this VAOD provides:

* Search for regular expression pattern in the request body
* Hash the request body

* Get the request body length

* Log the request body to VSL

302

https://github.com/carlosabalde/libvmod-redis
https://github.com/carlosabalde/libvmod-redis
https://github.com/varnish/varnish-modules

CHAPTER 5: VARNISH MODULES (VMODS)

Let’s have a look at a VCL example where we’ll use vmod_bodyaccess in a scenario
where we’ll cache POST requests:

vcl 4.1;

import std;
import bodyaccess;

sub vcl_recv {
set req.http.x-method = req.method;
if (req.method == "POST") {
if (std.cache_req_body(110KB)) {
if (bodyaccess.rematch_req_body("id=[0-9]+")) {
return (hash);

}
return (synth(422, "Missing ID");

}
return (synth(413));

}

sub vcl_hash {
bodyaccess.hash_req_body();

}

sub vcl_backend_fetch {
set bereq.method = bereq.http.x-method;

}
-

None of this works unless std.cache_req_body() is called. This starts caching the
request body. bodyaccess.rematch_req_body("id=[0-9]+") is used to figure out
whether or not the id=[0-9]+ pattern is part of the request body. When the pattern
matches, we’ll decide to cache. If the payload is too large or the ID is missing an error
will be generated instead.

bodyaccess.hash_req_body() is used in vcl_hash to create a cache variation for
each request body value.

This is the HTTP request you can send to trigger this behavior:

POST / HTTP/1.1

Host: localhost

Content-Length: 4

Content-Type: application/x-www-form-urlencoded

id=1

303

CHAPTER 5: VARNISH MODULES (VMODS)

vmod__header

vmod_header allows you to get headers, append values to headers, and remove values
from headers. It’s a very limited VA4OD in terms of functionality, and pales in compari-
son to vmod_headerplus.

Here’s a quick example, just for the sake of it:

vcl 4.1;

sub vcl_backend_response {
header.remove(beresp.http.foo, "one=1");

}

Imagine the following HT TP response headers:

HTTP/1.1 200 OK
Foo: one=1
Foo: one=2

The response contains two instances of the Foo header, each with different values. The
example above will ensure that the first occurrence of the header that matches the pat-
tern is removed.

Foo: one=1 matches that pattern and is removed. Only Foo: one=2 remains.

vmod_tep

The TCP VMOD allows you to control certain aspects of the underlying 7CP connec-
tion that was established.

The first example will enable rate limiting for incoming connections:

~N
vcl 4.1;
import tcp;
sub vcl_recv
{
tcp.set_socket_pace(1024);
}
- J

This example will pace the throughput at a rate of 1024 KB/s.

In the second example the BBR congestion algorithm is used for TCP connections:

304

CHAPTER 5: VARNISH MODULES (VMODS)

~
vcl 4.1;
import tcp;
sub vcl_recv {
tcp.congestion_algorithm("bbr");
}
_ J

This requires that the BBR congestion controller is both available and loaded.

vmod_var

VCL clearly lacks the concept of variables. Although headers are commonly used to
transport values, the values are usually cast to strings, and one needs to have the disci-
pline to strip off these headers before delivering them to the backend or the client.

vmod_var offers variable support for various data types.
The supported data types are:

* strings

* integers

e real numbers

* durations

e IPaddresses

* backends

Here’s the VCL example to illustrate some of the VA1OD’s functions:

vcl 4.1;

import var;
import std;

sub vcl_recv {
var.set_ip("forwarded",std.ip(req.http.X-Forward-

ed-For,"0.0.0.0"));
var.set_real("start",std.time2real(now,0.0));

}

sub vcl_deliver {
set resp.http.forwarded-ip = var.get_ip("forwarded");
set resp.http.start = std.real2time(var.get_real("start"),now);

305

CHAPTER 5: VARNISH MODULES (VMODS)

This example will use the std.ip() function from vmod_std to turn the X-Forward-
ed-For header into a valid IP type. The value is stored using var.set_ip().

The current time is also stored as a real type, using std.time2real() to convert the
type.

In a later stage, we can retrieve the information using the corresponding getter functions.

vmod_vsthrottle

We’ve already seen rate limiting when we talked about vmod_tcp. But rate limiting also

happens in this VA1OD.

In vmod_vsthrottle, we're restricting the number of requests a client can send in a

given timeframe.

Take for example, the VCL code below:

~
vcl 4.1;
import vsthrottle;
sub vcl_recv {
if (vsthrottle.is_denied(client.identity, 15, 10s, 30s)) {
return (synth(429, "Too Many Requests. You can retry in "
+ vsthrottle.blocked(client.identity, 15, 10s, 30s)
+ " seconds."));
}
}
_ J

This code will only allow clients to perform 15 requests in a 10 second timeframe. If that
rate is exceeded, the user gets blocked for 30 seconds.

The vsthrottle.is_denied() function is responsible for that. The vsthrottle.
blocked() is also quite helpful, as it returns the number of seconds the user is still

blocked.

This allows us to set expectations. This is the error messages that users get when they
are blocked due to rate limiting:

[Too Many Requests. You can retry in 26.873 seconds.]

In this case, the user knows they should wait another 26 seconds before attempting to
perform another request.

306

CHAPTER 5: VARNISH MODULES (VMODS)

vmod__xkey

We already mentioned that vmod_xkey is the predecessor of vmod_ykey, basically
the open source version. It doesn’t work when using MSE, but if you're using Varnish
Cache, that is not a concern.

The APl is also more limited, as you are forced to tag objects using the xkey response
header, and you cannot add extra tags in VCL.

Here’s the VCL example to show how you can remove objects from cache using vmod_
xkey:

~
vcl 4.1;
import xkey;
sub vcl_recv {
if (req.method == "PURGE" && req.http.x-xkey-purge) {
if (xkey.purge(req.http.x-xkey-purge) != 0) {
return(synth(200, "Purged"));
}
return(synth(404, "Key not found"));
}
}
_ _J

If you're performing a PURGE call, you can use the x-xkey-purge request header to
specify the keys you want to use for purging. The keys are space-delimited.

Imagine we want to remove all the objects that are tagged with the js and css tags.
You’d need to send the following HTTP request:

PURGE / HTTP/1.1
x-xkey-purge: js css

The response would be HTTP/1.1 200 Purged if the keys were found or HTTP/1.1 404
Key not found when there are no corresponding keys.

Please note that you usually want to limit such functionality behind ACL. In the
next chapter, we’ll talk about cache invalidation, and we’ll cover the vmod_xkey in
more detail as well.

307

CHAPTER 5: VARNISH MODULES (VMODS)

54.3 How to install these VYMODs

We always advise you to install Varnish Cache using our official packages. These are

available on https://packagecloud.io/varnishcache. However, we don’t provide packages
for the VMOD collection. This means you’ll have to compile them from source.

Compiling from source

You can get the source code from https://github.com/varnish/varnish-modules. But for
Varnish Cache 6.0 and Varnish Cache 6.0 LTS, you need to download the code from the
right branch:

* For Varnish Cache 6.0, the source can be downloaded from https://github.com/
varnish/varnish-modules/archive/6.0.zip.

* For Varnish Cache 6.0 LTS, the source can be downloaded from https://github.
com/varnish/varnish-modules/archive/6.0-Its.zip.

There are some build dependencies that need to be installed. On a Debian or Ubuntu
systems, you can install them using the following command:

apt-get install -y varnish-dev autoconf automake gcc libtool make
python3-docutils

On Red Hat, Fedora, and CentOS systems, you can use the following command to in-
stall the dependencies:

yum install -y varnish-devel autoconf automake gcc libtool make py-
thon3-docutils

Once all build dependencies are in place, you can compile the VA1ODs by running the
following commands in the directory where the VA1OD source files were extracted:

./bootstrap
./configure
make

make install

After having run make install, the corresponding .so files for these VA4ODs can be
found in the path that was defined by the vmod_dir runtime parameter in Varnish.

308

https://packagecloud.io/varnishcache
https://github.com/varnish/varnish-modules0
https://github.com/varnish/varnish-modules/archive/6.0.zip
https://github.com/varnish/varnish-modules/archive/6.0.zip
https://github.com/varnish/varnish-modules/archive/6.0-lts.zip
https://github.com/varnish/varnish-modules/archive/6.0-lts.zip

CHAPTER 5: VARNISH MODULES (VMODS)

Debian and Ubuntu distro packages

The Debian and Ubuntu distributions also offer Varnish Cache via their own packages.
Some versions still provide the varnish-modules package, which is Debian and Ubun-
tu’s version of the VAMOD collection.

Installing these A10DS is done using this very simple command:

[# apt-get install varnish-modules]

The following version of Debian and Ubuntu offer the varnish-modules package for
Varnish Cache 6:

e Ubuntu 20.10 (Groovy) ofters Varnish Cache 6.4.0.
* Debian 10 (Buster) ofters Varnish Cache 6.1.1.
* Debian 11 (Bullseye) ofters Varnish Cache 6.4.0.

Although we advise installing Varnish Cache 6.0 LTS from our official packages, there’s
no denying that it’s easy to just install Varnish using a simple apt-get install var-
nish command.

309

CHAPTER 5: VARNISH MODULES (VMODS)

3.5 Writing your own VMODs

Anything that can be written in C can become a VAOD. In this chapter we’ve gone
through a long list of ¥AODs: Some of them are managed by the Varnish Cache team, a
lot of them are managed by Varnish Software, and then there are VA1ODs that are man-
aged by individual contributors.

A lot of common scenarios are already covered by a VA1OD, but there’s always a chance
that you have a use case where VCL cannot solve the issue, and there isn’t a matching

VMOD either.

In that case, you can write one yourself. That’s what we’re going to do in this section.
Even if you're not planning to write your own VAMOD, it s still interesting to learn how
VMODs are composed.

5.5.1 vmod_example

To get started with VA4OD development, you should have a look at https://github.
com/varnishcache/libvmod-example. This GitHub repository hosts the code and build
scripts for vmod_example.

vmod_example is a stripped down VA OD that serves as the boilerplate. It is the ideal
starting point for novice VMOD developers.

This is what the directory structure of this repo looks like:

()
| -- Makefile.am
| -- autogen.sh
|-- configure.ac
|-- ma

| °-- ax_pthread.m4

|-- rename-vmod-script

T-- src

| -- Makefile.am

|-- tests

| ~-- test@l.vtc

| -- vmod_example.c

" -- vmod_example.vcc

310

https://github.com/varnishcache/libvmod-example
https://github.com/varnishcache/libvmod-example

CHAPTER 5: VARNISH MODULES (VMODS)

The core of the code is the src folder where the source files are located:

* vmod_example.c contains the source code of this VALOD.

¢ vmod_example.vcc contains the interface between the code and the VCL compiler

(VCC).

A useful script is rename-vmod-script: you’re not going to name your custom
VMOD vmod_example. This script is there to rename the VAOD and replace all the
occurrences of example with the actual name of the new VALOD.

So, if you wanted to name your VM OD vmod_os, you’d do the following:

[./rename-vmod-script os]

This means vmod_example is renamed to vmod_os.

The VMOD we're going to develop will display operating system information,
hence the name vmod_os.

Files like Makefile.am, configure.ac, and the m4 directory are there to facilitate the
build process. They are used by autoconf, automake, and 1ibtool, and are triggered
by the autogen.sh shell script.

5.5.2 Turning vmod_example into vmod_os

Now that we’ve been introduced to vmod_example, it’s time to customize the code,
and turn it into your own VA1OD.

Dependencies

The first thing we need to do is make sure all the dependencies are in place. Just like in
the previous part about the Varnish Software VAMOD collection, we need the following
dependencies on Debian and Ubuntu systems:

apt-get install -y varnish-dev autoconf automake gcc libtool make \
python3-docutils git

On Red Hat, Fedora, and CentOS systems, you can use the following command to in-
stall the dependencies:

31

CHAPTER 5: VARNISH MODULES (VMODS)

()

yum install -y varnish-devel autoconf automake gcc libtool make \
python3-docutils git

Please note that git was also added as a dependency. It is used to retrieve and

check out a copy of the repository on your machine.

g J

Downloading these tools allows the autogen.sh to generate the software configura-
tion, and eventually generate the Makefile.

Getting the code

The best way to get the code is by cloning the Git repository, as demonstrated below:

[git clone https://github.com/varnishcache/libvmod-example.git]

This creates a 1ibvmod-example folder that includes all the code from the repo.

But as explained, we don’t really care about vmod_example; we want to develop vmod_
os. That requires some renaming:

mv libvmod-example/ libvmod-os/
cd libvmod-os/
./rename-vmod-script os

These commands will rename the local folder and will make sure all references to ex-
ample are replaced with os.

5.5.3 Looking af the vmod_os.c

Enough with the directory structure and the build scripts: a VA OD is all about custom
code. Let’s take a look at the custom code then.

This is the code we’re going to put inside src/vmod_os.c:

312

CHAPTER 5: VARNISH MODULES (VMODS)

#include "config.h"
#include "cache/cache.h"
#include <sys/utsname.h>
#include "vcc_os_if.h"

VCL_STRING
vmod_uname (VRT_CTX, VCL_BOOL html)
{
struct utsname uname_data;
char *uname_str;

char *br = ;
CHECK_OBJ_NOTNULL(ctx, VRT_CTX_MAGIC);

if (uname(&uname_data)) {
VRT_fail(ctx, "uname() failed");
return (NULL);

}

if (html) {
br = "
";

}

uname_str = WS_Printf(ctx->ws,
"0S: %s%s\n"
"Release: %s%s\n"
"Version: %s%s\n"
"Machine: %s%s\n"
"Host: %s%s\n",
uname_data.sysname, br, uname_data.release, br,
uname_data.version, br, uname_data.machine, br,
uname_data.nodename, br);

if (luname_str) {
VRT_fail(ctx, "uname() out of workspace");
return (NULL);

}

return (uname_str);

}

&

J

After having included the header files of our dependencies, we can define the function

we want to expose to V'CL: uname.

Conventionally, the C-function is then named vmod_uname(). When we look at the
function interface, we notice two arguments:

313

CHAPTER 5: VARNISH MODULES (VMODS)

* VRT_CTX, which is a macro that gets replaced by struct vrt_ctx *ctxatcom-
pile time

* VCL_BOOL html, which is an actual argument that will be used in VCL

VRT_CTX refers to the vrt_ctx structure that holds the context of the VALOD.

VCL_BOOL indicates that the input we receive from VCL through this argument will be
handled as a boolean with a true or false value. The name of the argument is htm1.

By enabling this html flag, we return the output in HTML format. Otherwise, we just
return plain text data.

Within the function, we see the following variable initialization:

struct utsname uname_data;
char *uname_str;

char *br = 5

* struct utsname uname_data is used to initialize the data structure that will
hold the uname data that will be retrieved from the operating system.

e char *uname_str isastring, a char pointer to be precise, that will hold the output
of the utsname structure.

e char *br = initializes our /ine break variable as an empty string.

CHECK_OBJ_NOTNULL(ctx, VRT_CTX_MAGIC) ensures that the context is correctly set
before running the uname() function. It is part of the consistency self-checks that are
present all throughout the core Varnish code, and it helps protect against many nasty

forms of bugs.

The following part of the source code calls the uname() function and evaluates the
output:

if (uname(&uname_data)) {
VRT_fail(ctx, "uname() failed");
return (NULL);

uname() will store its data in a utsname structure. We named this structure un-
ame_data and passed it by reference. The output of the function reflects its ex:z code:
anything other than zero is an error, according to the documentation for the function,
which can be viewed by running the man 2 uname command.

314

CHAPTER 5: VARNISH MODULES (VMODS)

If an error does occur, a VRT_fail() is executed, which will record this call as a failure
in Varnish. As a consequence the whole request will fail, and Varnish will return an
HTTP 503 error to the client that made the request. Varnish will continue to chug
along as if nothing happened. It is not a serious problem, just an indication that the
VCL execution failed.

The next step is defining the line break format. If the html variable is true, the br vari-
able will contain
, which is the HTML equivalent of a line break:

if (html) {
br = "
";

}

If html is false, br is just an empty string, which is fine for plain text.

Eventually, the output from the uname_data structure is extracted, and turned into a
string:

()

uname_str = WS_Printf(ctx->ws,
"0S: %s%s\n"
"Release: %s%s\n"
"Version: %s%s\n"
"Machine: %s%s\n"
"Host: %s%s\n",
uname_data.sysname, br, uname_data.release, br,
uname_data.version, br, uname_data.machine, br,
uname_data.nodename, br);

& J

Using the WS_Printf() function, typical printf() logic is executed, but workspace
memory is allocated automatically. The uname_str variable where the results are stored
can return a string that looks like this:

0S: Linux

Release: 4.19.76-1linuxkit

Version: #1 SMP Tue May 26 11:42:35 UTC 2020
Machine: x86_64

Host: 19ee8d684eea

There is of course no guarantee that the newly formatted string will fit on the work-
space, which is quite small on the client side. An extra check is added to the source code
to deal with that:

315

CHAPTER 5: VARNISH MODULES (VMODS)

if (luname_str) {
VRT_fail(ctx, "uname() out of workspace");
return (NULL);

If the uname_str string is not set, it probably means we ran out of workspace memory.
We will once again call VRT_fail, as it is an exceptional condition. It would have been

possible to just return NULL without failing the whole request, but we like things being
straight and narrow, reducing the complexity our users have to deal with.

So, finally, when all is good and all checks have passed, we can successfully return the
uname_string:

[return (uname_str);]

This will hand over the string value to the V'CL code that called os.uname() in the first
place.

Looking at the vmod__os.vec

Another crucial file in the src folder is vmod_os.vcc. This file contains the API that is
exposed to the VCL compiler and is called by the vmodtool.py script.

Here’s the vmod_os.vcc code:

$Module os 3 0S VMOD h
DESCRIPTION
0S support
$Function STRING uname(BOOL html = @)
Return the system uname
_ J

This file defines the name of the module through the $Module statement, but it also
lists the function API through the $Function statement.

The other more verbose information in this file is used to generate the man pages for
this module.

What we can determine from this file is pretty straightforward:

316

CHAPTER 5: VARNISH MODULES (VMODS)

* Thereisa VMOD called os.

e There’s a function called uname().

¢ Theos.uname() function returns a string.

¢ Theos.uname() function takes one argument, which is a boolean called htm1.

¢ The default value of the html argument is fa/se.

Building the VMOD

The procedure that is used to build vmod_os is quite similar to the procedure we used
to build the Varnish Software VAMOD collection. Only the first shell script to initialize
the software configuration is different.

Be sure to install build dependencies like autoconf, automake, make, gcc,
libtool, and rst2man before proceeding.

Here’s what you have to run:

./autogen.sh
./configure
make

make install

e ./autogen.sh will prepare the software configuration file using tools like auto-
conf and automake.

e ./configure is a shell script that is generated in the previous step and that prepares
the build configuration. It also generates the Makefile.

* make will actually compile the source code using the gcc compiler.

* make install will use 1ibtool to bundle the compiled files into an .so file and
will put the library file in the right directory.

Testing the VMOD

Once the VMOD is built, we can test whether it behaves as we would expect. In the
src/tests folder, you can edit test@1.vtc and put in the following content:

317

CHAPTER 5: VARNISH MODULES (VMODS)

varnishtest "Test os vmod"

server sl {
} -start

varnish vl -vcl+backend {
import ${vmod_os};

sub vcl_recv {
return (synth(200, "UNAME"));
}

sub vcl_synth {
synthetic(os.uname());
return (deliver);

}
} -start

client c1 {

txreq

rxresp

expect resp.body ~ "0S:"
} -run

& J

This vtc file contains the syntax that is required to perform functional tests in Varnish.
This test case has three components:

* Aserver thatacts as the origin
e Avarnish that processed the V'CL
* Aclient thatsends requests to varnish

In this case, the server does absolutely nothing, because varnish will return synthetic
output based on the VMOD that it imports. The ${vmo_os} statement will dynamical-
ly parse in the location of the built ¥A4OD. The syntax is composed such that it can be
executed before make install is called.

You can run the tests by calling make check. This can be done right after make and
before make install if you want.

This is the output that you get:

318

CHAPTER 5: VARNISH MODULES (VMODS)

PASS: tests/test@l.vtc

Allis good, and the test has passed. The assertion from the test is that the output from
the os.uname() call will contain the 0S: string.

test@l.vtc can also be called via varnishtest, but it requires ${vmod_os} to be re-
placed with os.

The following command can then be run:

[varnishtest src/tests/test@1l.vtc]

And the output will be the following:

[# top TEST test@l.vtc passed (5.221)]

Using the VYMOD

Once the build is completed, and make install is executed, 1ibvmod_os.so will be
stored in the path that corresponds to the vmod_path runtime parameter.

Then you can safely import the A1OD into your VCL file using import os;. Here’s a
VCL file that uses are custom VMOD:

319

CHAPTER 5: VARNISH MODULES (VMODS)

vcl 4.1;
import os;
backend default none;

sub vcl_recv

{
if (req.url == "/uname") {
return (synth(200, "UNAME"));
}
}
sub vcl_synth
{
if (resp.reason == "UNAME") {
if (req.http.User-Agent ~ "curl") {
synthetic(os.uname());
} else {
set resp.http.Content-Type = "text/html";
synthetic(os.uname(html = true));
}
return (deliver);
}
}
_

The output when /uname is called, could be the following:

-

0S: Linux
Release: 4.19.76-1inuxkit
Version: #1 SMP Tue May 26 11:42:35 UTC 2020
Machine: x86_64
Host: 19ee8d684eea
_

-
This VCL example will use plain text output when the curl User-Agent is used.

For any other browser, a
 line break will be added to each line, and the text/
html Content-Type header is added.

&

320

CHAPTER 5: VARNISH MODULES (VMODS)

3.6 Summary

VCL is a powerful and flexible cache configuration language, but oxz of the box it only
offers you the tools to handle reguests, responses, objects, session information, and VCL
state transitions.

For all other things, you rely on VAIODs. Your Varnish installation comes with a set of
in-tree VAMOD:s that were purposely kept outside of the core code.

All the cool integrations are done using VA ODs; everything related to decision-making
on the edge uses VMODs.

Now you certainly realize that there is a VALOD ecosystem that has various types of
stakeholders in it: the Varnish Cache team, Varnish Software’s development team, and
even individuals in the community.

Getting access to those modules shouldn’t be a frightening endeavor at all: sometimes
there are distro packages, certain modules are 7z-tree and shipped by default. If you use
Varnish Enterprise, all the enterprise V24ODs and a collection of open source VA ODs
are already installed as part of the product.

And if none of these things apply to you: compiling VA1ODs from source is pretty
straightforward. There will usually be line-by-line instructions on how to build and
install the AOD on your computer.

Hopefully this chapter was an eye opener. But now it’s time to turn the page, and go to
the next chapter. In chapter 6, we’ll cover cache invalidation, which is all about removing
objects from cache. We’ll even use some VA OD:s for that.

321

CHAPTER 6: INVALIDATING THE CACHE

Chapter 6: Invalidating the cache

Welcome to chapter 6. Let’s kick this one off with a very powerful saying:

There’s only one thing worse than not caching enough, and that is caching for too

long.

Allow us to elaborate.

The only detrimental effect of uncacheable content, or content with a low 77L, is a low
hit rate. By now you should appreciate the direct impact of a good hit rate. Although
latency or downtime are potential consequences of a poor hit rate, the alternative could
be much worse.

If you cache for too long, the cached content might no longer represent the actual state
of the origin content. Data inconsistency is the main effect, and in a lot of situations,

that’s really bad.

Imagine the news industry: online newspapers heavily depend on caches to cope with
traffic spikes. But when they have a scoop, the breaking news item should immediately
be visible on their homepage.

But when a cache like Varnish is used, as long as the 77 hasn’t expired, the breaking
news item is nowhere to be found.

The same applies to live video content delivery: the manifest files, which contain ref-
erences to the video files, may change depending on what the camera records. For live
events it is very important to have consistent content.

322

CHAPTER 6: INVALIDATING THE CACHE

It is commonly believed that it’s not worth caching the manifest files because they often
change, but in most cases it is not entirely true: manifest files can be cached for a short
period of time as long as you have a cache invalidation plan to not evict outdated mani-
fest files from the cache.

What’s the solution to this problem? Lowering your 77Ls? No, not really, because it’s
not a dilemma of having to choose between a high hit rate and data consistency.

There is a door number three, which is invalidating cached objects.

Varnish has various mechanisms to mark objects as expired or to forcefully remove
objects from cache. Endpoints and interfaces are offered for external applications to
trigger these invalidations.

When you look at plugins and integrations from popular open source content man-
agement and e-commerce frameworks like Drupal, Word Press, Magento, Joomla and
Prestashop, you’ll see that their main focus is hooking into their content management
logic and integrating endpoints to Varnish’s cache invalidation.

This chapter will focus on these mechanisms to remove objects from the cache. The
main objectives being data consistency and freeing up space in the cache.

323

CHAPTER 6: INVALIDATING THE CACHE

6.1 Purging

The most basic and easy-to-use cache invalidation mechanism in Varnish is without a

doubt purging.

The idea behind purging is that you can perform a return(purge) in vcl_recv, and
Varnish will remove the object. This would free up space in the cache, either in memory
or on disk, after an object lookup.

This means that the hash of the object is used to identify it, but return(purge) would
remove it along with its variants. This isn’t ouz-of-the-box behavior; you won’t find it in
the built-in VCL. You need to write some logic for it.

6.1.1 Purge VCL code

The code you need to perform a purge is very straightforward but does require some
safety measures to be put in place:

~
vcl 4.1,
acl purge {
"localhost";
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405, "Not Allowed"));
}
return (purge);
}
}
_ J

As you can see, the VCL code starts with an ACL definition. This is very important be-
cause you don’t want to expose your purging endpoint to the public. People could get
very creative with this, and it could potentially tank your hit rate.

There’s an if-statement in place that checks the ACL and returns an HTTP 405 Method
Not Allowed error for unauthorized traffic.

The fact that we choose an HTTP 405 status means we’re not using a regular HT'TP
GET method. Instead we’re using a custom PURGE method.

324

CHAPTER 6: INVALIDATING THE CACHE

Please note that the request method used for purging could be any of the official HTTP
request methods or it could be, as in this case, a custom method.

If the purger calls the URL using a PURGE method, and the ACL allows the client, we
can do a return(purge);

Be sure to perform some kind of return() call, otherwise the buzlt-in VCL will
kick in as a fallback, and will perform a return(pipe) because it doesn’t recog-
nize the request method.

6.1.2 Triggering a purge

PURGE / HTTP/1.1
Host: example.com

The response you get might look like this:

()
HTTP/1.1 200 Purged

Date: Tue, 20 Oct 2020 13:30:12 GMT
Server: Varnish

X-Varnish: 32770

Content-Type: text/html; charset=utf-8
Retry-After: 5

Content-Length: 240

Accept-Ranges: bytes

Connection: keep-alive

<IDOCTYPE html>
<html>
<head>
<title>200 Purged</title>
</head>
<body>
<h1>Error 200 Purged</h1l>
<p>Purged</p>
<h3>Guru Meditation:</h3>
<p>XID: 32770</p>
<hr>
<p>Varnish cache server</p>
</body>
</html
_ J

325

CHAPTER 6: INVALIDATING THE CACHE

As you can see, return(purge) uses the vcl_synth subroutine to return a synthetic
HTTP response.

But since return(purge) does a cache lookup first, it uses the host header and URL to
identify the object. This means purging happens on a per-URL and a per-host basis.
Note that when purging the same exact parameters used to define the hash key must be

reported by the purge command. The standard parameters are the hostname and the
URIL

If you want to purge the /contact page, you need call the right URL in your purge
request:

PURGE /contact HTTP/1.1
Host: example.com

If your Varnish setup allows cached content for the foo.com hostname, the appropriate
Host header needs to be added to the purge call:

~
PURGE /contact HTTP/1.1
Host: foo.com

- J

4)
In case you wonder: yes, purges can also happen over HTTP/2 if the feature was
enabled via the -p feature=+http2 runtime parameter.

- J

6.1.3 vmod_purge

There’s also a vmod_purge that is shipped with Varnish 6 that ofters slightly more fea-
tures.

The VMOD ofters a purge.hard() and a purge.soft(). The hard purge will immedi-
ately expire the object, whereas the sof# purge will re-arm the object with custom settings
for TTL, grace, and keep values.

Hard purge

Here’s an example where purge.hard() is used:

326

CHAPTER 6: INVALIDATING THE CACHE

~
vcl 4.1;
import purge;
acl purge_acl {
"localhost";
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "PURGE") {
if (client.ip !~ purge_acl) {
return (synth(4e5));
}
return (hash);
}
}
sub my_purge {
set req.http.purged = purge.hard();
if (req.http.purged == "0") {
return (synth(404));
}
else {
return (synth(200, req.http.purged + " items purged."));
}
}
sub vcl _hit {
if (req.method == "PURGE") {
call my_purge;
}
}
sub vcl miss {
if (req.method == "PURGE") {
call my_purge;
}
}
g J

Because we’re not performing a return(purge), we actually rely on checks in vcl_hit
and vcl_miss. The extra functionality we’re getting is knowing whether or not the
purge call matched any objects.

If no objects were matched, an HTTP 404 Not Found status code is returned. Other-
wise the number of matched objects is added to the output.

327

CHAPTER 6: INVALIDATING THE CACHE

Soft purge
A soft purge will re-arm the object with new T7L, grace, and keep values.

The reality is that purge.hard() does this too, as well as return(purge). The only
difference is that regular purges and hard purges set the TTL to zero, whereas soft purges
give you the opportunity to customize those values.

Purging, regardless of the type, will make sure an object is expired, either immediately,
or if using soft purge, after the set TTL. Once expired, the expiry thread will eventually
remove the object from the cache.

If you call purge.soft(@s, @s, 0s),you’ll cause the same effect as purge.hard() or
return(purge).

The benefit is the flexibility you get, which is illustrated in the example below:

vcl 4.1;

import purge;
import std;

acl purge_acl {
"localhost";
"192.168.55.0"/24;

}

sub vcl_recv {
if (req.method == "PURGE") {
if (client.ip !~ purge_acl) {
return (synth(4e5));
¥

return (hash);

sub my_purge {
set req.http.purged = purge.soft(std.duration(req.http.ttl,es),
std.duration(req.http.grace,0s),
std.duration(req.http.keep,0s));

if (req.http.purged == "0") {
return (synth(404));
)
else {
return (synth(200, req.http.purged + " items purged."));
}

328

CHAPTER 6: INVALIDATING THE CACHE

sub vcl_hit {
if (req.method == "PURGE") {
call my purge;
}
}

sub vcl _miss {
if (req.method == "PURGE") {
call my_ purge;

}
}
g J

This example allows you to set the 77L through a custom tt1 request header. The
same applies to grace and keep via the respective grace and keep request headers.

If we want to soft purge the homepage, but we want to make sure there’s one minute of
grace left, you’ll perform the following HTTP request:

PURGE /contact HTTP/1.1
Host: example.com

Ttl: os

Grace: 60s

We didn’t specify the keep header, but the V'CL uses @ as the fallback value for each of
these headers.

6.1.4 Integrating purge calls in your application

It is easy to perform a purge on the command line using curl or HTTPie, as illustrated
below:

#HTTPie

http PURGE "www.example.com/foo"

curl

curl -X PURGE "www.example.com/foo"

In reality, you’ll probably use the HTTP client library that comes with your application

framework.

For frameworks like WordPress, Drupal, Magento, and many others, there are commu-
nity-maintained plugins available that perform purge calls to Varnish. The VCL to han-
dle the purges is also included.

329

CHAPTER 6: INVALIDATING THE CACHE

Consider this a segue to the next segment, as a lot of applications cannot rely only on
purging because it is too limited. If you change content that affects many URLs, you’ll
have to perform a lot of purge calls, which might not be very efficient.

Alot of these framework plugins will use bans instead, or combine purges and bans. Let’s
go to the next section to talk about these so-called bans and why they are so popular.

330

CHAPTER 6: INVALIDATING THE CACHE

6.2 Banning

Banning is a concept in Varnish that allows expression-based cache invalidation. This
means that you can invalidate multiple objects from the cache without the need for

individual purge calls.

A ban is created by adding a ban expression to the ban list. All objects in the cache will
be evaluated against the expressions in the ban list before being served. If the object is
banned Varnish will mark it as expired and fetch new content from the backend.

6.2.1 Ban expressions

A ban expression consists of fields, operators, and arguments. Expressions can be chained
using the && operator. Only logical AND operations can be performed. Logical OR op-
erations are done by evaluating multiple ban expressions.

Expression format

This is the format of ban expressions:

[<fie1d> <operator> <arg> [&& <field> <oper> <arg> ...]]

The following frelds are supported:

* req.url: the request URL

* reg.http.*:any request header

* obj.status: the cache object status

e obj.http.*: the response headers stored in the cached object

These fields look familiar, and they represent some of the objects and variables in VCL.
The operator can be:

e ==:thefield equalsanarg

e l=:thefieldis notequal to an arg

¢ ~:the field matches a regular expression defined by the arg

¢ !~:thefield doesn’t match a regular expression defined by the arg

331

CHAPTER 6: INVALIDATING THE CACHE

The argument of a ban expression is either a literal string or a regular expression pattern.
Strings are not delimited by double quotes " or the long string format {".."}.

Expression examples

Let’s start with a very basic example that is the ban equivalent of a regular purge:

[r‘eq.ur‘l == / && req.http.host == example.com]

So the request’s URL equals /, and the request’s Host header equals example.com.

In another example we’ll invalidate all objects from the cache that have an HTTP 404
status:

[obj.status == 404]

We can also create an expression that uses response beaders that are stored in the object.

Let’s say we want to invalidate all images at once. We’d use the following expression:

[obj.http.Content—Type ~ ~image/]

This expression looks at the Content-Type response header and invalidates all items
that match the ~image/ regular expression.

For the last example, we’ll match on a URL pattern, instead of an individual URL :

[r‘eq.ur‘l ~~/products(/.+|$) &% req.http.host == example.com]

This pattern will match all objects where the URL starts with /products/... or equals
/products.

6.2.2 Executing a ban from the command line

Now that you know what a ban is and what ban expressions look like, it’s time to explain
how to execute such a ban.

The quickest way to do this is by using the varnishadm program. This program makes
a connection to the CLI interface of varnishd.

332

CHAPTER 6: INVALIDATING THE CACHE

You can choose to call the varnishadm program without any arguments, where you
can enter individual commands. This is what happens in the example below:

$ varnishadm
200

Type ‘help’ for command list.
Type ‘quit’ to close CLI session.

varnish> ban obj.status == 404
200
- J

The ban obj.status == 404 command will issue a ban that aims to invalidate all
objects with an HTTP 404 status code.

Another way you can ban using varnishadm is by adding the ban expression as an ar-
gument. Here’s an example of this:

[var‘nishadm ban obj.status == 404]

Sometimes certain characters in your ban expression might interfere with how your Li-
nux shell interprets commands:

$ varnishadm ban obj.http.Content-Type ~ ~image/
expected conditional (~, !~, == or !=) got "/root"
Command failed with error code 106

In that case, you’re better off using quotes to avoid errors:

[var‘nishadm ban "obj.http.Content-Type ~ ~image/"]

6.2.3 Ban V(L code

Although banning can be done using varnishadm and doesn’t require a VCL imple-
mentation, it would be nice to use the BAN method to invalidate objects via bans. Much
like our purging example.

333

CHAPTER 6: INVALIDATING THE CACHE

We could have exactly the same behavior, but we strip out the purge logic from under
the hood, and replace it with ban logic. VCL provides a ban() function that takes the
ban expression as the argument.

Purge replacement

The following example is an exact copy of the purge VCL example, but instead of per-
forming a return(purge), we return a synthetic response and use the ban() function
to execute the ban:

~
vcl 4.1;
acl banners {
"localhost";
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "BAN") {
if (!client.ip ~ banners) {
return(synth(405));
}
ban("req.url == " + req.url
+ " & req.http.host == " + req.http.host);
return(synth(200, "Ban added"));
}
}
_ _J

We have now created a purge replacement, but didn’t gain any flexibility.

Invalidate URL patterns

A more flexible approach would be to invalidate URL patterns rather than individual
URLs. We could send a custom request header that contains this pattern.

The following example will enforce the custom x-ban-pattern request header to be
set:

vcl 4.1;

acl banners {
"localhost";
"192.168.55.0"/24;

334

CHAPTER 6: INVALIDATING THE CACHE

sub vcl_recv {

if (req.method == "BAN") {
if (!client.ip ~ banners) {
return(synth(405));
}

if(!req.http.x-ban-pattern) {

return(synth(400, "Missing x-ban-pattern header"));
}
ban("req.url ~ " + req.http.x-ban-pattern

+ " && req.http.host == " + req.http.host);
return (synth(200,"Ban added"));

}
- J

This ban would be triggered using the following HTTP request:

BAN / HTTP/1.1
Host: example.com
X-Ban-Pattern: ~/products/[0-9]+

The ban we just issued using H7TP, will result in the following ban expression:

[r‘eq.ur‘l ~ ~/products/[0-9]+ && req.http.host == example.com]

Long story short: we are banning all objects where the URL starts with /products/,
followed by a numeric value. It is an open-ended regular expression, so UR Ls containing
even more data after the numeric value will also match.

Complete flexibility

We can even take it up a notch, and allow even more flexibility, to the extent that the
user is responsible for formulating the complete ban expression.

Here’s such an example:

vcl 4.1;

acl banners {
"localhost";
"192.168.55.0"/24;

335

CHAPTER 6: INVALIDATING THE CACHE

sub vcl _recv {

if (req.method == "BAN") {
if (!client.ip ~ banners) {
return(synth(405));
}

if(!req.http.x-ban-expression) {
return(synth(400, "Missing x-ban-expression header"));
¥
ban(req.http.x-ban-expression);
return (synth(200,"Ban added"));

}
&

This VCL code would then be invoked using the following HT TP request:

BAN / HTTP/1.1
Host: example.com
X-Ban-Expression: obj.status == 404

The advantage here is that you're not restricted to the request context, and you can also
match other fields.

The downside is that you're exposing the complexity of ban expressions to the end user.
Instead, the concept of URL patterns would seem more intuitive for users.

The best of both worlds

Sometimes you don’t want to choose and just want to have it all:
* Regular purges when you want to invalidate an individual URL
* Bans when you want to invalidate a URL pattern

This can be done with a single implementation. Whereas we returned an H77TP 400
status when the x-invalidate-pattern header was not set, we can use purging as a

fallback instead.

Here’s the code:

336

CHAPTER 6: INVALIDATING THE CACHE

~
vcl 4.1;
acl purge {
"localhost";
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}
if(!req.http.x-invalidate-pattern) {
return(purge);
}
ban("req.url ~ " + req.http.x-invalidate-pattern
+ " && req.http.host == " + req.http.host);
return (synth(200,"Ban added"));
}
}
N\ J

So if you just want to purge the /products page, you can issue the following H77TP
request:

PURGE /products HTTP/1.1
Host: example.com

But if you want to invalidate all subordinate resources of /products/, you can add the
x-invalidate-pattern header and specify the URL pattern:

PURGE / HTTP/1.1
Host: example.com
X-Invalidate-Pattern: ~/products/

6.24 The ban list

Unlike purges, bans will not immediately remove objects from the cache. The synthetic
message from the VCL examples already gave it away: bans are added.

When you execute a ban, the ban expression is added to the ban list. This is a list contain-
ing all the bans that need to be evaluated, and matched against all the objects in cache.

The easiest way to see the contents of the ban list is by running varnishadm ban.list.

337

CHAPTER 6: INVALIDATING THE CACHE

There is always an item on the list

Here’s the output of the ban list when the varnishd process was just started:

$ varnishadm ban.list
Present bans:
1603270370.244746 0 C

Although no bans were issued, and no objects are stored in the cache, there is already an
item on the list. Let’s break it down:

* 1603270370.244746 is the time at which the ban was added. It is in Unix time-
stamp format and has microsecond precision.

e 0is the refcount. There are currently 0 objects that refer to this ban.
* Cstands for Completed. This means the ban is fully evaluated.

The reason there is already a ban on the list is because every object in cache needs to
refer to the last ban it has seen when entering the cache. This allows bans that are older

than the object to be disregarded.

So as soon as the first object is stored in cache, the refcount increases to 1:

~
$ varnishadm ban.list
Present bans:
1603270370.244746 1C
The refcount will increase as objects get inserted.
J
Adding a first ban
The ban list will change as soon as the first ban is added.
The following example looks a bit weird:
[varnishadm ban obj.status != @]

We’re banning all objects that do not have a @ status. That’s literally every object in the
cache.

When we consult the ban list, we see it has been added:

338

CHAPTER 6: INVALIDATING THE CACHE

$ varnishadm ban.list
Present bans:
1603272627 .622051 0
1603270370.244746 3

- obj.status != 0
C

Initially all three objects still refer to the initial ban as the one they have seen last. But
with the addition of the new ban, that will change.

After a short while, the ban list will look like this:

$ varnishadm ban.list
Present bans:
1603272627.622051
1603270370.244746

(O]
[ala]

The newly added ban is completed, and no objects refer to it because we just removed
all objects from the cache. The initial baz is also still around.

As soon as a new object enters the cache, it refers to the last one it has seen:

$ varnishadm ban.list
Present bans:
1603272627 .622051 1C

If you look at the timestamp, it is 1603272627.622051, which matches the ban we just
executed.

Adding multiple bans

Let’s have a look at a ban list that already has some ban expressions on it:

$ varnishadm ban.list
Present bans:
1603273224.960953 2
1603273216.857785 0
1603272627 .622051 9

- req.url ~ ~/[a-2]$
- req.url ~ ~/[a-z]+/[0-9]+
C

Nine objects saw 1603272627.622051 as their last ban. This means that up to two ban
expressions should be evaluated for those objects.

339

CHAPTER 6: INVALIDATING THE CACHE

For two objects, 1603273224.960953 was the last one they saw. These objects aren’t
subject to any invalidation. These were objects that were inserted into to cache after the
two recent bans were added.

There are zero objects that saw 1603273216.857785 as their last ban. This kind of
makes sense because if you do the math between the last and the second-to-last ban,
you’ll see there’s only an eight second difference between the two bans. During those
eight seconds, no new objects got added to the cache.

As time progresses, you’ll see that the req.url ~ 7/[a-z]+/[0-9]+ evaluation has com-
pleted, and that those nine objects have been processed:

$ varnishadm ban.list
Present bans:
1603273224.960953 2 - req.url ~ ~/[a-z]$

This means that nine objects were invalidated since they are no longer referenced.

Any future bans that are executed will apply to the two remaining objects, as long as
they have not expired.

6.2.5 The ban lurker

We have to be honest: there is one piece of crucial information we held back from you.

Throughout this section about banning, we talked about ban expressions, the ban list,
and about objects being matched. But we never mentioned what mechanism is respon-
sible for that.

There is a thread, which was mentioned in the Under the hood section of chapter 1, that
is called the ban lurker.

This thread will inspect the ban list, and match the ban expression to the right objects.

Runtime parameters
The ban lurker thread has some runtime parameters that control its behavior:

e ban_lurker_age is the minimum age an object should have before it is processed
by the ban lurker. The default value is 60 seconds.

e ban_lurker_sleep is the number of seconds the ban lurker sleeps before process-
ing another batch. The default value is ©.010 seconds.

340

CHAPTER 6: INVALIDATING THE CACHE

* ban_lurker_batch is the number of bans the ban lurker processed before going
back to sleep. The default value is 1000.

* ban_lurker_holdoff sets the number of seconds the ban lurker holds off when
lock contention occurs during a cache lookup. The default value is ©.010 seconds.

e ban_cutoff limits the ban lurker from inspecting the ban list until the ban_cutoff
limit is reached; beyond that it treats all objects as if they matched a ban and re-
moves them from cache. The default value is ©.

* ban_dup eliminates older identical bans when a new ban is added. The default
value is on.

Ban lurker workflow

Every 0.010 seconds the ban lurker will look for objects that are at least one minute old.
The lurker will process 1000 at a time. It looks for the position of that object on the ban
list and applies the most recent bans up until the point when a ban expression matches.

When a match is found that object is put on the expiry list and is removed from the
cache shortly thereafter.

Ban lurker scope

Because the ban lurker is a separate thread that has no knowledge of any incoming
HTTP request, its scope is limited to the object context.

Any ban expression that refers to an obj.http.* or an obj.status field can be pro-
cessed by the ban lurker. Basically only the response information that is part of the object
is available to the ban lurker.

This begs the question: how do expressions that contain req.url or req.http.* get
processed? It’s obvious that these bans are not the responsibility of the ban lurker.

When the request context is used in a ban expression, the worker thread that handles the
incoming request is responsible for this.

This means that such bans aren’t processed asynchronously and that space is only freed
from the cache when a request comes in that matches one of these ban expressions.

We’ll talk about the performance impact of synchronous bans in one of the next sec-
tions.

341

CHAPTER 6: INVALIDATING THE CACHE

6.2.6 Enforcing asynchronous bans

Now that we know the scope of the ban lurker, and the fact that the worker thread is
responsible for handling bans within the request scope, it seems as though reguest-based
ban expressions cannot be used in an efficient way.

To that we say:

[Use your imagination, and be creative.]

If this were a Tweet or a Facebook post, we would have added an emoji.

If the object has no information about the request, add this information in VCL:

sub vcl_backend_response {
set beresp.http.x-url = bereq.url;
set beresp.http.x-host = bereq.http.host;

These two custom headers basically store the request context as custom response headers.

And then you can trust that the ban lurker will be able to evaluate the following expres-
sion:

[obj.http.x—ur‘l == / && obj.http.x-host == example.com]

This is what we call lurker-friendly bans. As this is quite the mouthful, we can also just
call them asynchronous bans.

Let’s take our best-of-both-worlds example, and apply asynchronous banning:

vcl 4.1;

acl purge {
"localhost";
"192.168.55.0"/24;

}
sub vcl _recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}

if(!req.http.x-invalidate-pattern) {

342

CHAPTER 6: INVALIDATING THE CACHE

return(purge);
}
ban("obj.http.x-url ~ " + req.http.x-invalidate-pattern
+ " && obj.http.x-host == " + req.http.host);
return (synth(200,"Ban added"));

}

sub vcl_backend_response {

set beresp.http.x-url = bereq.url;

set beresp.http.x-host = bereq.http.host;
}

sub vcl_deliver {
unset resp.http.x-url;
unset resp.http.x-host;

}
& J

To make this work, we had to add the beresp.http.x-url and beresp.http.x-host
UR Ls, but we also have to clean them up upon delivery. And the fields we’re matching
in the ban() function now reflect these two custom response headers.

And then you can send the following HTTP request to Varnish:

PURGE / HTTP/1.1
Host: example.com
X-Invalidate-Pattern: ~/products/

After the object reaches the ban_lurker_age value, the ban lurker will come in and
expire the object. Unlike synchronous bans within the request scope, the worker thread
won’t have to do the heavy lifting, the ban lurker will.

6.2.7 Tag-based invalidation

Most cache invalidation implementations focus solely on the URL as a way to identify
and invalidate objects. This only works if the content in your application can easily be
mapped to one or more URLs.

But for more advanced content that appears all over the place, it is nearly impossible to
map this to the right UR Ls.

An alternative approach is to zag content, and ban objects based on these tags.

343

CHAPTER 6: INVALIDATING THE CACHE

Consider the following HTTP response:

HTTP/1.1 200 OK
Cache-Control: public, s-maxage=60
Tags: tagl tag2 tag3

This response will be stored in cache for a minute, but if you want to get the corre-
sponding object out of cache earlier, you can issue a ban that matches a z4¢ from the
Tags header.

The following ban expression would remove every object from cache that has tagl in its
Tags header:

[obj.http.tags ~ tagl]

You can also include this in your VCL code:

~
vcl 4.1;
acl purge {
"localhost";
"192.168.55.0"/24;
}
sub vcl _recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}
if(!req.http.x-ban-tag) {
return(synth(400, "x-ban-tag missing"));
}
ban("obj.http.tags ~ " + req.http.x-ban-tag);
return (synth(200,"Ban added"));
}
}
\ J

Triggering the ban via HTTP could result in the following HTTP request:

PURGE / HTTP/1.1
Host: example.com
X-Ban-Tag: tagl

344

CHAPTER 6: INVALIDATING THE CACHE

6.2.8 Integrating bans in your application

Just like purges, you can call bans using command line HTTP clients:

#HTTPie
http PURGE "www.example.com
curl
curl -X PURGE -H "X-Purge-Pattern:”~/contact" "www.example.com"

X-Purge-Pattern:”~/contact"

But as we’ve seen earlier, there are other command line tools in place to trigger bans:

[var‘nishadm ban obj.http.Content-Type ~ ~image/]

And for WordPress, Drupal, Magento, and many others, there are community-main-
tained plugins available that perform bans in Varnish.

But not all of these frameworks implement their cache purging logic using an HTTP end-
point. Magento, for example, connects to the Varnish command line over a TCP socket.

[We’ll talk about the Varnish CLI socket protocol in chapter 7.]

6.2.9 Ban limitations

If you factor in the scope of bans, and enforce request-based bans to be lurker friendly, it
does seem like a great solution. For most people it is.

However, banning is architected in such a way that it can become a very CPU-intensive
process.

Because every object (n) has to be matched against all remaining ban expressions (m), the
complexity isn * m. This means that if you have a lot of objects and a lot of bans, a lot
of computations need to happen.

For asynchronous bans, the burden is on the ban lurker thread. But for synchronous bans,
the worker thread is responsible for processing request-related items on the ban list. In
that case, the computationally heavy logic might slow down the request.

Potential performance issues related to bans also depend on the quality of the regular
expression that is used: the more complicated the regex, the longer it takes to process.

Header matching will also have an impact because the ban lurker or the worker thread
needs to cycle through all headers until the matching header is found.

345

CHAPTER 6: INVALIDATING THE CACHE

This adds extra complexity, and the more headers a request or response has, the more
work that needs to happen.

Long story short: the unparalleled flexibility of bans comes at a cost. Perhaps like
all things in life.

346

CHAPTER 6: INVALIDATING THE CACHE

6.3 Secondary keys

Referring to a point we’ve already made a couple of times:

Most cache invalidation strategies are based on the URL of a request. This only
works if the content in your application can easily be mapped to one or more
URLs.

Sometimes a content change impacts many UR Ls, and sometimes it is impossible to
know which URLs will need to be evaluated. Under those circumstances, banning and
purging doesn’t work.

We already hinted at zag-based invalidation in the previous section of the book.

Instead of identifying objects in the cache based on their reguest URL, you can use ar-
bitrary tags to identify objects. By invalidating this tag, all objects are purged from the
cache at once.

For request-based invalidation, we go through the typical lookup logic that is triggered in
the vcl_hash subroutine: we take the URL and the Host header, and turn this into a
hash key. This key can be considered the primary key.

But if we start using other identifiers to match objects, such as tags, we can say that
there’s a secondary key involved. Hence, the name of the section.

Although the ban("obj.http.tags ~ " + req.http.x-ban-tag) example that we
saw earlier works, it is not really built for the job.

Varnish has two VA OD:s that store secondary keys for objects, which allow these ob-
jects to be purged based on these secondary keys:

¢ vmod_xkey is an open source VMOD that is part of the Varnish Software VAMOD
collection.

e vmod_ykey is the successor of vmod_xkey. Itis only available in Varnish Enter-
prise.

Let’s talk about those VALODS for a minute.

6.3.1 vmod_xkey

vmod_xkey is part of the Varnish Software VAMOD collection. It is open source, and its
API can be found at https://github.com/varnish/varnish-modules/blob/master/src/

347

https://github.com/varnish/varnish-modules/blob/master/src/vmod_xkey.vcc

CHAPTER 6: INVALIDATING THE CACHE

vmod_xkey.vcc.

The API for this VMOD is pretty simple. There are only two functions:
* xkey.purge()

* xkey.softpurge()

Both functions take a string as an argument. This string refers to the key that needs to
be purged. This string may contain an individual key or a space-separated list of keys.

Initializing vmod_ xkey

The initialization of vmod_xkey happens automatically. As soon as import xkey; is
part of your VCL file, vmod_xkey will be bootstrapped, and any new objects that are
inserted in cache will be analyzed.

Xkey will look for the xkey or the X-HashTwo response headers and will register the
tags that are exposed through these headers.

Registering keys

As mentioned, vmod_xkey will look for the xkey or the X-HashTwo response headers.
Xkey headers are normally added by the backend application, but you can also add
them in the vcl_backend_response subroutine. Multiple keys in one header line are
separated by spaces or commas.

So if you want the keys category_sports, id_1265778, type_article for a page on
a news website, the response would look like this:

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8
Cache-Control: public, s-maxage=60

Xkey: category_sports id_1265778 type_article

Invalidating content

Once vmod_xkey is imported, and xkey headers of objects are processed, we have a
collection of secondary keys that can be used for invalidation.

If for some reason all articles from the sports category need to be purged from cache, it’s
just a matter of purging the category_sports key.

348

https://github.com/varnish/varnish-modules/blob/master/src/vmod_xkey.vcc

CHAPTER 6: INVALIDATING THE CACHE

For the implementation of the vmod_xkey invalidation logic, we can revisit the zag-
based invalidation example that used bans. It’s just a matter of swapping out the ban()
function with the corresponding xkey.purge() function, and some cosmetic changes:

(N
vcl 4.1;

import xkey;
import std;

acl purge {
"localhost";
"192.168.55.0"/24;

}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}

if(!req.http.x-xkey-purge) {
return(synth(400, "x-xkey-purge header missing"));
¥
set req.http.x-purges = xkey.purge(req.http.x-xkey-purge);

if (std.integer(req.http.x-purges,0) != 0) {

return(synth(200, req.http.x-purges + " objects
purged”));
} else {
return(synth(404, "Key not found"));
}
}
}
_ J

If we look back at the example of our news website, we can use the following H7TTP
request to invalidate all news articles from the sports category:

PURGE / HTTP/1.1
Host: example.com
X-Xkey-Purge: category_sports

If no matching keys were found, you’ll get an HTTP 404 response; otherwise you’ll get
aregular HTTP 200 response containing the number of purged objects.

349

CHAPTER 6: INVALIDATING THE CACHE

vmod_xkey limitations

We started this chapter talking about purging. It’s simple, it’s effective, but it’s not really
flexible. Then we introduced banning, which seemed like the perfect alternative, but the
flexibility comes a cost.

So here we are, talking about vmod_xkey as a more powerful alternative for tag-based
invalidation. The cost of invalidating many objects with many keys is a lot lower than
for bans.

But there is still a cost, some limitations, and some unpleasant side effects.

vmod_xkey doesn’t scale that well because of its architecture. It is not a core concept,
but rather an afterthought that was introduced in the form of a VMOD. The Varnish
core doesn’t have a framework in place to natively support secondary keys alongside other
parts of the core.

Locking

This means Xkey had to look for an existing mechanism in Varnish that allowed it to
safely invalidate content in a multi-threaded context.

The dynamic data structure that is responsible for object expiry seemed like a good
match. The vmod_xkeys interaction with Varnish is basically a bit forced and piggy-
backs on the expiry mechanism for safe access to objects.

The cost that Xkey incurs, both during object insertion and eviction, is added to the
expiry data structure. This is mainly due to locking.

While vmod_xkey processes keys during object insertions, or purges objects using keys,
it uses the mutexes of the expiry data structure for locking. This ensures safe access to
these objects, but also blocks anything else from accessing the expiry mechanism.

This can really bring Varnish to its knees on busy sites where many new objects are in-
serted or a lot of purges happen.

0ld objects aren't processed

Another limitation is that vmod_xkey only processes newly inserted objects. Objects
that were already in the cache before import xkey; took place cannot be purged.

This limitation only occurs when varnishd was started using a V'CL file that did not
import vmod_xkey. Any object that was inserted using that VCL configuration will not
be subject to secondary key inspection.

350

CHAPTER 6: INVALIDATING THE CACHE

This can become a tangible issue in cases where custom VCL is deployed to your Varnish
server as part of a config management strategy: your Varnish server is first started using

boilerplate VCL, and at a later stage in the setup, the config management system deploys
a VCL config that uses Xkey.

Performs poorly with persisted MSE caches

A third known limitation of Xkey is the fact that it behaves very poorly on persisted
MSE caches.

The Massive Storage Engine supports cache persistence by storing objects on disk, while
hot objects are kept in memory. Although this is a highly optimized storage component,
Xkey doesn’t manage to benefit from this.

Imagine having a persisted cache with one million objects. When vmod_xkey is import-
ed by the VCL, the persisted cache will look like new objects to Xkey, and it will start
analyzing them one by one.

This analysis process consists of inspecting the Xkey response header. This means cy-
cling to the header object that is stored in disk. If you have one million persisted objects
stored in cache, one million disk operations need to take place.

The secondary keys that result from the lookups in cache also need to be composed,
which is CPU-intensive. Although this pales in comparison to the disk /0 that is caused
by Xkey’s object indexing.

This can make the startup of Varnish extremely slow.

The locking effect that was previously discussed will only be amplified by the use of
persisted MSE caches: the waits will be longer, the locking will last longer, and it will
take more time for resources to be freed.

()
It is important to understand that not every Varnish setup will sufter from these

performance issues. It’s a matter of scale: the number of requests your Varnish
server receives, the number of objects in cache, the number of purges that take
place, and the number of inserts the happen.

You might never experience this with vmod_xkey. But even if you haven’t yet, it
could just be a matter of time.

351

CHAPTER 6: INVALIDATING THE CACHE

6.3.2 vmod_ykey

vmod_ykey is the Varnish Enterprise interpretation of what a secondary key invalidation
VAMOD should look like.

Its approach and core concepts are similar to vmod_xkey. But it cannot be considered
a v2 of Xkey, because they are completely different modules in the way they address sec-
ondary keys.

Why Ykey?

The name Ykey is intended to reflect the fact that while Ykey is distinctly different from
Xkey, it fulfills a similar use case.

Where vmod_xkey was bolted onto the expiry data structure of Varnish, vmod_ykey is a
proper implementation that is backed by changes in the Varnish core.

It is important to know that vmod_ykey is only available in Varnish Enterprise and that
the core changes aren’t reflected in the source code of Varnish Cache.

vmod_xkey is a very square module with tons of sharp edges. It has very specific rules
and not a lot of flexibility. Over time, we received lots of requests to make Xkey more
flexible, but due to its architecture that was not possible.

The API that Ykey delivers to interface with the VA1OD inside VCL is also not back-
wards compatible. As a matter of fact: vmod_xkey operates outside of the scope of
VCL.

The lack of a viable upgrade path for vmod_xkey led to the development of vmod_ykey.

vmod_ykey performance improvements

Ykey is integrated into the core of Varnish, and we specifically made sure it works well
with MSE.

More specifically, with persisted MSE caches.

As you remember from Xkey, after every restart, all the persisted objects will be rein-
dexed separately. That would result in tons of disk /0.

vmod_ykey is designed to persist the secondary key index, not in the MSE stores, but in
the MSE books.

352

CHAPTER 6: INVALIDATING THE CACHE

()
More detail about the Massive Storage Engine and its architecture will be presented

in the next chapter. But until then, just remember the following two concepts:

The store contains the headers and payload of an object. It is stored in a big pre-al-

located file on disk.

The book is a metadatabase, implemented using LAIDB. It’s an embedded data-

base based on memory-mapped files.
N\ J

The fact that zndexed keys are persisted in a fast but reliable mechanism doesn’t just
speed up invalidation, it also makes indexing a one-time cost.

Indexing doesn’t happen automatically when import ykey; takes place. The VCL
API allows for various rules to be defined, which impacts how secondary key indexing is
done. By default nothing is done until you instruct Ykey to do so.

Because vmod_ykey doesn’t piggyback on the expiry data structure, and has its own
data structures in the core of Varnish Enterprise, the expiry mechanism doesn’t block all
the time due to locking. This results in a smoother flow that doesn’t jeopardize regular
operations.

Registering keys

As mentioned, vmod_ykey behaves in an entirely different way from vmod_xkey, espe-
cially in terms of indexing. The 4 PI reflects this.

An interesting concept is that not all keys should be registered via HT TP response head-
ers:

e ykey.add_key() registers an individual key to an object.
* ykey.add_keys() registers multiple keys to an object, based on a separator.

* ykey.add_hashed_keys() registers multiple keys to an object, based on a separa-
tor, with the assumption that they are already hashed.

* ykey.add_blob() also registers an individual key to an object, but instead of a
string value, a BLOB value is used to create the hash of the key.

Headers are also supported, just like in vmod_xkey, but the V'CL API allows for a lot
more flexibility:

ykey.add_header(): registers the header that should be inspected. Multiple keys com-
ing from that header will be registered as keys, based on a separator.

353

CHAPTER 6: INVALIDATING THE CACHE

A combined VCL example featuring ykey.add_key() and ykey.add_header() will
show you how to implement this:

~
vcl 4.1;
import ykey;
sub vcl _backend_response {
ykey.add_header(beresp.http.Ykey, ", ");
ykey.add_header(beresp.http.Xkey, " ");
if (beresp.http.Content-Type ~ "~image/") {
ykey.add_key("IMAGE");
}
}
_ J

This example will inspect the Ykey header from each HTTP response and will extract
the keys. A comma space separator is used for this.

However, we want to remain compatible with Xkey, so we’re also looking out for the
Xkey header where a space is used as a separator.

Meanwhile, we also tag images automatically if their Content-Type response header
starts with image/. This doesn’t require any response header being set.

Invalidating content

Invalidation of content using Ykey is quite similar to Xkey. The ykey.purge() func-
tion’s A P[is very similar to xkey.purge().

There is no dedicated sof# purge method in vmod_ykey, but the ykey.purge() method
takes a second argument, which is a boolean. When set to true a soft purge is done,
which sets the T7TL to zero, but keeps grace and keep values as they are.

By default the sof# purge argument is false.

A vmod_xkey replica

The following example will use the ykey.purge() function, and replicate the behavior
of the Xkey example:

354

CHAPTER 6: INVALIDATING THE CACHE

vcl 4.1;

import ykey;
import std;

acl purge {
"localhost";
"192.168.55.0"/24;

}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}

if(!req.http.x-ykey-purge) {
return(synth(400, "x-ykey-purge header missing"));
}

set req.http.x-purges = ykey.purge(req.http.x-ykey-purge);

if (std.integer(req.http.x-purges,0) != 0) {
return(synth(200, req.http.x-purges + " objects
purged”));
} else {
return(synth(404, "Key not found"));

}
}

sub vcl_backend_response {
ykey.add_header(beresp.http.Ykey, ", ");

}
- J

The limitation of this example is that ykey.purge() only allows a single key to be inval-
idated. Luckily ykey.purge_keys() can take care of that.

Multiple keys, soft purging

Let’s keep the limitations of the previous example in mind, and write an example that
can invalidate multiple keys at once. But to switch it up a bit, we’ll perform a sofz purge,
which will keep the grace and keeps settings intact.

This means that the burden of the invalidation is not on the next user. If you paid atten-
tion, you’ll remember that grace will allow users to receive a stale version of the object,
while Varnish asynchronously fetches the new version.

355

CHAPTER 6: INVALIDATING THE CACHE

Here’s the code to achieve this:

vcl 4.1;
import ykey;
import std;
acl purge {
"localhost";
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}
if(!req.http.x-ykey-purge) {
return(synth(400, "x-ykey-purge header missing"));
}
set req.http.x-purges = ykey.purge_keys(req.http.x-ykey-
purge, ", ", true);
if (std.integer(req.http.x-purges,0) != 0) {
return(synth(200, req.http.x-purges + " objects
purged”));
} else {
return(synth(404, "Key not found"));
}
}
}
sub vcl _backend_response {
ykey.add_header(beresp.http.Ykey, ", ");
}
_ J

A quick heads-up here: this example will use a comma space separator.

Native support for headers

The previous example was entirely built on the concepts of vmod_xkey. Some of the
checks aren’t required, as vmod_ykey has native support for headers through the ykey.
purge_header() function.

The difference is subtle and can only be felt if you use multiple x-ykey-purge headers
in a single request.

356

CHAPTER 6: INVALIDATING THE CACHE

This is the code:

vcl 4.1;

import ykey;
import std;

acl purge {
"localhost";
"192.168.55.0"/24;

}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}

if(!req.http.x-ykey-purge) {
return(synth(400, "x-ykey-purge header missing"));
}

set req.http.x-purges = ykey.purge_header(req.http.x-ykey-

purge, ", ", true);

if (std.integer(req.http.x-purges,0) != 0) {
return(synth(200, req.http.x-purges + " objects

purged”));
} else {
return(synth(404, "Key not found"));
}
}
}

sub vcl _backend_response {
ykey.add_header(beresp.http.Ykey, ", ");
}

&

This is an example where the X-Ykey-Purge header has multiple occurrences:

PURGE / HTTP/1.1

Host: example.com

X-Ykey-Purge: category_sports
X-Ykey-Purge: category_breaking news

The ykey.purge_header() will loop through all occurrences because the reg.
http.x-ykey-purge argument is treated as a header type, and is not converted into a
string type.

357

CHAPTER 6: INVALIDATING THE CACHE

The previous example where we used ykey.purge_keys() wouldn’t support this be-
cause the req.http.x-ykey-purge argument is treated as a string type, and would
only return the first occurrence of the X-Ykey-Purge header, which would be catego-
ry_sports.

Namespacing

Another advantage of vmod_ykey is namespace support. It allows secondary keys to be
stored in a namespace to avoid key collisions in a multi-tenant setup.

Without namespacing, multiple independent clients or backends that use the same Var-
nish could risk using the same keys.

The ykey.namespace() function allows key indexing at the backend level, and purging
at the client level, to happen in a separate namespace.

The following example injects ykey.namespace() calls into vcl_recv for the /-
ent-side context, into vcl_backend_response for the backend-side context, and resets it
when not in the same namespace:

\
vcl 4.1;

import ykey;
import std;

acl purge {
"localhost";
"192.168.55.0"/24;

}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}

if (!'req.http.x-ykey-purge) {
return(synth(400, "x-ykey-purge header missing"));

¥

if (req.http.host ~ "tenantl") {
ykey.namespace(req.http.host);

} else {
ykey.namespace_reset();

}

set req.http.x-purges = ykey.purge_header(req.http.x-ykey-

purge, ", ", true);

if (std.integer(req.http.x-purges,0) != 0) {

358

CHAPTER 6: INVALIDATING THE CACHE

return(synth(200, req.http.x-purges + " objects
purged”));
} else {
return(synth(404, "Key not found"));
}
}
}

sub vcl_backend_response {
if (bereq.http.host ~ "tenantl") {
ykey.namespace(bereq.http.host);
} else {
ykey.namespace_reset();

}
ykey.add_header(beresp.http.Ykey, ", ");

359

CHAPTER 6: INVALIDATING THE CACHE

6.4 Forcing a miss

All of the previous cache invalidation examples resulted in objects being removed from
cache without fetching the updated version of the object.

The burden is always on the next visitor to trigger the revalidation process. The blow is
softened when soft purges are used because grace mode might still trigger a background
fetch while stale content is temporarily served.

The downside of soft purges is that the outdated content is still around for the duration
of the revalidation.

All these mechanisms are designed to delete content rather than refresh content.

However, there is a VCL variable available from the client subroutines called req.
hash_always_miss. By default its value is false. But when you set it to true, a cache
hit will be treated as a cache miss, and the content will get refreshed. The old version of
the object will remain in cache until it expires or is evicted by other invalidation strate-
gies.

We could trigger such a refresh using a custom REFRESH HTTP method. We could also
borrow the ACL check from the purge example.

We could end up with the following code:

vcl 4.1;
backend default {
.host = "localhost";
.port = "8080";
}
acl purge {
"localhost";
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "REFRESH") {
if (!client.ip ~ purge) {
return(synth(405));
}
set req.hash_always_miss = true;
set req.method = "GET";
}
}
N\ J

360

CHAPTER 6: INVALIDATING THE CACHE

This refresh mechanism will be triggered using the following HTTP request:

REFRESH / HTTP/1.1
Host: example.com

The output would not be a synthetic message, but the actual content of the new object.

In terms of integration, you could combine the bit always miss logic, with bans, or

purges.

361

CHAPTER 6: INVALIDATING THE CACHE

6.5 Distributed invalidation with
Varnish Broadcaster

A ban, a purge, a refresh, even secondary keys, can easily be triggered via simple H77TP
requests.

We’ve discussed the invalidation mechanisms that offer the most flexibility when it
comes to invalidating multiple objects. But there’s a different kind of flexibility that
we’re still lacking that we haven’t talked about.

For really basic setups, Varnish can be hosted on the same machine as the origin. But for
mission-critical setups, you want some level of high availability.

This means that in most setups you’ll use more than one Varnish server. Although we’ll
discuss high availability in the next chapter, there is one aspect that we need to cover
here: invalidating content on multiple Varnish servers.

In situations where multiple Varnish servers are in play, the client is responsible for
sending an invalidation call to each client. But as your Varnish inventory increases, keep-
ing track of every server can become challenging, and sending out all those purge calls
can become equally challenging.

And that’s where you need Varnish Broadcaster.

6.5.1 Varnish Broadcaster

The Varnish Broadcaster comes in the form of the broadcaster program and is a utili-
ty that is shipped with Varnish Enterprise.

As the name indicates, it broadcasts messages to a pre-defined inventory of Varnish serv-
ers. This tool was specifically developed to perform purges and bans on multiple Varnish
servers through a single point of entry.

4)

In this section we will treat the Varnish Broadcaster as a utility to invalidate the

cache across multiple servers, but we will not focus on broadcaster itself, and
how it is configured. In the next chapter, we will talk more about certain opera-
tional elements of Varnish, and more in-depth information about broadcaster

will be covered there.
g J

362

CHAPTER 6: INVALIDATING THE CACHE

6.5.2 Varnish inventory

The broadcaster cannot figure out on its own where the Varnish servers are located. For
node discovery, it depends on a nodes.conf file where the inventory is specified.

Multiple Varnish endpoints can be described in this file, and nodes can be grouped as
well.

Imagine the following setup in nodes.conf:

()
[eu]

eu-varnishl = http://varnishl.eu.example.com

eu-varnish2 = http://varnish2.eu.example.com

eu-varnish3 = http://varnish3.eu.example.com

[us]

us-varnishl = http://varnishl.us.example.com
us-varnish2 = http://varnish2.us.example.com
us-varnish3 = http://varnish3.us.example.com

g J

The setup described in the example above consists of two geographic zones:
* Aneu zone with three Varnish servers
* Auwszone with three Varnish servers

By performing a purge call through the Varnish broadcaster, the purges will be broad-
cast to the following Varnish servers:

* http://varnishl.eu.example.com
* http://varnish2.eu.example.com
* http://varnish3.eu.example.com
* http://varnishl.us.example.com
* http://varnish2.us.example.com
* http://varnish3.us.example.com

If we just want the ez zone to be invalidated, a specific header can be sent to the broad-
caster service. This will limit the scope of the broadcasting.

6.5.3 Issuing a purge

If we want to perform a purge on our full inventory, we could send the following re-
quest to the broadcaster:

363

CHAPTER 6: INVALIDATING THE CACHE

PURGE / HTTP/1.1
Host: example.com

The call itself is identical, but the endpoint we connect to is different:

[cur-l -X PURGE example.com:8088/

As you can see the broadcaster endpoint is hosted on a different port than Varnish.

Here’s the output you get:

4)
{
"method": "PURGE",
"uri": "/",
"ts": 1603633688,
"nodes": {
"eu-varnishl": 200,
"eu-varnish2": 200,
"eu-varnish3": 200,
"us-varnishl": 200,
"us-varnish2": 200,
"us-varnish3": 200
T
"rate": 100,
"done": true
}
_ J

What you're seeing is JSON output with metadata of your request, but also the nodes

that were called. All six nodes were purged, and each node returned an HTTP 200 sta-

tus.

6.54 Bans and secondary keys

Let’s add a level of complexity and evict objects from the cache based on a regular ex-
pression pattern. Under the hood, we use bans to achieve this.

The HTTP request is as follows:

BAN / HTTP/1.1
Host: example.com

X-Ban-Pattern: ~/products/

CHAPTER 6: INVALIDATING THE CACHE

Here’s the curl implementation:

[curl -X BAN -H "X-Ban-Pattern: ~/products/" example.com:8088/]

If we want to invalidate based on secondary keys, this will be the request:

PURGE / HTTP/1.1
Host: example.com
X-Ykey-Purge: category_sports

Here’s the curl implementation:

[cur-l -X PURGE -H "X-Ykey-Purge: category_sports" example.com:8088/]

And in both cases the output will look the same:

()
{
"method": "PURGE",
"uri": /",
"ts": 1603652566,
"nodes": {

"eu-varnishl": 200,
"eu-varnish2": 200,
"eu-varnish3": 200,
"us-varnishli": 200,
"us-varnish2": 200,
"us-varnish3": 200

bs
"rate": 100,
"done": true
}
N\ J

6.5.5 Broadcast groups

Because nodes in the nodes.conf file can be grouped, it is possible to only broadcast
messages to a single group.

Imagine that the content on Varnish servers in the ex group differs from the us group.
In this case, it sometimes makes sense to only invalidate a specific group of servers.

Let’s throw in an example where we want to invalidate all files in the /images folder for
the ex group:

365

CHAPTER 6: INVALIDATING THE CACHE

BAN / HTTP/1.1

Host: example.com
X-Ban-Pattern: ~/images/
X-Broadcast-Group: eu

This is how you execute this via curl:

curl -X BAN -H "X-Ban-Pattern: ~/images/" -H "X-Broadcast-Group: eu
example.com:8088/

The output will be slightly different and will only feature responses from ez nodes:

()

{
"method": "PURGE",

"uri": /",

"ts": 1603654040,

"nodes": {
"eu-varnishl": 200,
"eu-varnish2": 200,
"eu-varnish3": 200

b
"rate": 100,
"done": true
}
G J

Other than the group definition, there are other X-Broadcast headers that can be com-
bined and used to define the broadcasting strategy: * X-Broadcast-Random: if the value
of this header is set to *, the broadcaster will only broadcast to one node in each con-
figured group. The node is selected randomly. * X-Broadcast-InOrder: If this header
is set to true, the broadcaster will handle each node one after the other. This is useful
for purging multi-layer setups from upstream to downstream. * X-Broadcast-Skip:
this header blacklists caches as a whitespace-separated list. They will be skipped when

processing a group.

366

CHAPTER 6: INVALIDATING THE CACHE

6.6 Summary

Achieving a high hit rate is important, and in the first couple of chapters of the book,
we focused on that for obvious reasons.

But as you start aggressively caching content, you’ll end up in situations where import-
ant content updates need to become visible. Waiting for the 77L to expire is not an
option.

Remember the saying from the start of this chapter:

There’s only one thing worse than not caching enough, and that is caching for too

long.

Thanks to the various cache invalidation mechanisms that Varnish ofters, you can cus-
tomize the way you want to evict objects from the cache.

Here we mean mechanisms like simple purges, regular expression patterns used for bans,
and even tag-based invalidation using secondary keys.

Varnish has got you covered, and VCL will allow you to implement invalidation the way
you want. But even without VCL, you can ban content from the cache: varnishadm
allows direct interaction with the ban /ist.

And for those who don’t want to depend on VCL, and want to remotely ban content,
you can still use the CLI protocol.

Alot of options, a lot of potential integrations: choose wisely, and integrate cache in-
validation into your application, so that you never face a situation where breaking news
doesn’t break at all.

367

CHAPTER 7: VARNISH FOR OPERATIONS

Chapter 7: Varnish for operations

Welcome to chapter 7, we’ve come a long way. Up until this point, we’ve introduced you
to the core concepts of Varnish, and a lot of functional aspects.

One could say that most of the content catered to the needs of developers so far: getting
objects into the cache, deciding when not to, and evicting them when necessary.

But when we talk about running content delivery services at scale, getting started with
VCL is the easy part. Making sure both your Varnish servers and the origin remain sta-
ble, despite millions of requests hitting your platform, that is the real challenge.

In this chapter, we’ll switch to a more operational point of view, and focus on other re-
sponsibilities. Responsibilities that are more in the wheelhouse of system administrators
and / T operations. Dare I say DevOps?

We’ll be covering topics like security, high availability, load balancing, monitoring, stor-
age, encryption, deployments, and much more.

Enjoy the ride!

368

CHAPTER 7: VARNISH FOR OPERATIONS

7.1 Install and configure

If you're planning to install Varnish, you have quite a number of options as to how
you’re going to do that.

The first decision you’ll have to make is which version of Varnish:

* Areyou going for a stable release like Varnish Cache 6.0 LTS?

¢ Ordo you prefer one of the fresh releases like Varnish Cache 6.6?

e Ordo you want to use Varnish Enterprise 62

After that, you’ll have to select the platform where Varnish is going to run:

e Areyou planning to install it using on-premise virtual machines or physical servers?
* Do you prefer using one of our official machine images in the clond ?

* Or would you rather run the official Varnish Docker image?

If you're planning to install Varnish on on-premise infrastructure, you’ll also need to
decide what operating system to use.

Let’s break this down into individual parts.

7.1.1 Packages

Although you are free to compile Varnish from source, it’s safe to use the following
quote:

[Ain’t nobody got time for that.

There are Varnish packages available for the following Linux distributions:

* Ubuntu
* Debian
* CentOS
* RedHat
* Fedora

It’s a matter of running apt-get install varnishoryum install varnish de-
pending on the package manager that your distribution supports.

369

CHAPTER 7: VARNISH FOR OPERATIONS

Official packages

The preferred way to go is by installing Varnish’s official packages, which are maintained
by Varnish Software.

You can find them at https://packagecloud.io/varnishcache. There are packages for
stable versions of Varnish, and for fresh releases of Varnish that happen twice per year.
There are even packages for end-of-life versions of Varnish.

My advice is to install the 6.0 LTS packages because they are the most stable. You can
find them at https://packagecloud.io/varnishcache/varnish60lts.

The following Linux distribution versions are supported:

* Debian 9 (Stretch)

* Debian 10 Buster

* Ubuntu 18.04 LTS (Bionic)

* Ubuntu 20.04 LTS (Focal)

* Enterprise Linux 7 and 8 (for CentOS, Red Hat, and Fedora)

Loading the right repository is quite easy. For Debian and Ubuntu systems, you can run
the following script:

curl -s https://packagecloud.io/install/repositories/varnishcache/
varnish60lts/script.deb.sh | sudo bash

For Red Hat, CentOS, and Fedora systems, the following script can be used:

curl -s https://packagecloud.io/install/repositories/varnishcache/
varnish60lts/script.rpm.sh | sudo bash

Both scripts will identify your Linux distribution, register the repository endpoints,
verity the GPG key, and update the channels.

And in the end, it’s a matter of running apt-get install varnishoryum install
varnish.

We would advise you to install the latest version, but if you're interested in which ver-
sions are available, you can install a specific version.

On Debian and Ubuntu, you can run apt-cache policy varnish to see the available
versions:

370

https://packagecloud.io/varnishcache
https://packagecloud.io/varnishcache/varnish60lts

CHAPTER 7: VARNISH FOR OPERATIONS

(N
$ apt-cache policy varnish

varnish:
Installed: (none)
Candidate: 6.0.8-1~bionic
Version table:
6.0.8-1~bionic 500
500 https://packagecloud.io/varnishcache/varnish60lts/ubuntu
bionic/main amdé64 Packages
6.0.7-1~bionic 500
500 https://packagecloud.io/varnishcache/varnish60lts/ubuntu
bionic/main amdé4 Packages
6.0.6-1~bionic 500
500 https://packagecloud.io/varnishcache/varnish60lts/ubuntu
bionic/main amd64 Packages

g J

On Red Hat, CentOS, an Fedora, you can run yum --showduplicates list var-
nish to see the available versions:

$ yum --showduplicates list varnish
Available Packages
varnish.x86_64 6.0.
varnish.x86_64 6.
varnish.x86_64 6.

6-1.el7 varnishcache_varnish6@lts
7-1.el7 varnishcache_varnish60lts
8-1.

Q.
9. el7 varnishcache_varnish6@lts

Because reverse compatibility is ensured, it doesn’t make much sense to install an
older version. However, we’ve shared this information just so you know that these

older versions exist.
N\ J

Varnish Enterprise packages

Varnish Enterprise packages are installed via https://packagecloud.io/varnishplus, but
you need a key to access this repository. These keys come with your Varnish Enterprise
license.

Once the package channel has been registered on your system, you can run apt-cache
policy varnish-plusoryum --showduplicates list varnish-plus to figure
out which versions are available.

Here’s the output for Debian and Ubuntu:

371

https://packagecloud.io/varnishplus

CHAPTER 7: VARNISH FOR OPERATIONS

~
$ apt-cache policy varnish-plus
varnish-plus:
Installed: (none)
Candidate: 6.0.8rl1-1~bionic
Version table:
6.0.8rl-1~bionic 500
500 https://packagecloud.io/varnishplus/60/ubuntu bionic/main
amd64 Packages
6.0.7r3-1~bionic 500
500 https://packagecloud.io/varnishplus/60/ubuntu bionic/main
amd64 Packages
6.0.7r2-1~bionic 500
500 https://packagecloud.io/varnishplus/60/ubuntu bionic/main
amd64 Packages
_ J
Here’s the output for CentOS, Red Hat, and Fedora:
~
$ yum --showduplicates list varnish-plus
varnish-plus.x86_64 6.0.7r2-1.el7 varnish-plus-60
varnish-plus.x86_64 6.0.7r3-1.el7 varnish-plus-60
varnish-plus.x86_64 6.0.8rl-1.el7 varnish-plus-60
J
4 N
A quick disclaimer about the listing of available packages: we have shortened the
list so we don’t fill pages with somewhat irrelevant content. Keep in mind thata
lot of versions are available.
g J

Then it’s just a matter of executing apt-get install varnish-plusoryum install
varnish-plus to install Varnish Enterprise.

There are also some other packages you might want to install when running Varnish
Enterprise:

e varnish-plus-vmods-extras: a collection of enterprise VA ODs that require
external dependencies. They are kept separate to keep the initial footprint of Var-
nish Enterprise small.

e varnish-broadcaster: the Varnish Broadcaster is primarily used to perform dis-
tributed cache invalidations and for Varnish High Availability.

* varnish-plus-discovery: an autodiscovery tool that automatically provisions the
broadcaster’s nodes.con file

372

CHAPTER 7: VARNISH FOR OPERATIONS

* varnish-plus-ha: the High Availability component of Varnish Enterprise

* varnish-custom-statistics: the Varnish Custom Statistics (VCS) server that
stores custom time-series data that was logged in V'CL

* varnish-custom-statistics-agent: the agent software that sends custom sta-
tistics from the VSL to the VCS server

e varnish-plus-addon-ssl: contains Hitch, the TLS proxy that is used to support
TLS/SSL in Varnish

Depending on your setup, you’re not going to install all these packages on a single
server. Especially the VCS server, which can be installed on a separate machine.

Distro packages

Various Linux distributions offer packages for Varnish Cache. The versions vary a lot,
there’s no flexibility, and only recent versions of Debian, Ubuntu, and CentOS/Red Hat/
Fedora ofter packages for Varnish Cache 6.

Here’s an overview of the distributions and versions that support Varnish Cache 6 at the
time of writing:

e Debian 10 Buster: Varnish Cache 6.1.1
* Ubuntu 20.04 LTS (Focal): Varnish Cache 6.2.1

* Enterprise Linux 8 (for CentOS, Red Hat, and Fedora): Varnish Cache 6.0.2 via
epel-release

If you’re planning to install Varnish on CentOS, Red Hat, or Fedora, you must
install epel-release, which is done via yum install -y epel-release.

For the operating systems mentioned above, it’s just a matter of running apt-get in-
stall varnishoryum install varnish to install Varnish.

We discourage you from installing these packages, as they aren’t updated. You will
probably get some security fixes when there’s a vulnerability, but regular bugfixes and
new features are only available if you use our official packages.

7.2 Cloud images

Deploying Varnish in the cloud is an easy way to get a full-blown Varnish setup without
having to install and configure the software yourself.

373

CHAPTER 7: VARNISH FOR OPERATIONS

Most public cloud vendors have a marketplace where machine images are advertised.
Varnish Software is also on these marketplaces and offers official machine images.

These images are available on the following cloud platforms:
* Amazon Web Services

* Microsoft Azure

¢ Google Cloud Platform

* Oracle Cloud Infrastructure

¢ DigitalOcean

Amazon Web Services

Information on the various images on 4 WS is available at https://aws.amazon.com/
marketplace/seller-profile?id=263c0208-6a3a-435d-8728-fa2514202£d0.

Images that are worth mentioning:
* Varnish Enterprise 6 for Ubuntu
¢ Varnish Enterprise 6 for Red Hat

When spinning up virtual machines that use this image, you’ll end up with a fully func-
tional Varnish server that was automatically set up and configured and only needs your

VCL.

A small management fee is charged by the hour, and is separately billed by A77S on

top of the infrastructure cost. This fee also includes the license of Varnish Enterprise.
This is great because you can actually start using Varnish Enterprise without an upfront
license cost. However, you don’t get a Service Level Agreement and the same level of sup-
port.

The image below shows how you can select our images from the AWS Marketplace:

374

https://aws.amazon.com/marketplace/seller-profile?id=263c0208-6a3a-435d-8728-fa2514202fd0
https://aws.amazon.com/marketplace/seller-profile?id=263c0208-6a3a-435d-8728-fa2514202fd0

CHAPTER 7: VARNISH FOR OPERATIONS

aws

Services v

Ireland ¥ Support ¥

1. Choose AMI 2. Choose Instance Type

Step 1: Choose an Amazon Machine Image (AMI)

3. Configure Instance

4. Add Storage 5. Add Tags 6. Configure Security Group

Cancel and Exit

An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch
your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace; or you can select one of your

own AMls.

©, varnish enterprise|

Quick Start (0)
My AMIs (0) @
®VARNISH
SOFTWARE
AWS Marketplace (4)
Free Trial
Community AMIs (5)
¥ Gategories
All Categories
Infrastructure Software (3)
DevOps (4)
®
- -
Architecture ° VARNISH
[64-bit (x86) (4) SOFTWARE
Free Trial

¥ Operating System
¥ Al Linu/Unix

[Red Hat Enterprise
Linux (2)

] Ubuntu (2)

AWS marketplace

b4

Search by Systems Manager parameter

110 4 of 4 Products

Varnish Enterprise 6 (Ubuntu)

ok (0| G.0.6rB Reliease 1 Previous versions | By Varnish
Eoftware Inc

Starting from $0.20/r or from $1.402.007yr (20% savings) for

software + AWS usage fees

Linue/Unix, Ubuntu 18.04 | 84-bit (x86) Amazon Machine Image (AMI)}

| Upeiatad: A/21/20

Speed up websites and content delivery by 300% with
powerful caching technology

Maore info

Varnish Enterprise 8 (Red Hat)

v e ke o (0) | 6.0.808 Relwasy 1 Previous versions | By Varmish
Software Inc

Starting trom S0 200 or from $1.400 D0 (0% savings) tor

SOfWare + AWS usage fees

Linwe/Unix, Red Hat Enterpriee Linux 7.8 | 84-bit (x86) Amazon

Maching Image (AMI) | Updated: B/21/20

Spead up websites and content dalivery by 300% with
powerful caching technology

When you spin up a new EC2 instance, the Quick Start option is selected in step 1. If you
click AWS Marketplace and search for Varnish Enterprise, you’ll find some related imag-

es that you can spin up.

. : .)
K - > >

When the server is up-and-running, and you access it via HT TP, you’ll get a welcome

page that directs you to https://info.varnish-software.com/cloud/new-instance for fur-

ther instructions.

Microsoft Azure

Varnish Enterprise images are also available on the Microsoft Azure Marketplace
at https://azuremarketplace.microsoft.com/en-us/marketplace/apps/varnish.var-

nish-cache_.

375

https://info.varnish-software.com/cloud/new-instance
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/varnish.varnish-cache_
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/varnish.varnish-cache_

CHAPTER 7: VARNISH FOR OPERATIONS

The same licensing deal applies on Azure: Microsoft will send you a bill for the infra-
structure cost and will bill you separately for the licensing. This will also allow you to
use Varnish Enterprise without an upfront license cost.

In a similar fashion, when spinning up a virtual machine on Azure and selecting the
machine image, you click Browse all public and private images.

The image below shows what this image browser looks like. When you search for Var-
nish Enterprise, this is the result you get:

= Microsoft Azure L Search resources, services, and docs (G+/)

Select an image

Marketplace My ltems

Al + Machine Learning [

| 2 vamnish enterprise|

Analytics

Blockchain . Varnish Cache 6 (Ubuntu)
L) Varnish Software Inc

Compute Varnish Cache 6.0.6 (Ubuntu)

Containers Varnish Cache 6 (Redhat)

Databases RS varnish Software Inc

Varnish Cache 6.0.6 (Redhat)
Developer Tools
Varnish Enterprise & (Ubuntu)

DevOps W Varnish Software Inc
Identity Varnish Enterprise 6.0.6r8 (Ubuntu)
Integration Varnish Enterprise 6 (Red Hat)

Varnish Software Inc

Internet of Things Varnish Enterprise 6.0.6r8 (Red Hat)

Azure marketplace

Once the machine is up-and-running, and you access it via HT TP, you’ll also be direct-
ed to https://infovarnish-software.com/cloud/new-instance for further instructions.

Google Cloud Platform

Google Cloud Platform (GCP) also has a marketplace and also features our official
machine images. You’ll find them at https://console.cloud.google.com/marketplace/
browse?q=varnish%20software%20inc..

376

https://info.varnish-software.com/cloud/new-instance
https://console.cloud.google.com/marketplace/browse?q=varnish%20software%20inc.
https://console.cloud.google.com/marketplace/browse?q=varnish%20software%20inc.

CHAPTER 7: VARNISH FOR OPERATIONS

In terms of cost and payment, it’s the same deal as for A WS and Azure: Google charges
you for the infrastructure and bills you separately for the licensing.

When you’re launching a new virtual machine, and you want to use one of our images
on GCP, you’ll be given the option to create a New VM instance. Please click Market-
place instead. When you search for Varnish Enterprise, this is what you get:

« QO varnish enterprise X

Marketplace 3 “vamish enserprise”

Virtual machines

Filter by 4 results

THFE Varnish Enterprise 6 (Red Hat)

o me—— Yumish Software ne

Virtual machines €

Spaed up content dalivary by 300% with leading caching technolog

varnish Enterprise 6 (Ubuntu)

o8 mmeminm— Yumish Software nc.

Spoed up content delivery by 300% with keading caching technalog

Vamish Customn Statistics (Red Hat)
o b Ynrmish Software Inc.

A feal-time statistics engine for Varnish Enterprise™ (VE)

Varnish Custormn Statistics (Ubuntu)
oF weempmes Yamnish Software in

A real-time s1atislics engine for Vami

GCP marketplace

And again, once the machine is up-and-running, and you access it via HTTP, you’ll
also be directed to https://infovarnish-software.com/cloud/new-instance for further
instructions.

Oracle Cloud Infrastructure

Oracle Cloud Infrastructure is a different animal. In terms of licensing they apply a Bring
Your Own License (BYOL) policy. And on OCI we only support Varnish Enterprise on a
custom Oracle Linux distribution.

More information is available at https://cloudmarketplace.oracle.com/marketplace/
en_US/listing/73388855.

DigitalOcean

We offer an official DigitalOcean droplet for Varnish Cache on their marketplace. See
hteps://marketplace.digitalocean.com/apps/varnish-cache for more information.

377

https://info.varnish-software.com/cloud/new-instance
https://cloudmarketplace.oracle.com/marketplace/en_US/listing/73388855
https://cloudmarketplace.oracle.com/marketplace/en_US/listing/73388855
https://marketplace.digitalocean.com/apps/varnish-cache

CHAPTER 7: VARNISH FOR OPERATIONS

Because this is an open source image, no license fees are charged. The benefit of using

the droplet, compared to installing Varnish Cache yourself, is that the droplet features

Varnish Cache 6.0 LTS. This is the long-term support version that is maintained by Var-
nish Software. At the time of writing, this is version 6.0.8.

2., Varnish Cache
SOFTWARE by Vamish Software Create Varnish Cache Droplet

Version 6.07 OS Ubuntu18.04

Description

Varnish Cache is an open source reverse HTTP proxy that can speed up a website by up to 1000%, by caching (or

storing) a copy of a webpage the first time a user visits. Varnish Cache 6.0.7 is the latest LTS release

Software Included

Package Version License
Warnish 6.07 FreeBSD
varnish-plus-addon-ssl (Hitch) 15.2 BSD

DigitalOcean marketplace

71.3 Official Docker container

Varnish is also available for Docker, and there is an official Varnish Cache Docker image,
which is available on the Docker Hub at https://hub.docker.com/ /varnish.

We support two kinds of images for Varnish Cache:
e Stable releases that refer to our 6.0 LTS release
* Fresh releases that refer to the latest release, which is currently version 6.6

Unless you need fresh features, I'd advise you to use stable releases. Here’s how you
would run the official image using the docker run command:

378

https://hub.docker.com/_/varnish

CHAPTER 7: VARNISH FOR OPERATIONS

docker run --name varnish -v /path/to/varnish/default.vcl:/etc/var-
nish/default.vcl:ro --tmpfs /var/lib/varnish:exec -p 80:8080 -d var-
nish:stable

This command does the following:
i Launch a container named varnish

* Mount the file /path/to/varnish/default.vcl on your host system onto /etc/
varnish/default.vcl in the container as a read-only file

* Mount the /var/lib/varnish directory of the container in tmpfs, which means
the contents will be stored in memory, and only exec calls are allowed

* Forward the exposed port 80 on the container to port 8880 on the host system
* Daemonize the command using the -d parameter

* Load the varnish:stable image, which is the stable tag that currently refers to
Varnish Cache 6.0.6 LTS

And in the end you can access Varnish by calling http://localhost:8080 in your
browser.

There is also an official Docker image for Varnish Enterprise, but this image is not
public, and only accessible to users who have a Varnish Enterprise license key.

These Docker containers can be run standalone, but they can also be orchestrated with
docker-compose, Kubernetes, or other dond-native orchestration software.

714 Kubernetes

If you want to run Varnish in Kubernetes, you can use our official Docker. Unfortunate-
ly, at the time of writing there is no official Varnish Helm chart.

However, for your convenience, we have created a Kubernetes conﬁguration.

Config map definition

The first part of the Kubernetes configuration we’ll create is the config map. We use it to
store our VCL configuration.

Here’s the ConfigMap definition:

379

CHAPTER 7: VARNISH FOR OPERATIONS

4)

apiVersion: vi1
kind: ConfigMap
metadata:
name: varnish
labels:
name: varnish
data:
default.vcl: |+
vcl 4.1;
backend default none;

sub vcl_recv {
if (req.url == "/varnish-ping") {
return(synth(200));
}

if (req.url == "/varnish-ready") {
return(synth(200));
}

return(synth(200, "Welcome"));

- J

The name of this ConfigMap is varnish and the name label is also varnish. Inside the
config map we store a key named default.vcl which contains the VCL file. You’ll no-
tice we used an oversimplified V'CL config to limit the size of the configuration.

Service definition

The next thing we need is a service definition. It allows the Kubernetes pods to be exposed
to the outside world.

()

apiVersion: vi1
kind: Service
metadata:
name: varnish
labels:
name: varnish
spec:
type: ClusterIP
ports:

- port: 80
targetPort: 80
protocol: TCP
name: varnish-http

selector:

name: varnish

380

CHAPTER 7: VARNISH FOR OPERATIONS

In terms of naming and labeling, we stuck with varnish. This service will bind itself to
port 80 on the IP address of the Kubernetes cluster.

Deployment definition

The deployment is the part of the configuration that refers to the containers. In Kuber-
netes containers are run in pods. Containers inside these pods share the network.

Here’s our simplified deployment configuration:

4)

apiVersion: apps/vl
kind: Deployment
metadata:
name: varnish
labels:
name: varnish
spec:
replicas: 1
selector:
matchLabels:
name: varnish
template:
metadata:
labels:

name: varnish

spec:
containers:

- name: varnish
image: "varnish:stable"
imagePullPolicy: IfNotPresent
ports:

- name: http
containerPort: 80
protocol: TCP

livenessProbe:

httpGet:
path: /varnish-ping
port: 80

initialDelaySeconds: 30

periodSeconds: 5

readinessProbe:

httpGet:
path: /varnish-ready
port: 80

initialDelaySeconds: 30

periodSeconds: 5

volumeMounts:
- name: varnish

381

CHAPTER 7: VARNISH FOR OPERATIONS

mountPath: /etc/varnish
volumes:
- name: varnish
configMap:
name: varnish

For naming and labeling we stick with varnish. Labels are referred to by selectors in
other resource types. In the service definition, the selector referred to a pod that had
the name: varnish label.

That way we can link services to pods. The pod we’re creating in our deployment has a
Varnish container named varnish that uses the varnish:stable Docker image. This is
our official image.

Port 80 is exposed and used by the service through the service’s targetPort:80 config-
uration.

The deployment also refers to a liveness probe and a readiness probe. These URL end-
points are monitored by Kubernetes.

The livenessProbe configuration is used to check whether the container is still alive.
If the endpoint doesn’t respond, the container is restarted. The readinessProbe con-
figuration is used to decide whether or not the container can accept traffic.

You may have noticed that these probing endpoints were defined in the VCL file. As
long as they return the synthetic H77P 200 response, all is good.

There’s also a volume definition. It creates a volume named varnish that refers to the
config map we created. This way, we can mount the config map as a disk inside the con-
tainer. Via the volumeMounts configuration in the container definition, we can mount
the config map to the /etc/varnish folder. This results in /etc/varnish/default.
vcl being available.

Deploying Varnish to Kubernetes

Assuming that the ConfigMap definition, the Service definition, and the Deployment
definition are all stored in separate YAALL files in the same folder, the following com-
mand can be used to deploy them to Kubernetes:

$ kubectl apply -f .
configmap/varnish created
deployment.apps/varnish created
service/varnish created

382

CHAPTER 7: VARNISH FOR OPERATIONS

The kubectl get allisone of those commands that can be run to figure out the
status of the resources we just created:

(N
$kubectl get all
NAME READY STATUS RESTARTS AGE
pod/varnish-dbc8dbc9c-zfc8t 1/1 Running @ 84s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
service/varnish ClusterIP 10.96.39.230 <none> 80/TCP
84s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/varnish 1/1 1 1 84s
NAME DESIRED CURRENT READY AGE
replicaset.apps/varnish-dbc8dbc9c 1 1 1 84s

_ J

The service is bound to port 80 on IP address 10.96.39.230 of your cluster.

If you’re running Kubernetes on your local machine, you can use kubectl port-for-
ward to forward the port of a service to a local port on your computer:

$ kubectl port-forward service/varnish 80860:860
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80

And in the end, we can access our service via http://localhost:8080 and receive our
synthetic output:

~
$ curl http://localhost:80860

<IDOCTYPE html>
<html>
<head>
<title>200 Welcome</title>
</head>
<body>
<h1>Error 200 Welcome</h1l>
<p>Welcome</p>
<h3>Guru Meditation:</h3>
<p>XID: 2</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
_ J

383

CHAPTER 7: VARNISH FOR OPERATIONS

If you want to clean up after yourself, just run kubectl delete -f . todelete the

created resources from your Kubernetes server.

-

g

An important disclaimer is that this example is not necessarily an accurate rep-
resentation of what is required to run Varnish inside Kubernetes in a production
environment. When it comes to backend selection, logging, persistent storage,
high availability and autoscaling, there is a lot more to be done.

But that, ladies and gentlemen, is beyond the scope of this book.

~

384

CHAPTER 7: VARNISH FOR OPERATIONS

7.2 Configuring Varnish

Once Varnish is installed, you will need to configure the varnishd program using a set
of options and runtime parameters. When Varnish is installed via packages, in the cloud,
or on Docker, conservative default values are set for you.

Chances are that these defaults aren’t to your liking and will need to be tweaked. An
overview of all options and parameters can be found at http://varnish-cache.org/
docs/6.0/reference/varnishd.html.

In this subsection, we’ll talk about common parameters and how you can modify their
values.

721 Systemd

When Varnish is installed via packages, or in the cloud, the systemd service manager will
be used to run varnishd and to provide configuration options.

The configuration for the Varnish service can be found in /1ib/systemd/system/var-
nish.service:

4)
[Unit]

Description=Varnish Cache, a high-performance HTTP accelerator
After=network-online.target

[Service]
Type=forking
KillMode=process

Maximum number of open files (for ulimit -n)
LimitNOFILE=131072

Locked shared memory - should suffice to lock the shared memory log
(varnishd -1 argument)

Default log size is 80MB vsl + 1M vsm + header -> 82MB

unit is bytes

LimitMEMLOCK=85983232

Enable this to avoid "fork failed" on reload.
TasksMax=infinity

Maximum size of the corefile.
LimitCORE=infinity

ExecStart=/usr/sbin/varnishd -a :6081 -f /etc/varnish/default.vcl -s

385

http://varnish-cache.org/docs/6.0/reference/varnishd.html
http://varnish-cache.org/docs/6.0/reference/varnishd.html

CHAPTER 7: VARNISH FOR OPERATIONS

malloc,256m
ExecReload=/usr/sbin/varnishreload

[Install]
WantedBy=multi-user.target

What you can see is that Varnish is listening on port 6881 for incoming connections,
that the /etc/varnish/default.vcl VCL file is loaded, and that 256 M B of memory
is allocated for object storage.

The unit files in /1ib/systemd/system/are not to be edited. Instead, systemd allows
you to override these files by creating appropriate files in /etc/systemd/system/.

Editing via systemctl edit

If you want to modify some of these settings, you can run the following commands:

[sudo systemctl edit varnish]

Here’s an example where we set the object allocation to 572 MB instead of the standard
256 MB value.

~

[Service]

ExecStart=

ExecStart=/usr/sbin/varnishd -a :6081 -f /etc/varnish/default.vcl -s
malloc,512m

Please note that you need to explicitly clear ExecStart before setting it again, as it
is an additive setting.

g J

This will create /etc/systemd/system/varnish.service.d/override.conf, which
will not interfere with package upgrades.

To view the unit file including the override:

386

CHAPTER 7: VARNISH FOR OPERATIONS

$ sudo systemctl cat varnish

/etc/systemd/system/varnish.service

[Unit]

Description=Varnish Cache, a high-performance HTTP accelerator
After=network-online.target

[Service]
Type=forking
KillMode=process

Maximum number of open files (for ulimit -n)
LimitNOFILE=131072

Locked shared memory - should suffice to lock the shared memory log
(varnishd -1 argument)

Default log size is 80MB vsl + 1M vsm + header -> 82MB

unit is bytes

LimitMEMLOCK=85983232

Enable this to avoid "fork failed" on reload.
TasksMax=infinity

Maximum size of the corefile.
LimitCORE=infinity

ExecStart=/usr/sbin/varnishd -a :6081 -f /etc/varnish/default.vcl -s
malloc,256m
ExecReload=/usr/sbin/varnishreload

[Install]
WantedBy=multi-user.target

/etc/systemd/system/varnish.service.d/override.conf

[Service]

ExecStart=

ExecStart=/usr/sbin/varnishd -a :6081 -f /etc/varnish/default.vcl -s
malloc,512m

_ J

Restart Varnish to make changes take effect: sudo systemctl restart varnish.

7.2.2 Docker

The varnishd configuration for our official Docker container doesn’t use systemd. It is
Docker that runs the varnishd process in the foreground of the container.

The Dockerfile uses an entrypoint file to define how Varnish should run. This is what it
looks like

387

CHAPTER 7: VARNISH FOR OPERATIONS

varnishd \
_F\
-f /etc/varnish/default.vcl \
-a http=:80 \
-a proxy=:8443,PROXY \
-p feature=+http2 \
-s malloc,$VARNISH_SIZE \
"$@"

e Thevarnishd program is started in the foreground thanks to the -F option.

¢ varnishd will listen for incoming connections on port 80 for regular H77TP, and
this listening port is named http.

e varnishd will listen for incoming connections on port 8443 for H7TP using the
PROXY protocol, and this listening port is named proxy.

* HTTP/2issupported thanks to the -p feature=+http2 parameter.

e varnishd will allocate a fixed amount of memory to object storage. The size is
defined by the $VARNISH_SIZE environment variable, which defaults to 100M.

e Any additional runtime parameter that is added in the docker run command will
be attached to varnishd, thanks to "$@".

The minimal configuration required to run this Docker container is done using the fol-
lowing command:

[docker‘ run -p 80:80 varnish]

Let’s say you want to override the default.vcl file, name the container varnish, set
the cache size to 1G, make the default_ttl an hour, and reduce the ban_lurker_age
to ten seconds. This is the command you’ll use for that:

docker run --name varnish -p 80:80 \
-v /path/to/default.vcl:/etc/varnish/default.vcl:ro \
-e VARNISH_SIZE=1G\
varnish \
-p default_ttl=3600 \
-p ban_lurker_age=10

Certain aspects of the configuration are handled by Docker:

388

CHAPTER 7: VARNISH FOR OPERATIONS

¢ The -p parameter allows you to forward the exposed ports of the container to
ports on your host system.

e The -v parameter allows you to perform a bind mount and make a local VCL file
available in the container.

e The -e parameter allows you to set an environment variable. In this case the VAR-
NISH_SIZE variable is set to 1G.

Thanks to "$@" in the entrypoint file, all additional positional arguments will be at-
tached to the varnishd process. This means that you can just add any supported Var-
nish runtime parameter to docker run, which will be added to varnishd.

In this case we added -p default_tt1=3600 and -p ban_lurker_age=10, which will
translate into varnishd runtime parameters. This provides enormous flexibility and
doesn’t require the creation of custom images.

7.2.3 Port configuration

We’ve featured the -a option a number of times, but there is still a ot to be said about
the listening addyress option in Varnish. It -a is omitted, varnishd will listen on port 80
on all interfaces.

Here’s the syntax for -a:

-a <[name=][address][:port][,PROTO][,user=<user>][,group=<group>]
[,mode=<mode>]>

¢ The name= field allows you to name your listening addresses.

e The address part allows you to define an /Pv4 address, an /Pv6 address, or the
path to a Unix domain socket (UDS).

* The :port part allows you to set the port on which this address is supposed to
listen.

e The PROTO field defines the protocol that is used; by default this is HTTP, but it can
also be set to PROXY to support the PROXY protocol.

e When a UDS is used, fields like user, group, and mode are used to control and
define permissions on the socket file.

* Multiple -a listening addresses can be used.
* Unnamed /listening addresses will be automatically named a@, a1, a2, etc.

Let’s throw in an example configuration that uses (zearly) all of the syntax:

389

CHAPTER 7: VARNISH FOR OPERATIONS

varnishd -a uds=/var/run/varnish.sock,PROXY,user=varnish,group=var-
nish,mode=660 \

-a http=:80 \

-a proxy=localhost:8443,PROXY

Let’s break this one down:

There is a listening address named uds that listens for incoming requests over a Unix
domain socket. The socket file is /var/run/varnish.sock and is accessible to the var-
nish user and varnish group. Because of mode=660, the varnish user has read and
write access, as do all users in the varnish group. All other users have no access to the
socket file. The protocol that is used for communication over this UDS is the PROXY
protocol.

There is also a listening address named http, which accepts regular H77TP connections
for all interfaces on port 80.

And finally, there’s a listening address named proxy that only accepts connections on
the localhost loopback interface over port 8443. And again, the PROXY protocol is
used.

f R
This setup is often used when Hich is installed on the server to terminate 7LS.

Regular HTTP connections directly arrive on Varnish. But Hitch takes care of
HTTPS requests and forwards the decrypted data to Varnish using HTTP over
the PROXY protocol.

Hitch can either choose to connect to Varnish using a Unix domain socket (UDS),

or via localhost over TCP/IP on port 8443,
_ J

124 Object storage

The -s option defines how varnishd will store its objects. If the option is omitted, the
malloc storage backend will be used, which stores objects in memory. The default stor-
age size is 100M.

A pretty straightforward example is one where we assign 1G of memory to Varnish for
object storage:

[var‘nishd -s malloc, 1G]

390

CHAPTER 7: VARNISH FOR OPERATIONS

Naming storage backends

You can also name your storage backends, which makes it easier to identify them in
VCL orin varnishstat. Here’s how you do that:

[var‘nishd -s memory=malloc,1G]

If you don’t name your storage backends, Varnish will use names like s0, s1, s2, etc.

If an object is larger than the memory size, you’ll see the following errors appear in the
varnishlog output:

ExpKill LRU_Fail
FetchError Could not get storage

Varnish notices that there is not enough space available to store the object, so it starts
to remove the least recently used (LRU) objects. This action fails because there is not
enough space in the cache to free up.

Additionally, the full content cannot be fetched from the backend and stored in cache,
hence the Could not get storage error.

In the end, the object will only be partially served.

Transient storage

It might sound surprising, but there’s also a secondary storage backend in use. It’s called
transient storage and holds short-lived objects.

Varnish considers an object short-lived when its TTL + grace + keep is less than the
shortlived runtime parameter. By default this is fen seconds.

Transient storage is also used for temporary objects. An example is uncacheable content
that is held there until it is consumed by the client. This is to avoid letting a slow client
occupy a backend for too long.

By default, transient storage uses an unlimited malloc backend. This is something that
should be kept in mind when sizing your Varnish server.

However, transient storage can be limited by adding a storage backend that is named
Transient.

Here’s an example:

391

CHAPTER 7: VARNISH FOR OPERATIONS

[var‘nishd -s Transient=malloc, 500M]

In this example, we’re limiting transient storage to SO00M.

Limiting the transient storage can negatively aftect short-lived objects. If whatever
is delivered is bigger than the transient storage size, objects will only be partially
delivered, as they don’t fully fit when streaming is enabled. When streaming is
disabled, it will lead to an HTTP 503 error.

File storage

There is also fzle storage available in Varnish. This type of object storage will store ob-
jects in memory backed by a file.

This is initiated as specified below:

[var-nishd -s file,/path/to/storage, 100G]

In this case, objects are stored in /path/to/storage. This file is 100G in size.

Although disk storage is used for this kind of object storage, the file stevedore is not per-
sistent. A restart will empty the entire cache.

The performance of this stevedore also varies quite a lot, as you depend on the write
speed of your disk. As your varnishd process runs, you will incur an increasing
amount of fragmentation on disk, which will further reduce the performance of the
cache.

Our advice is to not use the file stevedore at a large scale, and use the MSE steve-
dore instead.

MSE

The Massive Storage Engine (MSE) is a Varnish Enterprise stevedore that combines mem-
ory and disk storage to offer fast and persistent storage.

We will talk about AMSE in detail in one of the next sections. Let’s limit this discussion
to configuration.

392

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s how you set up MSE:

[varnishd -s mse,/var/lib/mse/mse.conf]

As you can see the mse stevedore can refer to a configuration file that holds more details
about the MSE configuration.

Here’s what such a configuration file can look like:

4)
env: {
id = "mse";
memcache_size = "5G";
books = ({
id = "book";
directory = "/var/lib/mse/book";
database_size = "2G";
stores = ({
id = "store";
filename = "/var/lib/mse/store.dat";
size = "100G";
})s
})s
}s
_ _J

This configuration will allocate 5G of memory for object storage. There is also 100G of
persistent storage available, which is located in /var/1ib/mse/store.dat.

All metadata for persisted objects is stored in /var/1ib/mse/book, which is 2G in size.
Using vmod_mse, you can let V'CL decide where objects should be persisted.

MSE is highly optimized and doesn’t suffer from the same delays and fragmentation as
the file stevedore.

If you set memcachesize = "auto" in your MSE configuration, the memory governor
will be activated. This will dynamically size your cache, based on the memory it needs
for other parts of Varnish.

The memory governor will also be activated when you haven’t specified a configuration

file for MSE:

[var-nishd -S mse]

393

CHAPTER 7: VARNISH FOR OPERATIONS

The memory governor will not limit the size of the cache, but the total size of the var-
nishd process. The total size is determined by the memory _target runtime parameter,
which is set to 80% by default. The memory_target can also be set to an absolute value.
This is very convenient as it allows you to bound the memory of Varnish as a whole and
not worry about unexpected overhead.

MSE is one of the most powerful features of Varnish Enterprise, but as mentioned, we’ll
do an MSE deep-dive later in this chapter.

7.2.5 Not using a VCL file

Although VCL is the most powerful feature of Varnish, you can still decide to stick
with the built-in VCL.

In that case, Varnish doesn’t know what the backend host and port are.

The -b option allows you to set this, but it is mutually exclusive with the - option that
is used to set the location of the VCL file.

Here’s how you use -b:

[var‘nishd -b localhost:8080 j

This example lets Varnish connect to a backend that is hosted on the same machine, but
on port 8080.

You can also use a UDS to connect, as illustrated below:

[var‘nishd -b /path/to/backend.sock]

7.2.6 Varnish CLI configuration

The Varnish CLI, which is accessible via varnishadm, or via a socket connection in
your application code, has a set of parameters that can be configured.

The -T option is the primary varnishd option to open up access to the CLI This op-
tion defines the listening address for CLI requests.

Authentication to the varnishd CLI port is protected with a challenge and a secret key.
The location of the secret key is defined by the -S parameter.

Here’s an all-in-one example containing both options:

394

CHAPTER 7: VARNISH FOR OPERATIONS

[var‘nishd -T :6082 -S /etc/varnish/secret]

Anyone can create a socket connection to the Varnish server on port 6082. The secret that
isin /etc/varnish/secret will be required to satisty the challenge that the varnishd
CLIimposes.

However, in most cases, you don’t actually need to specify -S or -T because if they are
not given, varnishd will just generate them randomly. But, in that case, how can var-
nishadm know about these parameters? Very simply, if varnishadm isn’t given a -S/-T
combination, it’ll look at the varnishd workdir to figure those values out.

The workdir is the value of the -n parameter, which defaults to /var/1ib/var-
nish/$HOSTNAME. This is why, in the default case, varnishadm needs no extra parame-
ters to access the Varnish CLI The -S and -T parameters are mainly there to configure
external access.

/.2.7 Runtime parameters

Besides the basic varnishd startup options, there is a large collection of runtime pa-
rameters that can be extended.

The full list can be found at http://varnish-cache.org/docs/6.0/reference/varnishd. htm-
I#list-of-parameters.

It is impossible to list them all, but a very common example is enabling H77TP/2. Here’s
how you do that:

[var‘nishd -p feature=+http2]

These are feature flags, but we can also assign values. For example, we can redefine what
are considered short-lived objects, by setting the shortlived runtime parameter:

[var‘nishd -p shortlived=15]

This means that objects with a 77L less than 15 seconds are considered short-lived and
will end up in transient storage.

395

CHAPTER 7: VARNISH FOR OPERATIONS

By adding runtime parameters to the systemd override.conf file for Varnish,
you can persist the new value of these parameters. It is also possible to set them via
varnishadm param.set at runtime, but these aren’t persisted, and will be lost
upon the next restart.

396

CHAPTER 7: VARNISH FOR OPERATIONS

13 TLS

7.3.1 Historically
Historically, Varnish didn’t support TLS/SSL.

The primary focus has always been performance, and back when Varnish was coming
up, the use of SSL and TLS wasn’t as prevalent as it is now.

With performance in mind, there was always a fear that the implementation of a crypto
layer would jeopardize performance.

There was also the UNIX philosophy lingering in the back of the minds of Varnish’s cre-
ators:

[Do one thing well.]

The one thing Varnish does well is caching. And if TLS/SSL is so important, should it
be part of Varnish, or should it be implemented in another layer of your web platform?

At some point, Varnish went for the latter, but decided to facilitate TLS termination by
supporting the PROXY protocol.

This way Varnish could still focus on its core duty, which is caching, but the threshold
for TLS termination could be lowered thanks to the PROXY protocol.

At this point, the PROXY protocol should sound familiar. We’ve covered it a number of
times throughout the book. You should also know that varnishd can listen for incom-
ing connections over PROXY. And thanks to vmod_proxy, you can extract proxy-proto-
col-v2 TLV attributes from the TCP connection.

1.3.2 Hitch

Lowering the barrier for TLS termination was the ambition at first, but in 2015 Varnish
Software decided to contribute to this by developing an open source TLS proxy.

In the vein of the UNIX philosophy, the goal was to create a lightweight TLS proxy that
was built for the job, but that would also play nice with Varnish.

The project was named Hitch, and unsurprisingly the one thing it does well is TLS.

Hitch is a separate program that you run in front of your Varnish server, as illustrated in
the diagram below:

397

CHAPTER 7: VARNISH FOR OPERATIONS

HTTP

HTTR/
HTTPS HTTPS

Hitch

What you also see is that Hitch and Varnish are often installed on the same server. They
communicate with each other over the PROXY protocol. This can be done over regular
TCP/IP, but a UNIX domain socket (UDS) connection can also be made to further re-
duce latency.

Although Varnish did lower the barrier for TLS termination, there was always a risk
that adding an extra hop in the form of a third-party TLS proxy could have an impact
on performance and latency.

By introducing Hitch as a component in the reference architecture of Varnish, we could
meet guarantees of performance, scalability, and low latency. The throughput rate of
100 Gbps on a single server is proof of that.

4)
Hitch was specifically designed to terminate 7LS connections for Varnish, but it
does not exclusively work with Varnish. It is not even restricted to HTTP traffic.

Any service that communicates over 7CP/IP and that requires 7LS can be termi-

nated using Hitch.
_ Y,

Installing Hitch

The project’s website can be found at https://hitch-tls.org/, but the code itself is hosted
on https://github.com/varnish/hitch.

You are free to compile Hitch from source; there’s no denying that packages are a lot
more convenient. Up until recently, you had to rely on distro packages, which are often
outdated.

398

https://hitch-tls.org/
https://github.com/varnish/hitch

CHAPTER 7: VARNISH FOR OPERATIONS

More recently, we decided to provide official packages for Hizch at https://packagecloud.
io/varnishcache/hitch. This happens to be the same place where official Varnish Cache
packages can be found. This makes installing these packages look familiar.

For Debian and Ubuntu systems, you can run the following script:

curl -s https://packagecloud.io/install/repositories/varnishcache/
hitch/script.deb.sh | sudo bash

For Red Hat, CentOS, and Fedora systems, the following script can be used:

curl -s https://packagecloud.io/install/repositories/varnishcache/
hitch/script.rpm.sh | sudo bash

And in the end you either run apt-get install hitch,oryum install hitch, de-
pending on your Linux distribution.

Configuring Hitch

After installing Hitch, you can customize its behavior by moditying /etc/hitch/
hitch.conf. In order to activate these changes, you have to reload the hitch process via
systemd:

sudo edit /etc/hitch/hitch.conf
sudo systemctl reload hitch

You’re not solely reliant on /etc/hitch/hitch.conf. The hitch program also hasa
number of command line parameters that can be used to extend the default behavior or
to override settings that were defined in hitch.conf.

But even when using a configuration file, hitch will need to know where to find it, so
you’ll use the --config parameter to indicate that:

[hitch --config=FILE]

But let’s talk about Hizch configurations. We’ve categorized some interesting ones into

five groups, which represent the five next subsections.

399

https://packagecloud.io/varnishcache/hitch
https://packagecloud.io/varnishcache/hitch

CHAPTER 7: VARNISH FOR OPERATIONS

Networking settings

Hitch is a proxy server, just like Varnish. This means we need to configure how it accepts
connections, and how it proxies them through to Varnish.

The listening address is configured using a frontend block. As you can see in the exam-
ple below, accepting connections on all interfaces on port 443 is the most common use

case:
frontend = {
host = "*"
port = "443"
}

You can have multiple frontend blocks in a single configuration file, and these frontend
blocks can hold additional settings.

Here’s an example where we have two frontends, each with their own certificates:

frontend = {
host = "1.2.3.4"
port = "443"
pem-file = "/etc/hitch/example.com.pem"

}

frontend = {
host = "5.6.7.8"
port = "443"
pem-file = "/etc/hitch/foo.com.pem"

Just so you know, this is just a hypothetical example. You don’t really need to de-
fine multiple frontends to host multiple certificates. SN/ will make sure you can
serve multiple certificates on the same endpoint by inspecting the Subject Alterna-
tive Name of the certificate.

- J

The frontend can also be defined as an one-liner, as illustrated below:

[-Fr‘ontend = "[*]:444"]

And it is also possible to attach a certificate to the frontend:

400

CHAPTER 7: VARNISH FOR OPERATIONS

[frontend = "[*]:444+/etc/hitch/cert.pem"]

We still need to talk about backend connections. The backend configuration can be used
to define where Hitch is going to proxy its traffic to.

Here’s an example where we connect to Varnish over TCP/IP:

[backend = "[127.0.0.1]:8443"]

But we can also connect using a UDS:

[backend = "/var/run/varnish.sock"]

And before we talk about the next subject, I’d like to show you an example where
frontend and backend configurations are done via command line arguments and not
via the configuration file:

sudo hitch -u hitch -f "[*]:443+/etc/hitch/cert.pem” -b
"[127.0.0.1]:80"

The -u parameter defines which user should be used to run hitch. The root user
is not allowed.

- J

When the backend directive or command line argument refers to a hostname, this
hostname is resolved to the corresponding IP address upon startup. By default this
happens only once. When the hostname is changed, and resolves to another IP address,
Hitch does not notice this, and keeps on sending data to the IP address it resolved upon
startup.

Hitch has a backend-refresh setting that allows you to define the frequency of the
backend DNS resolution. The default value is zero, meaning no backend refresh takes

place.
The following example will allow backend DNS refreshes to happen every 30 seconds:

[backend—r‘efr‘esh = 30]

And this is the command line equivalent:

401

CHAPTER 7: VARNISH FOR OPERATIONS

sudo hitch -u hitch -f "[*]:443+/etc/hitch/cert.pem" -b "[backend.
example.com]:80" -R 30

The -R option is the shorthand for --backend-refresh, which is also supported.

Certificate settings

We just showed you that you can bind certificates to frontend listening addresses. But in
most cases, it makes more sense to define the certificate location with a global scope.

The pem-file directive can be added to your Hitch configuration file outside of the
frontend data structure:

[pem—file = "/etc/hitch/example.com.pem"]

The PEM file refers to a x509 certificate file. It is a concatenation of the private key, the
main certificate, and the corresponding certificate chain.

The pem-file directive can be used multiple times to load multiple certificates. Server
Name Indication (SNI) will make sure the right certificate is loaded based on Subject
Alternative Name of the certificate.

However pem-file is more than a one-liner, it is a data structure of its own. It allows you
to split up the certificate from the private key.

Here’s an example of a pem-file definition with a separate private key file:

pem-file = {
cert = "/etc/hitch/example.com.pem"
private-key = "/etc/hitch/private.key"

This data structure can also be defined multiple times. SN/ will again make sure the
right certificate is matched.

If you have a bunch of certificate files that happen to change occasionally, there is a
more flexible way to define them, which is by using the pem-dir directive.

Its value is a directory where certificates are stored. Here’s an example:

402

CHAPTER 7: VARNISH FOR OPERATIONS

[pem—dir‘ = "/etc/hitch/cert.d"]

Hitch will iterate through that directory and load the certificate information from every

file.

It does make sense to define a fallback pem-file directive in your configuration, in case
you are dealing with clients that do not support SNI. If you do not define a fallback, the
first match of the iteration of the pem-dir will be used. If you set sni-nomatch-abort
= off, the connection will abort it SN7 didn’t find a matching certificate.

There is also a pem-dir-glob directive that allows you to be more selective when using
pem-dir to load certificates from a directory. A glob pattern can be applied while iterat-
ing through the directory.

When you combine them, you end up with the following configuration:

pem-dir = "/etc/hitch/cert.d"
pem-dir-glob = "*.pem"

This example will load all certificates from the /etc/hitch/cert.d folder that match
the *.pem pattern. A certificate like /etc/hitch/cert.d/example.com.pem would be
matched, whereas /etc/hitch/cert.d/example.com.cert wouldn’t.

Loading certificates is also possible through command line arguments. We’ve already
seen an example where a certificate was bound to a frontend. Let’s look at an example
where a certificate is defined at the global scope:

sudo hitch -u hitch -f "[*]:443" -b "[127.0.0.1]:80" /etc/hitch/cert.
pem

Protocol settings
When it comes to protocols, there are three questions to be asked:

e Which TLS/SSL protocols are we using to accept connections?
¢ What protocol are we using to connect to the backend?

* Which application-layer protocols are we going to announce to the clients?

403

CHAPTER 7: VARNISH FOR OPERATIONS

TLS protocols

Let’s start off by saying that SSL 7s dead. For the sake of clarity, we talk about TLS/SSL,
but in reality we’re no longer using the SSL protocol. It’s all TLLS.

The t1s-protos directive allows us to set the T.LS protocols that Hitch is willing to sup-
port. And although it is technically possible to mention SSLv3 as a potential protocol,
the best way to configure this directive nowadays is as follows:

[tls—pr‘otos = TLSv1.2 TLSv1.3]

The support protocol versions also depend on what the OpenSSL version on your
server supports. For TLSV1.3, OpenSSL version 1.1.1 is the minimum requirement.

The --tls-protos command line option can be used to override whatever is stored
in your configuration file. Here’s an example of how to define the 7LS protocols via the
command line:

sudo hitch -u hitch \
-f "[*]:443" -b "[127.0.0.1]:80" \
--tls-protos="TLSv1l.3" /etc/hitch/cert.pem

PROXY protocol

When we talk about proxying requests to the backend, we’ve been consistently talking
about HTTP. That is not the case in Hitch because it has no awareness of HTTP.

What we can do is enable the PROXY protocol, and share information about the original
client connection. This information is sent as a transport-layer header as soon as the
connection is established, and does not depend on any layer 7 protocol.

Enabling the PROXY protocol can be done via the write-proxy-v2 directive, as illus-
trated below:

[wr‘ite—pr‘oxy—vZ = on]

Of course, if your backend only supports version 1 of the protocol, you can set it as fol-

lows:

[wr‘ite—pr‘oxy—vl = on]

404

CHAPTER 7: VARNISH FOR OPERATIONS

There is also a proxy-proxy setting that is used when incoming connections to Hitch
are also made using the PROXY protocol. In that case the incoming PROXY informa-
tion is proxied to the backend.

Here’s an example of how you enable this:

[pr‘oxy—pr‘oxy = on]

Thewrite-proxy-vl, write-proxy-v2, and proxy-proxy directives are all mu-

tually exclusive with one another.

And of course, these settings can also be configured via the command line. Here’s the
example that proves it:

sudo hitch -u hitch -f "[*]:443" -b "[127.0.0.1]:80" \
--write-proxy-v2="on" /etc/hitch/cert.pem

ALPN protocols

Hitch is not aware of any layer 7 protocol, but 7LS offers an extension to negotiate
which application-layer protocol is about to be used.

The extension is called ALPN, which is short for Application-Layer Protocol Negotiation.
The client announces the protocols it supports, and Hitch can then choose which appli-
cation-layer protocol it supports.

ALPN is commonly used to check whether or not the server supports HTTP/2.

It seems a bit contradictory that a service like Hztch, which has no notion of layer 7 pro-
tocols, is actually getting involved in the layer 7 protocol negotiation.

But it’s all being done in the name of efficiency: because the negotiation is part of the
TLS protocol, no extra roundtrips are required. And after all, apart from announcing
application-layer protocols it supports, it does nothing with it afterwards.

Although Hitch is not strictly tied into H7TTP, the primary use case of Hitch is termi-
nating T.LS for HTTPS connections.

Here’s an example where we configure ALPN protocols via the alpn-protos directive:

[alpn—pr‘otos = "h2, http/1.1"]

405

CHAPTER 7: VARNISH FOR OPERATIONS

When the client supports HTTP/2, this setting will result in an HTTP/2 connection being
established. Hitch will terminate the 7S connection, and shuffle the rest of the bytes
to Varnish. Because h2 was part of the ALPN list, the client will assume that Varnish
supports HTTP/2.

Therefore it is important to attach the -p feature=+http2 runtime parameter to
varnishd, otherwise the client will attempt to send HTTP/2 traffic to Varnish even
though it doesn’t support it.

Cipher settings

If TLSv1.3 were used as a TLS protocol, the ciphersuites directive would be used to
determine which cryptographic algorithms are used.

Here’s the default value:

ciphersuites = "TLS_AES_128 GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_
CHACHA20_POLY1305_SHA256"

Although cryptography itself is very much outside of the scope of this book, it’s worth
explaining what some of these values mean. Take for example TLS_AES_128 GCM_
SHA256.

This uses an Advanced Encryption Standard with 128bit key in Galois/Counter mode as
the encryption algorithm. The hash that is used to ensure the authenticity of the en-
cryption is a SHA256 hash.

These algorithms are exclusive to TLSv1.3 and have no overlap with other TLS versions.
If you’re on TLSv1.2 or older, you can use the ciphers directive to describe the accept-

ed cryptographic algorithms:

ciphers = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256: -
ECDHE-ECDSA-AES256-GCM-SHA384 : ECDHE-RSA-AES256-GCM-SHA384 : ECDHE-ECD-
SA-CHACHA20-POLY1305 : ECDHE-RSA-CHACHA20-POLY1305 : DHE-RSA-AES128-GCM-
SHA256 : DHE-RSA-AES256-GCM-SHA384"

By specifying both ciphersuites and ciphers, you remain compatible with both
TLSv1.2 and TLSv1.3. The reason for these two settings being separate is that TLSv1.3
brought with it a completely new set of cipher suites, none of which are compatible with
older versions of TLS.

406

CHAPTER 7: VARNISH FOR OPERATIONS

We advise sticking with the default values, and when in doubt, have a look at hrtps://
wiki.mozilla.org/Security/Server_Side_TLS.

You can also choose who is in charge of selecting the used ciphers. The prefer-serv-
er-ciphers directive is responsible for that.

This is the default value:

[pr‘efer‘—ser‘ver‘—cipher‘s = off]

This means the client chooses which cipher is used. If you set it to on, Hitch will choose.
In that case the order of the specified ciphers is significant: a cipher specified early will
take precedence over the ones specified later.

0CSP stapling

OCSPis short for Online Certificate Status Protocol and is a protocol that checks the
revocation status of TLS certificates. OCSP will check the status of the certificate by
performing an HT TP call to the Certificate Authority’s OCSP server. The correspond-
ing URL is stored inside the certificate. Although OCSPis a lot more efficient than its
predecessor, the Certificate Revocation List (CRL) protocol, which downloaded a list of
revoked certificates, it has potential performance implications.

Not only is there added latency for the end-user because of the OCSP call to the C4
for every TLS connection, it also puts a lot of stress on the OCSP servers. These servers
could end up serving millions of requests at the same time and might crumble under
the heavy load. Unverified OCSP calls result in errors being displayed in the browser.

What is 0CSP stapling?

OCSP stapling is an alternative mechanism that shifts the responsibility for the OCSP
call from the client to the server. This means that the server will perform occasional
OCSP calls for the certificates it manages on behalf of the client. The resulting status is
stapled onto the TLS handshake, and removes the need for a client to perform an OCSP
call.

This means fewer roundtrips, less latency for the client, and less stress on the OCSP serv-
ers. When a client doesn’t receive a stapled response, it may perform the OCSP call itself.

Although it may appear that OCSP stapling can allow servers to falsely verify fraudulent
certificates, there are security mechanisms in place to prevent this. The OCSP response

407

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS

CHAPTER 7: VARNISH FOR OPERATIONS

is securely signed by the C4 and cannot be tampered with by the server. If the signature
verification doesn’t match, the client will abort the connection.

OCSP support in Hitch

Hitch supports OCSP stapling and has some configuration directives to control certain
aspects of this mechanism.

The ocsp-dir directive is the directory in which OCSP responses are cached. The de-
fault directory is /var/1lib/hitch:

[ocsp—dir‘ = "/var/lib/hitch"]

The lifetime of a cached OCSP response is determined by whether the refresh infor-

mation is part of the response. When no such information is provided in the response,
Hitch will refresh the status of a certificate with a certain frequency. This frequency is
determined by the ocsp-refresh-interval directive. By default this is 1800 seconds.

Here’s an example of how to lower the value to 500 seconds:

[ocsp-refr‘esh-inter‘val = 500]

When connecting to an OCSP server, the ocsp-connect-tmo and the ocsp-resp-tmo
should be respected. These settings represent the connect timeout and last byte timeont
for these connections. Their respective default values are 4 seconds and 10 seconds.

Here’s an example in which we add some leniency by increasing the timeouts:

ocsp-connect-tmo = 6
ocsp-resp-tmo = 15

The stapled OCSP response is to be verified by the client, but by enabling ocsp-veri-
fy-staple, Hitch will also verify the response and remove the staple when the verifica-
tion fails. It is up to the client to perform the OCSP check itself.

Mutual TLS

Mutual TLS (mTLS) is a concept where both the server and the client must guarantee
their respective identities via T.LS certificates. For client authentication the same X.509
standard will be used to issue client certificates.

408

CHAPTER 7: VARNISH FOR OPERATIONS

Itis up to the client to present the certificate when connecting to the server using 7°LS.
The server can then verify the validity of that certificate, based on a C4 chain that is
stored on the server.

Hitch supports mTLS and offers two configuration directives to enable this:

client-verify = required
client-verify-ca = "/etc/hitch/certs/client-ca.pem"

This example requires the client to authenticate itself using a client certificate. This is
done by setting client-verify = required. This means if the client doesn’t provide
a certificate, or the certificate verification fails, the connection will be aborted.

If client-verify = optional is set, a client that does not send a client certificate will
still be allowed to connect. But if a client sends a certificate that cannot be verified, the
connection will be aborted.

The default value is client-verify = none, which means no client verification is re-

quired.

The client-verify-ca parameter refers to a file where the certificate chain is stored.
The server will use this chain of certificates to verify the incoming client certificate.

Here’s an example of how to use client certificates with curl:

curl --cacert ca.crt \
--key client.key \
--cert client.crt \
https://example.com

In this example, curl will connect to https://example.com, which may require the
client to authenticate itself using a certificate.

* The --cacert parameter allows the client to send the certificate chain. These are
trusted certificates that the actual certificate depends on.

* The --key parameter contains the location to the private key. This key is used to
sign the certificate.

e The --cert parameter refers to the actual certificate that is used for authentication.

Please note that the --cacert parameter in curl and the client-verify-ca con-
figuration directive in hitch refer to the same certificate chain.

409

CHAPTER 7: VARNISH FOR OPERATIONS

7.3.3 vmod_proxy

When Hitch is used to terminate 7.LS connections in front of Varnish, it isn’t easy for

Varnish to know whether or not the incoming request was an H7TPS request or a regu-
lar HTTP request.

There are some VCL tricks you can use to figure it out.

If you don’t use the PROXY protocol, you can check the value of the X-Forwarded-For
header, and if the corresponding IP address matches the one from Hitch, you know
you're dealing with an HTTPS connection. This isn’t 100% reliable because the IP ad-
dress might also be localhost, which doesn’t tell you a lot.

If you enable the PROXY protocol, you can run the following V’CL code to check the
server port:

~N
vcl 4.1;
import std;
sub vcl_recv {
if (std.port(server.ip) == 443) {
set req.http.X-Forwarded-Proto = "https";
} else {
set req.http.X-Forwarded-Proto = "http";
}
}
_ J

But there’s an even better way, which is by leveraging vmod_proxy, as we talked about
in chapter 5:

~N
vcl 4.1;
import proxy;
sub vcl_recv {
if (proxy.is_ssl1()) {
set req.http.X-Forwarded-Proto = "https";
} else {
set req.http.X-Forwarded-Proto = "http";
}
}
o J

410

CHAPTER 7: VARNISH FOR OPERATIONS

This example uses the proxy.is_ss1() to figure out whether or not the connection

was encrypted via 7LS. And there’s a lot more information available that can be re-
trieved from the PROXY protocol.

Here’s an example where we extract a variety of so-called T'LV attributes from the
PROXY protocol header:

&

vcl 4.1;
import proxy;

sub vcl_deliver {

set resp.http.alpn = proxy.alpn();

set resp.http.authority = proxy.authority();

set resp.http.ssl = proxy.is_ssl();

set resp.http.ssl-version = proxy.ssl version();

set resp.http.ssl-cipher = proxy.ssl cipher();

set resp.http.client-has-cert-sess = proxy.client_has_cert_
sess();

set resp.http.client-has-cert-conn = proxy.client_has_cert_
conn();

}

Let’s talk about the individual functions that were used, and the output they can re-

turn:

proxy.alpn() will return the ALPN token that was negotiated. This will typically
be one of h2 or http/1.1.

proxy.is_ss1() will return a boolean. If the connections were made using 7LS it
will be true, and it will be false otherwise.

proxy.ssl_version() will recurn the TLS/SSL version that was used during the
session. TLSv1.3 is a common version that can be returned.

proxy.ssl_cipher() will return the encryption cipher that was used to set up the
encrypted connection. TLS_AES_256_GCM_SHA384 could be a possible value.

proxy.authority() will return the server name as it was presented by the client
during handshake. example.com is a possible value.

proxy.client_has_cert_sess() will return a boolean. This function will re-
turn true if the dient certificate was provided for the session. It is possible that the
session was resumed on a new connection, and that the handshake happened in a
previous connection.

proxy.client_has_cert_conn() will also return a boolean. This function will
return true if the c/ient certificate was provided for the connection.

411

CHAPTER 7: VARNISH FOR OPERATIONS

vmod_proxy has some other functions as well, but the TLV attributes that are
retrieved in these functions are not processed by Hitch.

734 Nafive TLS in Varnish Enterprise

Although Hitch is simple, flexible, stable, secure, and very fast, Varnish Software noticed
that some of its customers wanted to go beyond the limit of 700 Gbps per server.

This use case obviously doesn’t apply to your average Varnish user. But Varnish Soft-
ware decided to find a solution and did so by oftering a native TLS implementation in
Varnish Enterprise.

This 7n-core TLS implementation can easily handle 200 Gbps on a single server and reus-
es the configuration syntax of Hitch.

; HTTR/HTTES
Varnish Webserver

hitch.conf

Native TLS in Varnish Enterprise

Enabling native TLS

As of Varnish Enterprise 6.0.6r2 you can use the -A runtime parameter in varnishd,
and point it to a Hitch config file for native TLS to work.

Here’s an example of how to use -A :

[varnishd -A /etc/varnish/tls.cfg -a :80 -f /etc/varnish/default.vcl j

Please do not confuse -a with -A:
e -aisused todefine HTTP and PROXY listening addresses.
. -Ais used to set up native TLS.

Please note that there is no need to define the 7LS port via -a :443 because this is all
done in the Hitch configuration file.

412

CHAPTER 7: VARNISH FOR OPERATIONS

Configuring native TLS

As mentioned, native TLS support in Varnish Enterprise uses the Hitch configuration
syntax. It is important to know that it only uses a subset of these configuration direc-

tives.

Keep in mind that zative TLS doesn’t need to proxy data through to some backend, so
all settings that are related to backend communication are in fact irrelevant. Varnish
won’t complain if these settings are present, but it will ignore them.

Here’s a good example of a TLLS configuration file that can be used in Varnish:

frontend
host
port

[}
~~

ngn

"443"

}

pem-file

"/etc/varnish/certs/example.com"

ciphersuites = "TLS_AES_128 GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_
CHACHA20_POLY1305_SHA256"

ciphers = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256: -
ECDHE -ECDSA-AES256-GCM-SHA384 : ECDHE-RSA-AES256-GCM-SHA384 : ECDHE-ECD-
SA-CHACHA20-POLY1305 : ECDHE -RSA-CHACHA20-POLY1305 : DHE-RSA-AES128-GCM-
SHA256 : DHE-RSA-AES256-GCM-SHA384"

tls-protos = TLSv1l.2 TLSv1.3

prefer-server-ciphers = false

- J

Let’s break this configuration down:

* The frontend data structure will accept connections on port 443 on all network
interfaces.

e The pem-file directive points to the certificate that will be used.

* ciphersuites is the list of ciphers that will be used for TLSv1.3 connections.
e ciphers is thelist of ciphers that will be used for TLSv1.2 connections.

e tls-protos allows TLSv1.2 and TLSv1.3 to be used.

¢ Theprefer-server-ciphers directive states that the cipher selection can be de-

cided by the client.

413

CHAPTER 7: VARNISH FOR OPERATIONS

When to use native TLS

It seems quite convenient to be able to recycle your Hitch configuration file and benefit
from native TLS.

The native TLS teature was exclusively built for performance and to go beyond the 100
Gbps per server threshold.

Under all other circumstances, we would advise you to continue using Hitch. The main
reason being security.

Hitch is a separate process that runs under a different user than Varnish. If for some
reason there is a 7LS vulnerability, only the crypto part will be exposed. Your cache,
containing potentially sensitive data, will not.

This separation of concerns can also be beneficial from a scalability point of view: you
can scale your TLS separately from your caching, and make sure servers are tuned for
their respective jobs.

But if you don’t care too much about these things, you just might appreciate the fact
that native TLS removes the need to manage a separate 7LS proxy. So that’s one less
service to worry about, and one less thing that can fail on you.

73.5 vmod _tls

When using native TLS in Varnish Enterprise, the use of vmod_proxy becomes irrele-
vant because there is no proxying happening.

However, there is an alternative: it’s called vimod_t1s, and it has a similar API.

Here’s the TLS detection example from earlier where proxy and ss1 are replaced with
tls:

vcl 4.1;
import tls;
sub vcl_recv {
if (tls.is_tls()) {
set req.http.X-Forwarded-Proto = "https";
} else {
set req.http.X-Forwarded-Proto = "http";
}
}
_ J

414

CHAPTER 7: VARNISH FOR OPERATIONS

This example will set the X-Forwarded-Proto request header with the right scheme as

its value. This allows the application to use the right scheme for its URLs, and it can also

decide to vary on this header by setting Vary: X-Forwarded-Proto.

The other attributes can also be retrieved. Here’s an example where we return the vari-

ous TLS attributes via response headers:

~N
vcl 4.1;
import tls;
sub vcl_deliver {
set resp.http.alpn = tls.alpn();
set resp.http.authority = tls.authority();
set resp.http.cert-key = tls.cert_key();
set resp.http.cert-sign = tls.cert_sign();
set resp.http.tls = tls.is_tls();
set resp.http.cipher = tls.cipher();
set resp.http.version = tls.version();
}
_ J
The output for these headers could be the following:
(N
alpn: h2
authority: localhost
cert-key: RSA2048
cert-sign: RSA-SHA256
tls: true
cipher: TLS_AES_256_GCM_SHA384
version: TLSv1.3
_ _J

7.3.6 Backend TLS

We’ve been focusing so much on dient-side TLS that we almost forgot to mention that

backend TLS is also supported. This is a Varnish Enterprise feature, by the way.

Configuring backend connections over 7LS is quite simple, as you can see in the exam-

ple below:

415

CHAPTER 7: VARNISH FOR OPERATIONS

backend default {
.host = "backend.example.com";
.port = "443";
.ssl = 1;
.ssl sni = 1;
.ssl_verify_peer
.ssl verify host

non
(I
S0 o

}
- J

It’s just a matter of enabling .ss1 to turn on backend TLS. Keep in mind that you
should probably modify the .port as well and set it to 443.

SNI is enabled by default, but the example enables it explicitly.

The .ss1_verify_peer option validates the certificate chain of the backend. By dis-
abling this setting, the backend is allowed to use se/f-signed certificates.

.ssl_verify_host, which is disabled by default, will check whether or not the Host
header of the backend request matches the identity of the certificate.

The previously mentioned vmod_t1s is also of benefit for backend TLS connections.
When used from the VCL subroutine vcl_backend_response, it will report its values
based on the current TLS backend connection, using the exact same interface as de-
scribed in the previous section.

13.7 End-to-end

As we near the end of the 7LS section of the book, it is clear that end-to-end encryption
of the connection is possible.

* Hitch can be used to terminate TLS for Varnish.

* Hitch also has the ability to enforce client certificates.

* Varnish Enterprise can provide a native TLS implementation.

* Varnish Enterprise also has an option to communicate with the backend over 7LS.

It’s safe to say that the crypto part is well-covered.

416

CHAPTER 7: VARNISH FOR OPERATIONS

/4 Massive Storage Engine

The Massive Storage Engine is probably the most significant feature that Varnish Enter-
prise offers. It combines the speed of memory, and the reliability of disk to offer a steve-
dore that can cache terabytes of data on a single Varnish server.

The cache is persisted and can survive a restart. This means you don’t need to rewarm
the cache when a Varnish server recovers from a restart.

MSE is commonly used to build custom CDNs and to accelerate OTT video platforms.

But it’s not only about caching large volumes of data: MSE’s memory implementation
represents a clear improvement over Varnish’s original malloc stevedore.

Before we dive into the details, we need to talk about the history of MSE, and why this
stevedore was developed in the first place.

/4.1 History

Before MSE was a viable stevedore for caching large volumes of data, the Varnish project
had two disk-based stevedores:

o file

* persistence

The file stevedore

The file stevedore stores objects on disk, but not in a persistent way: a restart will result
in an empty cache.

That is because the file stevedore is nothing more than memory storage that is backed
by a file: if the size of the cache exceeds the available memory, content will be sent to the
disk. And content that is not available in memory will be loaded from the disk.

It’s just like the operating system’s swap mechanism, where the disk is only used to ex-
tend the capacity of the memory without offering any persistence guarantees.

The operating system’s page cache will decide what the bot content is that should be
buffered in memory. This ensures that not every access to the file system results in 7/0
instructions.

417

CHAPTER 7: VARNISH FOR OPERATIONS

The problem with the file stevedore is that the page cache isn’t really optimized for cach-
es like Varnish. The page cache will guess what content should be in memory, and if that
guess is wrong, file system access is required.

This results in a lot of context switching, which consumes server resources.

The biggest problem, however, is disk fragmentation, which increases over time. Be-
cause the file stevedore has no mechanism to efficiently allocate objects on disk, objects
might be scattered across multiple blocks. This results in a lot more dzsk 1/0 taking
place to assemble the object.

Over time, this becomes a real performance killer. The only solution is to restart Var-
nish, which will allow you to start over again. Unfortunately, this will also empty the
cache, which is never good.

The persistence stevedore

As the name indicates, the persistence stevedore can persist objects on disk. These
objects can survive a server restart. This way your cache remains intact, even after a
potential failure.

However, we would not advise you to ever use this stevedore. This is a quote from the
official Varnish documentation for this feature:

The persistent storage backend has multiple issues with it and will likely be re-
moved from a future version of Varnish.

The main problem is that the persistence stevedore is designed as a log-structured file
system that enforces a strict FIFO approach.

This means:
¢ Objects always come in one way.
¢ Objects always come out the other way.

This means that the first object that is inserted will be the first one to expire. Although
this works fine from a write performance point of view, it totally sidelines key Varnish
features, such as LRU eviction, banning, and many more.

Since this stevedore is basically unusable in most real-life situations, and since the file
stevedore is not persistent and prone to disk fragmentation, there is a need for a better
solution. Enter the Massive Storage Engine.

418

CHAPTER 7: VARNISH FOR OPERATIONS

Early versions of MSE

In the very first year of Varnish Software’s existence, a plan was drawn up to develop a

good file-based stevedore.

The initial focus was not to develop a persistent stevedore, but the critical goal in the
beginning was to offer the capability to cache objects that are larger than the available
memory.

Even the initial implementation was not that different from the file stevedore. It was
mostly a matter of smoothing the rough edges to create an improved version of the file
stevedore.

Behind the scenes memory-mapped files were still used to store the objects. This means
that the operating system decides which portions of the file it keeps in the page cache.
Since the page cache corresponds to a part of the system’s actual physical memory, the
result is that the operating system’s page cache serves as the memory cache for Varnish,
storing the hot objects, whereas the file system contains all objects.

The critical goal for the second version of MSE was to add persistent storage that would
survive a server restart. The metadata, residing in memory in version 1, also needed to be
persisted on disk. Memory-mapped files were also used to accomplish this.

A major side effect of memory-mapped files, in combination with large volumes of data,
is the overhead of the very large memory maps that are created by the kernel: for each
page in a memory-mapped file, the kernel will allocate some bytes in its page tables.

If for example the backing files grow to 20 7B worth of cached objects, an overhead of
90 GB of memory could occur.

This is memory that is not limited by the storage engine and is expected to be readily
available on top of memory that was already allocated to Varnish for object storage.
Managing these memory maps can become CPU intensive too.

74.2 Architecture

With the release of Varnish Enterprise 6, a new version of MSE was released as well.
MSE 3 was designed with the limitations of prior versions in mind.

Let’s look at the improved architecture of MSE, and learn why this is such an import-
ant feature in Varnish Enterprise 6.

419

CHAPTER 7: VARNISH FOR OPERATIONS

Memory vs disk

In previous versions of MSE the operating system’s page cache mechanism was respon-
sible for deciding what content from a memory-mapped file would end up in memory.
This is the so-called bot content.

Not only did this result in large memory maps, which create overhead, it is also tough
for the page cache to determine which parts from disk should be cached in memory.
What is the hot data, and how can the page cache know without the proper context?

That’s the reason why, in MSE, we decided to reimplement the page cache in user space.
From an architecture point of view, MSE version 3 stepped away from memory-mapped
files for object storage and implemented the logic for loading data from files into memo-

ry itself. This also implies that the persistence layer had to be redesigned.

By no longer depending on these memory-mapped files, the overhead from keeping track
of pages in the kernel has been eliminated.

And because the page cache mechanism in MSE version 3 is a custom implementation,
MSE has the necessary context and can more accurately determine the bor content. The
result is higher efficiency and less pressure on the disks, compared to previous versions.

As before, memory only contains a portion of the total cached content, while the per-
sistence layer stores the full cache. However, with the increased control ASE has over
what goes where, Varnish can greatly reduce the number of I/O operations, a limiting
factor in many SSD drives. MSE can even decide to make an object memory only if it re-
alizes it is lagging behind in writing to disk, where previous versions would slow down
considerably.

Traditionally, non-volatile storage options have been perceived as slow, but now it is
possible to configure a system that can read hundreds of gigabits per second from an
array of persistent storage drives. MSE is designed to work well with all kinds of hard-
ware, all the way down to spinning magnetic drives.

As we’ll explain next, the disk-based storage layer is comprised of a metadata database,
which we call a book, and the persistent storage is something that we call zbe store. You can
configure them, use multiple disks to store data on, and have multiple books, which can
have references to multiple stores.

Books

Let’s talk about books first. As mentioned, these books contain metadata for each of the
objects in the MSE.

420

CHAPTER 7: VARNISH FOR OPERATIONS

The main questions these books answer are:

¢ What cached objects does your cache contain at any point in time?
¢ Where on disk should I'look to find these objects?

In terms of metadata, the book holds the following information:

¢ Lifetime counters, such as T7TL, grace, and keep
¢ Object hashes

* Information about cache variations

* Baninformation

¢ Ykeyindexes

* Information about free storage

* Thelocation of an object on disk

This information is kept in a Lightning Memory-Mapped Database (LMDB). This is a
low-level transactional database that lives inside a memory-mapped file. This is a specific
case where we still rely on the operating system’s page cache to manage what lives in mem-
ory and what is stored on disk. To keep the database safe to use after a power failure, the
database code will force write pages to disk.

The size of the book is set in the MSE configuration, and directly impacts the number
of objects you can have in the corresponding stores. It does this by imposing a maximum
amount of metadata that can reside in the book at any point in time.

If you have few Ykeys and your objects are not too big, a good rule of thumb is to have 2
kB book space per object.

Let’s look at a concrete example for this rule of thumb: if you have stores with a total

of 10 TB of data, and your average object size is 1 MB, then your maximum number of
objects is ten million. With 2 kB per object, the rule indicates that the book should be at
least 20 GB.

If it turns out the you have sized the book much bigger than your needs, then the extra
space in the book will simply never be used, and its contents will never make it into the
page cache or consume any memory. If the book becomes too close to full, Varnish will
start removing objects for the store, resulting in a potential under-usage of the store. For
this reason it is better to err on the safe side when calculating the optimal size for the
book unless you have space available to expand the book after the fact.

In most cases, you should account for memory corresponding to the number of bytes
in use in the book. This will let the kernel keep the book in memory at all times instead

421

CHAPTER 7: VARNISH FOR OPERATIONS

of having to page in parts of the book that have not been used in a while. The exception
is when the book contains a high proportion of objects that are very infrequently ac-
cessed, and paging in data does not significantly reduce the performance of the system.
We will get back to this when discussing the memory governor later in this chapter.

It is possible to configure multiple books. This is especially useful when you use multi-
ple disks for cache storage, which improves performance. In case of disk failures, parti-
tioning the cache reduces potential data loss.

The standard location of the books is in /var/1lib/mse. This is a folder that is allowed
by our SELinux rules, which is part of our packaging.

What we call the book is actually a directory that contains multiple files:

* MSE.lckisalock file that protects the storage from potentially being accessed by
multiple Varnish instances.

e data.mdb is the actual LM DB database that contains the metadata.
¢ lock.mdb is the internal lock file from LA DB.

* varnish-mse-banlist-15f19907.dat is a per-book ban list, containing the cur-
rently active bans.

* varnish-mse-journal-75b6069b.dat is a per-store journal that keeps track of
incremental changes prior to the final state being stored in data.mdb.

Stores

The stores are the physical files on disk that contain the cached objects. The stores are
designed as pre-allocated large files. Inside these files, a custom file system is used to or-
ganize content.

Stores are associated with a book. The book holds the location of each object in the store.
Without the book, there is no way to retrieve objects from cache because MSE wouldn’t
know where to look.

If you lose the book, or the book gets corrupted, there is no way to regenerate it.
That part of your persisted cache is lost. But remember: it’s a cache; the data can
always be regenerated from the origin.

Every store is represented as a single file, and the standard location of these files is /var/
lib/mse. This is also because our SELznux rules allow this folder to be used by var-
nishd.

422

CHAPTER 7: VARNISH FOR OPERATIONS

There are significant performance benefits when using pre-allocated large files.

The most obvious one is reducing /O overbead that results from opening files and iter-
ating through directories. Unlike typical storage systems that entirely rely on the file sys-
tem, MSE doesn’t create a file per object. Only a single file is opened, and this happens
when varnishd is started.

Disk fragmentation is also a huge one: by pre-allocating one large file per store, disk
fragmentation is heavily reduced. The size of the file and its location on disk are fixed,
and all access to persisted objects is done within that file.

MSE also has algorithms to find and create continuous free space within that file. This
results in fewer /O operations and allows the system to get more out of the disk’s band-
width without being limited by /O operations per second (IOPS).

Access to stores is done using asynchronous /0, which doesn’t block the progress of exe-
cution while the system is waiting for data from the disks. This also boosts performance
quite a bit.

The danger of disk fragmentation

We just talked about the concept of stores, and disk fragmentation was frequently men-
tioned.

A disk is fragmented when single files get spread across multiple regions on the disk.
For spinning disks, this would cause a mechanical head to have to seek from one area
of the disk to another with a significantly reduced performance as a result. In the era of
SS8Ds, disk fragmentation is less of an issue, but it is not free: all drives have a maximum
number of I/O operations per second in addition to the maximum bandwidth. When
adisk is too fragmented, or objects are very small, this can become a limiting factor.
Needless to say, it is important to consider the 7/0 operations per second (IOPS) for the
drives when configuring any server, and NVMe drives generally perform much better
than SATA SSDs.

MSE has mechanisms for reducing fragmentation, which work well for most use cases,
but huge caches with small objects will still require drives with a high number IOPS.

Selecting a location for the store and book

MSE makes sure that the fragmentation of the store is low, but it cannot control the
fragmentation of the store file in the file system. For this reason it is recommended to
only put MSE stores on volumes dedicated to MSE. The easiest way is to put a single
store and its book on each physical drive intended for MSE, and to keep the operating

423

CHAPTER 7: VARNISH FOR OPERATIONS

system on a separate drive. When the store file is created, MSE makes sure to pre-allo-
cate all the space for the store file to make sure that the file system cannot introduce
more fragmentation after the creation of the store. Some file systems, like xfs, do not
implement this, so only ext3 and ext4 would be candidates. However, we only support
ext4 for the MSE stores.

Currently there is no support for using the block device directly with no file system on
top, but it might arrive in the future.

Making sure there is room for more

When an MSE store or book starts to get almost full, MSE needs to evict objects for the
store or book in question. The eviction process, often called nuking, starts when the
amount of used space reaches a certain level, explained below. The process tries to delete
content that has not been accessed in a while, but the method is slightly different than
the least recently used (LRU) eviction found in memory-based stevedores. The difference
is based on MSE’s desire to create continuous free space to avoid fragmentation.

There are individual waterlevel parameters for books and stores, but they both default
to 90%. For the stores, the parameter is called waterlevel, while the book’s waterlevel
nuking is controlled by the database_waterlevel parameter.

If the parameters are left at the default values, and either the book or the store usage
reaches 90%, backend fetches will be paused until the usage goes below 90%. To avoid
performance degradation for backend fetches, MSE starts evicting objects before the
waterlevel is reached. The runtime parameters waterlevel hysterisis for stores,

and database_waterlevel _hysterisis for books, both defanlting to 5%, control this
behavior. If all the parameters are left at their default values, MSE will start evicting
objects when the store or the book are 85% full, and this is usually sufficient to keep the
usage under 90%, avoiding stalling fetches as a result.

The goal is to evict neighboring segments within the store to create continunous free space
without removing objects that have been used recently. The thread that is responsible
for freeing space by removing objects, scans objects linearly, and tests whether the ob-
jectis in the third least recently used. If that is the case, it is removed. Once we get below
the waterlevel, the eviction mechanism is paused and can resume from that position on
the next run.

The description above is actually slightly misleading since we have not yet explained
exactly how MSE calculates the amount of wsed and free space. Since small free chunks
are not usable for placing big objects without creating significant fragmentation, MSE
will only consider sufhiciently large chunks of unused space when calculating the total
number of bytes available for allocation. The parameter waterlevel minchunksize

424

CHAPTER 7: VARNISH FOR OPERATIONS

defines what the minimum chunksize is that should be counted, and it defaults to 512
KB.

In other words, only chunks that are equal or greater than waterlevel minchunksize
will be considered when making sure that there is, by default, at least 15% free space in
the store. All chunks that are smaller than the 572 KB default value, remain untouched.
However, these smaller chunks of free space are still eligible when MSE needs to insert
objects that are smaller than 512 KB, and MSE will even select the smallest one that is
big enough for any new allocation.

It might be tempting to reduce the waterlevel minchunksize to alow value, but that
will increase fragmentation of bigger objects, as they will often be chopped into pieces
equal to the size of waterlevel _minchunksize. Such fragmentation actually increases
usage in the book, as each chunk will need its own entry in the book.

Basically, waterlevel_minchunksize is a tunable fragmentation tolerance level, and
finding the right value for you depends on how MSE is used. A high value will mini-
mize fragmentation, which translates into a leaner book and higher performance due to
tewer I/O operations, while lower values will fit more small objects into the cache.

Problems with the traditional memory allocator

The malloc stevedore, used by most Varnish Cache servers, needs to be configured to
hold a fixed maximum amount of data.

A common rule of thumb is to configure it to be 80% of the total memory of a server.
For a server with 64 GB of RAM, this translates to a little over 57 GB. The remaining
20% is then available for the operating system and for various parts of the varnishd
process.

Unfortunately, this rule of thumb does not always work well. The optimal value for
your server heavily depends on traffic patterns, on worker thread memory requirements,
on object data structures, and on transient storage.

None of these memory needs are accounted for in the malloc stevedore, which makes
it hard to guess what Varnish’s zotal memory footprint will be by just looking at the mal-
loc sizing.

The result is that the server will suddenly be out of memory, even when you apply a
seemingly conservative size to your malloc store. If certain aspects of your VCL require
alot of memory to be executed, or if your transient storage goes through the roof, you’ll
be in trouble, and there’s no predictable way to counter this. On the other hand, if your
server is very simple, stores a few big objects, and does not serve a lot of concurrent

425

CHAPTER 7: VARNISH FOR OPERATIONS

users, many gigabytes of memory can sit unused when it would be better to use that
memory for caching.

Memory governor

MSE’s memory governor feature solves the problem with using the stevedore to control
the memory usage of Varnish. Instead of assigning a fixed amount of space for cache
payloads, the memory governor aims to limit the total memory usage of the varnishd
process, as seen by the operating system.

Instead limiting the size of the cache in MSE, by setting the memcache_size config-
uration directive to an absolute value, we can set it to auto to limit the total memory
usage of the varnishd process instead.

When the memory governor observes that the memory usage is too high, it will start
removing objects from the cache until the memory usage goes under the limit. This
means that the actual memory used by object payloads will vary when other memory
usage varies, but the total will be near constant. For example, if there are suddenly thou-
sands of connections coming in, and thousands of threads need to be started to serve
the connections, the extra memory usage from the connection handling will result in
some objects being removed from memory until things calm down. If MSE with per-
sistence is in use, no objects will be removed from the cache, just from the memory part
of the cache.

The memory_target runtime parameter, which is set at 80% by default, will ensure
varnishd remains below that memory consumption ratio. memory_target can also be
set to an absolute value, just like you would with the -s parameter.

When you set memory_target to a negative value, you can indicate how much memor
y - ¥ Y
you want the memory governor to leave unused.

The memory_target can also be changed at runtime. This can be useful if you need
some memory for a different process and need varnishd to use less memory for a while.

The memory_target does not include the part of the kernel’s page cache that is used

to keep frequently used parts of the book in memory for fast access. For this reason, it
might be necessary to tune down the memory _target parameter if your cache contains
alot of objects, and the book usage, measured in bytes, starts to creep up towards 10%
of your available memory. It is not necessarily bad to have some paging activity as long as
it stays under control.

When running MSE, it is a good idea to monitor paging behavior on the system, for
example by using the vmstat tool. If it suddenly goes through the roof, you should con-

426

CHAPTER 7: VARNISH FOR OPERATIONS

sider reducing memory_target and see if it helps. Remember that this can be done on a
running Varnish without restarting the service.

Debt collection

Enforcing the memory target is done similarly to the waterlevel € hysteresis mechanisms
inside the persistence layer: it is also an over/under measurement.

When varnishd requests memory from the OS that results in exceeding the memo-
ry_target, debt is collected, which should quickly be repaid.

Repaying debt is done by removing objects from the cache on an LRU basis. Repaying
accumulated debt is a shared responsibility:

* Fetches that contribute to the debt should repay it themselves.
* General debt is repaid by the debt collector thread.

If a fetch needs to store a 2 M B object, and as a consequence surpasses memory _tar-
get, it needs to remove 2 M B of content from the cache using LRU.

The debt collector thread will ensure varnishd’s memory consumption goes below the
memory_target by removing objects from cache until the target is reached.

Funnily enough, the debr collector thread is nicknamed the governator because in order to
govern, it needs to terminate objects.

Lucky loser
Varnish Cache sufters from a concept called the lucky loser effect.

When a fetch in Varnish Cache needs to free up space from the cache in order to facili-
tate its cache insert, it risks losing that space to a competing fetch.

That competing fetch was also looking for free space and happened to find it because
the other fetch freed it up. This one is the lucky loser, but it results in a retry from the
original fetch.

In theory the fetch can get stuck in a loop, continuously trying to free up space but
failing to claim it. The nuke_limit runtime parameter defines how many times a fetch
may try to free up space. The standard value is 50.

This concept can become detrimental to the performance of Varnish. The originating
request will be left waiting until the object is stored in cache or until nuke_limit forces
varnishd to bail out.

427

CHAPTER 7: VARNISH FOR OPERATIONS

Luckily Varnish Enterprise doesn’t suffer from this limitation when MSE is used. The
standard MSE implementation has a level of isolation such that other fetches cannot see
space that was freed up by other fetches.

When the memory governor is enabled, every fetch can only allocate objects to memory
if they can cover the debt.

Basically, the unfairness is gone, which benefits performance.

74.3 Configuration

Enabling MSE is pretty simple. It’s just a matter of adding -s mse to the varnishd
command, and you’re good to go. This will give you MSE in memory-only mode with
the memory governor enabled. However, in most cases, you’ll want to specify a bit more
configuration.

As mentioned earlier in this chapter, you can point your storage configuration to an
MSE configuration file. Here’s a typical example:

[var‘nishd -s mse,/var/lib/mse/mse.conf]

The /var/1ib/mse/mse.conf contains both the memory-caching configuration, and
the cache-persistence configuration.

Memory configuration

You can set the size of the memcache in the MSE config file, and it will have the same
effect as specifying the size of a malloc stevedore.

Here’s an example:

env: {
id = "mse";
memcache_size = "5G";

s

This MSE configuration is named mse and allocates 5 GB for object caching. This
configuration will solve the Jucky loser problem described above but will otherwise be
equivalent to a malloc stevedore set to 5 GB.

You can add some more conﬁguration parameters to the environment. Here’s an exam-

ple:

428

CHAPTER 7: VARNISH FOR OPERATIONS

env: {
id = "mse";
memcache_size = "5G";
memcache_chunksize = "4M"
memcache_metachunksize = "4K"
}s

These two extra parameters define the maximum memory chunk size that can be al-
located. One is for objects in general, and the second is an indication of the size of the
metadata for such an object.

As previously mentioned, omitting the configuration file in the varnishd command
line will enable the memory governor. If you do specify a configuration file, the memory
governor can be enabled by setting memcache_size to "auto", as illustrated below:

env: {
id = "mse";
memcache_size = "auto";
}s
Persistence

Although MSE is a really good memory cache, most people will enable persistence.

While persistence is an important MSE feature, most people just want to cache more
objects than they can fit in memory. Either way, you need books and stores.

Here’s a simple example that was already featured earlier in this chapter:

()
env: {

id = "mse";

memcache_size = "auto";

books = ({
id = "book";
directory = "/var/lib/mse/book";
database_size = "2G";

stores = ({

id = "store";
filename = "/var/lib/mse/store.dat";
size = "100G";
)
s
s
_ J

429

CHAPTER 7: VARNISH FOR OPERATIONS

This example uses a single book, which is located in /var/1ib/mse/book, and a single
store, located in /var/lib/mse/store.dat. The size of the book is limited to 2 GB, and
the store to 100 GB. Meanwhile the memory governor is enabled to automatically manage
the size of the memory cache.

varnishd will not create the files that are required for persistence to work. You have to
initialize those paths yourself. Varnish Enterprise ships with an mkfs.mse program that
reads the configuration file and creates the necessary files.

The following example uses mkfs.mse to create the necessary files, based on the /var/
1ib/mse/mse.conf configuration file:

$ sudo mkfs.mse -c /var/lib/mse/mse.conf

Creating environment ‘mse’

Creating book ‘mse.book’ in €¢/var/lib/mse/book’

Creating store ‘mse.book.store’ in €¢/var/lib/mse/store.dat’
Book ‘mse.book’ created successfully

Environment ‘mse’ created successfully

It is also possible to configure multiple stores:

(N
env: {

id = "mse";

memcache_size = "auto";

books = ({
id = "book";
directory = "/var/lib/mse/book";
database_size = "2G";

stores = ({

id = "storel";
filename = "/var/lib/mse/storel.dat";
size = "100G";

JR
id = "store2";
filename = "/var/lib/mse/store2.dat";
size = "100G";

s

})s
s
_ J

The individual store files can be stored on multiple disks to reduce risk, but also to
benefit from the improved /0 performance. MSE will cycle through the stores using a
round-robin algorithm.

430

CHAPTER 7: VARNISH FOR OPERATIONS

It is also possible to have multiple books, each with their own stores:

()

env: {
id = "mse";
memcache_size = "auto";

books = ({
id = "bookl";
directory = "/var/lib/mse/book1";
database_size = "2G";

stores ({
id = "storel";
filename = "/var/lib/mse/storel.dat";
size = "100G";

R
id = "store2";
filename = "/var/lib/mse/store2.dat";
size = "100G";

)

id = "book2";
directory = "/var/lib/mse/book2";
database_size = "2G";

b

stores = ({
id = "store3";
filename = "/var/lib/mse/store3.dat";
size = "100G";

JR
id = "store4";
filename = "/var/lib/mse/store4.dat";
size = "100G";

} s

)
s

- J

In this case the metadata databases are in different locations. It would make sense to
host them on separate disks as well, just like the stores.

Although books and their stores form a unit, MSE will, when using its round-robin algo-
rithm to find somewhere to store the object, only cycle through the list of szores, ignor-
ing their relationship with books.

431

CHAPTER 7: VARNISH FOR OPERATIONS

Book configuration

Books have various configuration directives, some of which have already been dis-
cussed. Although the default values will do for most people, it is worth noting that
changing can be impactful, depending on your use case.

id is a required parameter and is used to name the book. directory is also required, as
it refers to the location where the LAMDB database, lockfiles, and journals that comprise
the book will be hosted.

Here’s a list of parameters that can be tuned:

* database_size: the total size of the LM DB database of the book. Defaults to I GB

e database_readers: the maximum number of simultaneous database readers.
Defaults to 4096

* database_sync: whether or not to wait until the disk has confirmed the disk write
of a change in the LM DB database. Defaults to true, which ensures data consisten-
cy. Setting it to false will increase performance, but you risk data corruption when
a server outage occurs before the latest changes are synchronized to the disk.

* database_waterlevel: the maximum fill level of the LM DB database. Defaults
to 0.9, which is 90%

* database_waterlevel hysterisis: the over/under ratio to maintain when en-
forcing the waterlevel of the LMDB database. Defaults to 0.05, which is a 5% over/
under on the 90% that was defined in database_waterlevel

e database_waterlevel_snipecount: the number of objects to remove in one
batch when enforcing the waterlevel for the database. Defaults to 10

* banlist_size: the size of the ban list journal. Defaults to 1 MB. Exceeding this
limit will cause new bans to overflow into the LM DB database.

Store configuration

Similar configuration parameters are available for tuning stores. It all starts with two
required parameters:

* id: the unique identifier of a store
¢ filename: the location on disk of the store file

Unlike a book, which is a collection of files in a directory, a store consists of a single file.
The size of store files is defined by the size parameter, which defaults to 7 GB.

432

CHAPTER 7: VARNISH FOR OPERATIONS

These are the basic settings, but there are more configurable parameters. Here’s a selec-

tion of configurable parameters:

align: defaults to 4 KB and defines store allocations to be multiples of this value
minfreechunk: also defaults to £ KB and is the minimum size of a free chunk

aio_requests: the number of simultaneous asynchronous 1/0 requests. Defaults
to 128

aio_db_handles: the number of simultaneous read-only handles that are available
for reading metadata from the corresponding book

journal_size: the size of the journal that keeps track of incremental changes un-
til they are applied to the corresponding LAMDB database. Defaults to 1 M

waterlevel_painted: the fraction of objects that is painted as LRU candidates
when the waterlevel is reached. By default this is 0.33, which corresponds to 33%

waterlevel_threads: the number of threads that are responsible for enforcing
the waterlevel and removing LRU-painted objects from the cache. Defaults to 1

waterlevel minchunksize: the minimum chunk size that is considered when
creating continuous free space when the waterlevel is exceeded. Defaults to 512 KB

waterlevel: the ratio of continuous free space that should be maintained. Defaults
to 0.9 which corresponds to 90%

waterlevel_hysterisis: the over/under ratio to maintain when enforcing the
waterlevel of the store. Defaults to 0.05, which is a 5% over/under on the 90% that
was defined in waterlevel

waterlevel_snipecount: the number of objects to remove in one batch when
enforcing the waterlevel. Defaults to 10

The default settings for the book and store configuration have been carefully cho-
sen by our engineers. We would advise you to stick with the default values unless
you have specific concerns you want to address ahead of time, or if you’re experi-
encing problems.

744 Store selection

Round-robin is the default way stores are selected in MSE; this can be changed in VCL
through vmod_mse.

433

CHAPTER 7: VARNISH FOR OPERATIONS

Stores can be selected individually by name, or you can select all the stores in a book by
using the name of the book.

However, in most cases it is natural to apply zags to the books and/or stores, and use the
tags to select the set of stores you want MSE to choose from. The selection of stores is a
core MSE feature, but vmod_mse is used as an interface for this, when you need to over-
ride the default settings.

Tagging happens in the MSE configuration file, typically /var/lib/mse/mse.conf,
and has not been discussed in this section up until this point.

Tagging stores

Inyour /var/lib/mse/mse.conf file you can use the tags directive to associate tags
with individual stores.

Here’s an example in which one store is hosted on a large SATA disk, and the other store
is hosted on a smaller but much faster SSD disk:

()
env: {
id = "mse";
memcache_size = "auto";
books = ({
id = "book";
directory = "/var/lib/mse/book";
stores = ({
id = "storel";
filename = "/var/lib/mse/storel.dat";

size = "500G";
tags = ("small", "ssd");

R
id = "store2";
filename = "/var/lib/mse/store2.dat";
size = "10T";
tags = ("big", "sata");

)

)
}s
_ J

In this case storel has 500 GB of SSD storage at its disposal. That is at least what the
tag indicates.

store2 on the other hand is 70 TB in size and has a sata tag linked to it. This would
imply that this szore has a larger but slower disk.

434

CHAPTER 7: VARNISH FOR OPERATIONS

It is up to you to decide on naming of tags. Their names have no underlying signifi-
cance. You can easily change the tag ssd into fast, and sata into slow if that is more
intuitive to you.

]

[These tags will be used in VCL when vmod_mse comes into play.

Tagging books

It is also possible to apply these tags on the book level. This means that all underlying
stores will be tagged with these values.

Here’s a multi-book example:

-

env: {
id = "mse";
memcache_size

"auto";

books ({
id = "bookl";
directory = "/var/lib/mse/book1";
tags = ("small", "ssd");

stores ({
id "storel";
filename = "/var/lib/mse/storel.dat";
size "500G";

1A
id = "store2";
filename = "/var/lib/mse/store2.dat";
size "500G";

)

3o
id = "book2";
directory = "/var/lib/mse/book2";

tags

stor

b

})s
)
}s

("big“, “Sata");

es

({

id "store3";

filename "/var/lib/mse/store3.dat";
size = "10T";

id = "store4";
filename = "/var/lib/mse/store4.dat";
size = "10T";

435

CHAPTER 7: VARNISH FOR OPERATIONS

In this case storel and store2 are tagged as small and ssd because these tags were
applied to their corresponding book. They probably have smaller SSD disks in them, as
the tags may imply.

For store3 and store4, which are managed by book?2, the tags are big and sata. No
surprises here either: although we know about the size of the stores, which grant the
big tag, we can only assume the underlying disks are SATA disks.

Simply adding tags, like in the example above, does not change anything. The default
behavior, which is 7ound-robin between all of the stores, still takes place until a set of
stores is explicitly selected: either in VCL or in the configuration file.

Let’s have a look at how this is done.

Setting the default stores

One way of selecting the default stores is by using the default_stores configuration
directive in /var/lib/mse/mse.cont. This directive refers to a store based on its name,
its tag, or the name or tag of the book.

Based on the example above we could configure the default stores as follows:

default_stores = "sata";

Unless instructed otherwise in VCL, the default stores will be store3 and store4.

There is also a special value none, which does not refer to any tag.

default_stores = "none";

This example will ensure objects only get stored in memory cache unless instructed
otherwise in VCL.

As soon as default_stores is set, the round-robin store selection no longer applies
and is replaced by a random selection, where a potentially uneven weighting is
applied based on the store size.

vmod_mse
You can have fine-grained control over your store selection, if you leverage vmod_mse.

This VMOD has an mse.set_stores() function that allows you to refer to a book, a
store, or a tag. Also the special value none is allowed to bypass the persistence layer.

436

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s an example where we select the stores based on response-header criteria:

vcl 4.1;

import mse;
import std;

sub vcl_backend_response {
if (beresp.ttl < 120s) {
mse.set_stores("none");
} else {
if (beresp.http.Transfer-Encoding ~ "chunked" ||
std.integer(beresp.http.Content-Length,0) > std.bytes("100M"))

{
mse.set_stores("sata");
} else {
mse.set_stores("ssd");
}
}
}
_ J

Let’s break it down:

e Cacheinserts with a 77L of less than two minutes will not be persisted and will
only be cached in memory.

¢ Cacheinserts where the Content-Length response header indicates a size of more
than 100 MB will be stored on the sata-tagged stores.

¢ Cacheinserts where the Transfer-Encoding response header is set to chunked
also end up on the sata-tagged stores. Because data is streamed to Varnish, we have
no clue of the size ahead of time.

¢ All other cache inserts are less than 100 MB in size and will end up on the ssd-
tagged stores.

When one or more stores are selected based on a tag or name, either in VCL or by using
default_stores, the actual destination of the object will always be determined by a
tast guasi random number generator. This means that if you add just a few objects to
your MSE, you should expect the distribution to be uneven, but for any reasonable
number of objects, the unevenness should be negligible.

You can change the weighting of stores through the function mse.set_weighting() to
one of the following:

437

CHAPTER 7: VARNISH FOR OPERATIONS

* size: bigger stores have a higher probability of being selected.

* available: stores with more available space have a higher probability of being se-
lected.

* smooth: store size and availability of space are combined to assign weights to stores.

As you already know, size becomes the default weighting mechanism when a
store is selected through default_stores ormse.set_stores(). Themse.set_
weighting() function also allows you to set weighting mechanisms.

Here’s an example of how to set the weighting to smooth::

vcl 4.1;
import mse;

sub vcl_backend_response {
mse.set_weighting(smooth);

}
- J

/4.5 Monitoring

Although there is a dedicated section about monitoring coming up later in this chapter,

we do want to hint at monitoring internal MSE counters using varnishstat.

Memory counters

Here’s a table with some counters that relate to memory caching:

Counter Meaning

MSE.mse.g_bytes Bytes outstanding
MSE.mse.g_space Bytes available
MSE.mse.n_lru_nuked Number of LRU-nuked objects

MSE.mse.n_vary Number of Vary header keys

MSE.mse.c_memcache_hit Stored objects cache hits

MSE.mse.c_memcache_miss Stored objects cache misses

MSE.mse.g_ykey_keys Number of YKeys registered

MSE.mse.c_ykey_purged Number of objects purged with YKey

438

CHAPTER 7: VARNISH FOR OPERATIONS

If you run the following command, you can use the MSE.mse.g_space counter to see
how much space is left in memory for caching:

[var‘nishstat -f MSE.mse.g_space]

The mse keyword in these counters refers to the name of your environment. In this case
it is named mse. If you were to name your environment serverl, the counter would be
MSE.serverl.g_space. If you want to make sure you see all environments, you can use
an asterisk, as illustrated below:

[varnishstat -f MSE.*.g space]

Book counters

There are also counters to monitor the state of your books. Here’s a table with some se-
lect counters related to books:

Counter Meaning

MSE_BOOK.book1.n_vary Number of Vary header keys

MSE_BOOK.book1.g_bytes Number of bytes used in the book data-
base

MSE_BOOK.book1.g_space Number of bytes available in the book

database

MSE_BOOK.book1.g_waterlevel queue Nymber of threads queued waiting for

database space

MSE_BOOK.bookl.c_waterlevel_queue Nyumber of times a thread has been

queued waiting for database space

MSE_BOOK.book1.c_waterlevel_runs Number of times the waterlevel purge

thread was activated

MSE_BOOK.book1.c_waterlevel purge Number of objects purged to achieve

database waterlevel

MSE_BOOK.book1.c_insert_timeout Number of times database object inser-

tion timed out

MSE_BOOK.book1l.g_banlist_bytes Number of bytes used from the ban list

journal file

439

VARNISH

MSE_BOOK.book1.g_banlist_space Number of bytes available in the ban list

journal file

MSE_BOOK.book1l.g_banlist_database Number ofbytes used in the database

for persisted bans

These counters specifically refer to book1, but as there are multiple books, it makes sense
to query on all books, as illustrated below:

[varnishstat -f MSE_BOOK.*]

This command shows all counters for all books.

Store counfers
And finally, stores also have their own counters. Here’s the table:

Counter Meaning

MSE_STORE.storel.g_waterlevel_queue Number of threads queued waiting

for store space

MSE_STORE.storel.c_waterlevel queue Number of times a thread has been

queued waiting for store space

MSE_STORE.storel.c_waterlevel_purge Number of objects purged to achieve

store waterlevel

MSE_STORE.storel.g_objects Number of objects in the store

MSE_STORE.storel.g_ykey_ keys Number onKeys registered

MSE_STORE.storel.c_ykey_purged Number of objects purged with YKey

MSE_STORE.storel.g_alloc_bytes Total number of bytes in allocation

extents

MSE_STORE.storel.g_free_bytes Total number of bytes in free extents

MSE_STORE.storel.g_free_small_bytes Nymber of bytes in free extents small-

er than 16k

MSE_STORE.storel.g_free_16k_bytes Number ofbytes in free extents be-

tween 16k and 32k

MSE_STORE.storel.g free_32k_bytes Number ofbytes in free extents be-

tween 32k and 64k

440

CHAPTER 7: VARNISH FOR OPERATIONS

MSE_STORE.storel.g_free_64k_bytes Number ofbytes in free extents be-

tween 64k and 128k

MSE_STORE.storel.g_free_128k_bytes Number ofbytes in free extents be-

tween 128k and 256k

MSE_STORE.storel.g_free_256k_bytes Number ofbytes in free extents be-

tween 256k and S12k

MSE_STORE.storel.g_free_512k_bytes Number ofbytes in free extents be-

tween 512k and Im

MSE_STORE.storel.g_free_1lm_bytes Number of bytes in free extents be-

tween 1m and 2m

MSE_STORE.storel.g_free_2m_bytes Number of bytes in free extents be-

tween 2m and 4m

MSE_STORE.storel.g_free_4am_bytes Number of bytes in free extents be-

tween 4m and 8m

MSE_STORE.storel.g_free_large bytes Number of bytes in free extents larger

than 8m

Besides the typical free space, bytes allocated, and number of objects in the store, you’ll
also find detailed counters on the extents per size. This is part of the anti-fragmentation

mechanism that aims to have continuous free space but tolerates a level of fragmentation

below the waterlevel minchunksize.

In the beginning, there will be no fragmentation within your store, so the MSE_STORE.
storel.g_free_large_bytes counter will be high, the others will be low or zero.

The following command will monitor the free bytes per extent for all stores:

[var‘nishstat -f MSE_STORE.*.g free_*]

A more basic situation to monitor is the number of objects in cache, the available space
in the stores, and the used space. Here’s how you do that:

varnishstat -f MSE_STORE.*.g objects -f MSE_STORE.*.g free_bytes -f
MSE_STORE.*.g alloc_bytes

441

CHAPTER 7: VARNISH FOR OPERATIONS

74.6 Cache warming

The promise of MSE is persistence. You benefit from this when a server restart occurs:
stores and books will be loaded from disk and the full context is restored.

If you take a backup of your stores and books, you can restore this backup and perform a
disaster recovery.

Even when your books and stores are corrupted, or even gone, the backup will restore the
previous state, and your cache will be warm.

Besides disaster recovery, this strategy can also be used to pre-warm the cache on new
Varnish instances.

When you restart varnishd, and the recovered books and stores are found, the output
can be contain the following:

(>varnish | Info: Child (24) said Store mse.bookl.storel revived 6 A
objects
varnish | Info: Child (24) said Store mse.bookl.storel removed ©
objects (partial=0 age=0 marked=0 noban=0 novary=0)
varnish | Info: Child (24) said Store mse.bookl.store2 revived 2
objects
varnish | Info: Child (24) said Store mse.bookl.store2 removed @
objects (partial=0 age=0 marked=0 noban=0 novary=0)
varnish | Info: Child (24) said Store mse.book2.store3 revived 6
objects
varnish | Info: Child (24) said Store mse.book2.store3 removed @
objects (partial=0 age=0 marked=0 noban=0 novary=0)
varnish | Info: Child (24) said Store mse.book2.store4 revived 3
objects
varnish | Info: Child (24) said Store mse.book2.store4 removed 0
objects (partial=0 age=0 marked=0@ noban=0 novary=e)
varnish | Info: Child (24) said Environment mse fully populated in
0.00 seconds. (©.00 0.00 0.00 17 @ 3/4 4 0 4 0)

_ J

As you can see, objects were revived. In huge caches with lots of objects, loading the
environment might take a bit longer.

MSE can easily load more than a million objects per second. Although the time it takes
for MSE to load objects from disk depends on the kind of hardware you use, we can
assume that for bigger caches this would only take mere seconds.

442

CHAPTER 7: VARNISH FOR OPERATIONS

1.5 Load balancing

When a Varnish server is tasked with proxying backend requests to multiple origin serv-
ers, it is important that the right backend is selected.

If there is an affinity between the client and a specific backend, or the request and a spe-
cific backend, VCL ofters you the flexibility to define rules and add the required logic
on which these backend routing decisions are based.

VCL has the req.backend_hint and the bereq.backend variables that can be set to
assign a backend. This allows you to make backend routing decisions based on HTTP
request or client information.

There are also situations where you don’t want to select one backend, but you want all
backends from the pool to participate. The goal is to distribute requests across those
backends for scalability reasons. We call this load balancing.

Varnish has a VAMOD called vmod_directors, which takes care of load balancing.
This VMOD can register backends, and based on a distribution algorithm, a backend is
selected on a per-request basis.

Even though load balancing aims to evenly distribute the load across all servers in the
pool, some directors allow you to configure a level of affinity with one or more back-
ends.

7.5.1 Directors

The directors VAMOD is an in-tree VAMOD that is shipped with Varnish by default. It
has a relatively consistent AP/ for initialization and for adding backends.

A director object will pick a backend when the .backend() method is called. The select-
ed backend can be assigned to Varnish using req.backend_hint and bereq.backend.

7.5.1 Round-robin director

The round-robin director will create a director object that will cycle through backends
every time .backend() is selected.

Here’s a basic round-robin example with three backends:

443

CHAPTER 7: VARNISH FOR OPERATIONS

~
vcl 4.1;
import directors;
backend backendl {
.host = "backendl.example.com";
.port = "80";
}
backend backend2 {
.host = "backend2.example.com";
.port = "80";
}
backend backend3 {
.host = "backend3.example.com";
.port = "80";
}
sub vcl_init {
new vdir = directors.round_robin();
vdir.add_backend(backendl);
vdir.add_backend(backend2);
vdir.add_backend(backend3);
}
sub vcl_recv {
set req.backend_hint = vdir.backend();
}
_ J

new vdir = directors.round_robin() will initialize the round-robin director object.
The vdir.add_backend() method will add the three backends to the director.

And every time vdir.backend() is called, the director will cycle through those back-
ends.

Because it is done in a round-robin fashion, the order of execution is very predictable.

The output below comes from the varnishlog binary that filters on the BackendOpen
tag that indicates which backend is used:

444

CHAPTER 7: VARNISH FOR OPERATIONS

$ varnishlog -g raw -i BackendOpen R
32786 BackendOpen b 26 boot.backendl 172.21.0.2 80 172.21.0.5
56422
24 BackendOpen b 27 boot.backend2 172.21.0.4 80 172.21.0.5
45792
32789 BackendOpen b 28 boot.backend3 172.21.0.3 80 172.21.0.5
54702
27 BackendOpen b 26 boot.backendl 172.21.0.2 80 172.21.0.5
56422
32792 BackendOpen b 27 boot.backend2 172.21.0.4 80 172.21.0.5
45792
32795 BackendOpen b 28 boot.backend3 172.21.0.3 80 172.21.0.5
54702
o J

As you can see backend1 is used first, then backend2, and finally backend3. This order
of execution is respected for subsequent requests.

Round-robin will ensure an equal distribution of load across all origin servers.

7.5.1 Random director

The random director will distribute the load using a weighted random probability dis-
tribution.

The API doesn’t difter much from the round-robin director. In the snippet below, there
is equal weighting:

sub vcl_init {
new vdir = directors.random();
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 1);
vdir.add_backend(backend3, 1);

The formula that is used to determine the weighting is 100 * (weight / .(sum(all_
added_weights))).

Here’s another VCL snippet with unequal weighting:

sub vcl_init {
new vdir = directors.random();
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 2);
vdir.add_backend(backend3, 3);

445

CHAPTER 7: VARNISH FOR OPERATIONS

If we apply the formula for this example, the distribution is as follows:

* backend1 has a 16.66% probability of being selected.
* backend2 has a 33.33% probability of being selected
* backend3 hasa 50% probability of being selected.

These weights are useful when some of the backends shouldn’t receive the same amount
of traffic. This may be because they don’t have the same dimensions and are less power-

ful.

Watch out: setting the weight of a backend to zero gives the backend a zero percent
probability of being selected.

71.5.1 Fallback director

Another kind of load balancing we can use in Varnish is only based on potential failure.

A fallback director will try each of the added backends in turn and return the first one
that is healthy.

Configuring this type of director is very similar to the round-robin one. Here’s the vcl_
init snippet:

sub vcl_init {
new vdir = directors.fallback();
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 1);
vdir.add_backend(backend3, 1);

* backend1 is the main backend, and will always be used if it is healthy.

¢ When backend1 fails, backend2 becomes the selected backend.

¢ Andifboth backendl and backend2 fail, backend3 is used.

If a higher-priority backend becomes healthy again, it will become the main backend.

By setting the sticky argument to true, the fallback director will stick with the selected
backend, even if a higher-priority backend becomes available again.

Here’s how you enable stickiness:

446

CHAPTER 7: VARNISH FOR OPERATIONS

sub vcl_init {
new vdir = directors.fallback(true);
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 1);
vdir.add_backend(backend3, 1);

7.5.1 Hash director

The hash director is used to consistently send requests to the same backend, based on a
hash that is computed by the director and that is associated with a backend.

The example below contains a very common use case: sticky IP. This means that re-
quests from a client are always sent to the same backend.

vcl 4.1;
import directors;

backend backendl {

.host = "backendl.example.com";
.port = "80";

}

backend backend2 {
.host = "backend2.example.com";
.port = "80";

}

backend backend3 {
.host = "backend3.example.com";
.port = "80";

}

sub vcl_init {
new vdir = directors.hash();
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 1);
vdir.add_backend(backend3, 1);

sub vcl_recv {
set req.backend_hint = vdir.backend(client.ip);

447

CHAPTER 7: VARNISH FOR OPERATIONS

Routing through two layers of Varnish

If you want to horizontally scale your cache, you can use the hash director to send all
requests for the same URL to the same Varnish server. To achieve this, you need two
layers of Varnish:

* The routing layer that performs the hashing
* The caching layer that stores the objects in cache

The following diagram illustrates this:

Varnish Webserver

Hash director

The top-level Varnish server, which acts as a router, can use the following VCL code to
evenly distribute the content across to lower-level Varnish servers:

-
vcl 4.1;

import directors;

backend varnishl {

.host = "varnishl.example.com";
.port = "80";

}

backend varnish2 {
.host = "varnish2.example.com";
.port = "80";

}

backend varnish3 {
.host = "varnish3.example.com";
.port = "80";

448

CHAPTER 7: VARNISH FOR OPERATIONS

sub vcl_init {
new vdir = directors.hash();
vdir.add_backend(varnishi, 1);
vdir.add_backend(varnish2, 1);
vdir.add_backend(varnish3, 1);

sub vcl_recv {
set req.backend_hint = vdir.backend(req.url);

3
. J

By scaling horizontally, you can cache a lot more data than on a single server. The bash
director ensures there is not content duplication on the lower-level nodes. And if re-
quired, the top-level Varnish server can also cache some of the hot content.

Self-routing Varnish cluster

Whereas the previous example was quite vertical, the next one has the same capabilities
but structured horizontally.

Imagine the setup featured in this diagram:

wvdir.backend
(req.url)

Vamish

vdirbackend
(reg.url)

- h

wvdirbackend
(req.url)

Vamish

Self-routing Varnish cluster

What you have is three Varnish servers that are aware of each other. The vdir.back-
end(req.url) method creates a hash and selects a node.

When Varnish notices that the selected node has the same IP address as it has, it routes
the request to the origin server. If the IP address is not the same, the request is routed to
another Varnish node.

What is also interesting to note is that all Varnish servers create the same hash, so the
outcome is predictable.

449

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s the VCL code:

vcl 4.1;
import directors;

backend varnishl {

.host = "varnishl.example.com";
.port = "80";
}
backend varnish2 {
.host = "varnish2.example.com";
.port = "80";
}
backend varnish3 {
.host = "varnish3.example.com";
.port = "80";
}
backend origin {
.host = "origin.example.com";
.port = "80";

}

sub vcl_init {
new vdir = directors.hash();
vdir.add_backend(varnishl, 1);
vdir.add_backend(varnish2, 1);
vdir.add_backend(varnish3, 1);

sub vcl _recv {
set req.backend_hint = vdir.backend(req.url);
set req.http.x-shard = req.backend_hint;
if (req.http.x-shard == server.identity) {
set req.backend_hint = origin;
} else {
return(pass);

}
}

&

Key remapping

The hash director is a relatively simple and powerful implementation, but when nodes
are added or temporarily removed, a lot of keys have to be remapped.

450

CHAPTER 7: VARNISH FOR OPERATIONS

Although there is a level consistency, the bash director doesn’t apply a true consistent hash-
ing algorithm.

When a backend that is part of your hash director is taken out of commission, not only
the hashes that belonged to that server have to be remapped to the remaining nodes, a
lot of other hashes from healthy servers do as well.

This is more or less done by design, as the main priority of the hash director is fairness:
keys have to be equally distributed across the backend servers to avoid overloading a

single backend.

1.5.1 Shard director

The shard director behaves very similarly to the hash director: a hash is composed from a
specific key, and this hash is consistently mapped to a backend server.

However, the shard director has a lot more options it can configure. It also applies a real
consistent hashing algorithm with replicas, which we’ll talk about in a minute.

Its main advantage is that when the backend configuration or health state changes, the
association of keys to backends remains as stable as possible.

In addition, the ramp-up and warmup features can help to further improve user-per-
ceived response times.

Here’s an initial VCL example where the request hash from vcl_hash is used as the key.
This hash is consistently mapped to one of the backend servers:

\
vcl 4.1;

import directors;

backend backendl {

.host = "backendl.example.com";
.port = "80";

}

backend backend2 {
.host = "backend2.example.com";
.port = "80";

}

backend backend3 {
.host = "backend3.example.com";
.port = "80";

451

CHAPTER 7: VARNISH FOR OPERATIONS

sub vcl_init {
new vdir = directors.shard();
vdir.add_backend(backendl);
vdir.add_backend(backend2);
vdir.add_backend(backend3);
vdir.reconfigure();

sub vcl_backend_fetch {

set bereq.backend = vdir.backend();

}
& J

Hash selection

The shard director can also pick an arbitrary key to hash. Although the .backend()
method doesn’t need any input parameters, it does default to HASH. As explained earlier,
this is the request hash from vcl_hash.

You can also hash in the URL, which differs from the complete hash because the host-
name and any custom variations will be missing.

Here’s how you configure URL hashing:

sub vcl_backend_fetch {
set bereq.backend = vdir.backend(URL);

}

Just like the bash director, you can hash an arbitrary key. If we want to create sticky ses-
sions and use the dient IP address to consistently route clients to the same backend, we
can use the following snippet:

sub vcl_backend_fetch {
set bereq.backend = vdir.backend(KEY,vdir.key(client.ip));

}

Warmup and ramp-up

The shard director has a warmup and a ramp-up teature. Both are related to gradually
introducing traffic to a backend, though warmup is about gradually sending requests to
other backends, and ramp-up is about gradually reintroducing the main backend.

The first snippet will set the default warmup probability to 0.5:

452

CHAPTER 7: VARNISH FOR OPERATIONS

[vdir.set_warmup(@.5) j

This method will set the warmup on all backends and ensures that around 50% of all
requests will be sent to an alternate backend. This is done to warm up that node in case
it gets selected.

Warmup only works on healthy nodes, can only happen if a node is not in ramp-up, and
if the alternate backend selection didn’t explicitly happen in the .backend() method.

Here’s an example where the warmup value is set upon backend selection:

sub vcl_backend_fetch {

set bereq.backend = vdir.backend(by=URL, warmup=0.1);
}

In this case the warmup value will send about 10% of traffic to the alternate backend,
and it also uses the URL for hashing.

Warming up an alternate backend doesn’t seem that useful when you talk about regular
web servers, but if you look at it from a two-layer Varnish setup, it definitely make sense.

Here’s an illustration where warmup is used to make sure second-tier Varnish servers are
warmed up in case other nodes fail:

Varnish

Shard director warmup

453

CHAPTER 7: VARNISH FOR OPERATIONS

Whereas warmup happens on healthy servers, ramp-up happens on servers that have
recently become healthy, either because they are new or because they recovered from an
outage.

Ramp-up can be set globally, or on a per-backend basis. Here’s a VCL snippet that sets
the global ramp-up to a minute:

[vdir.set_rampup(1m);]

When a backend becomes healthy again, the relative weight of the backend is pushed all

the way down, and gradually increases for the duration of the ramp-up period.

While a backend is ramping up, it receives a fraction of its normal traffic, while the next
alternative backend takes the rest. Eventually this smooths out, and after a while the
backend can be considered fully operational.

Ramp-up can only happen when the alternative backend server was not explicitly set in
the .backend() method.

Here’s a snippet where the ramp-up period difters per backend:

sub vcl_init {
new vdir = directors.shard();
vdir.add_backend(backendl, rampup=5m);
vdir.add_backend(backend2, rampup=30s);
vdir.add_backend(backend3);
vdir.reconfigure();

}
- J

In this case, backend1 has a five-minute rampup period, whereas backend2 has a ten-sec-
ond rampup period. backend3, however, takes its rampup duration from the global set-
ting.

When .backend() is executed and a backend is selected, rampup is enabled by default
unless rampup durations are set to 0s.

It is possible to still disable 7ampup on a per-backend request basis:

sub vcl_backend_fetch {
set bereq.backend = vdir.backend(rampup=false);

}

454

CHAPTER 7: VARNISH FOR OPERATIONS

Key mapping and remapping

What makes the shard director so interesting is the fact that it uses consistent bhashing
with replica support.

Imagine the shard director as ring where each backend covers parts of the ring. Not ev-
ery backend gets an equal amount of space. This is decided somewhat randomly.

Hashes are assigned to specific backends and because equidistribution is not a priority,
some backends may receive a disproportionate number of requests.

Here’s a simplistic pie chart that illustrates this concept:

@ Backend1

@ Backend 2

@ Backend 3

Consistent hashing with a single replica

In this case, backend 3 was unlucky, and only has a single hash mapped to it, whereas
the other backends each have at least two hashes. This example only uses a single repli-
ca.

When the .backend() method is called, the smallest hash value larger than the hash
itself is looked up on the circle. The movement is clockwise and may wrap around the
circle. The backend that has the corresponding hash on its surface is selected.

When a backend is out of commission, its keys are remapped to other nodes while it is
unavailable. When the backend becomes healthy again, it will receive its original hashes
again.

Because a level of randomness is introduced, certain backends may be linked to a lot of
hashes, whereas other backends aren’t. This results in a higher load on a single backend
and less fairness. In the chart above, backend 3 has four out of seven hashes it takes care

of.
455

CHAPTER 7: VARNISH FOR OPERATIONS

By increasing the number of replicas per backend, every backend has more occurrences
on the ring, which results in a fairer distribution. The default value for the shard direc-
toris 6/.

But for the sake of simplicity, here’s an example with five replicas:

® Backend 1

® Backend 2

® Backend 3

Consistent bashing with 5 replicas

As you can see the distribution is a lot fairer. Of course this doesn’t matter for seven
hashes, but as the hash count increases, the effect of replication does as well.

A simple simulation with three backends using a single replica and 100 total requests
yielded the following results:

* Backend 1 received 484 requests.

* Backend 2 received 363 requests.

* Backend 3 received 153 requests.

This ratio is represented in the first pie chart.

When we increased the replica count to 67, the following results came back:
* Backend I received 301 requests.

* Backend 2 received 405 requests.

* Backend 3 received 294 requests.

This is somewhat better and represents the ratios in the second pie chart. When we in-
creased the replica count to 250, the distribution was even more equal:

456

CHAPTER 7: VARNISH FOR OPERATIONS

* Backend 1 received 339 requests.
* Backend 2 received 320 requests.
* Backend 3 received 341 requests.

Although equidistribution is nice, it comes at a cost. The more replicas you define,
the higher the CPU cost with diminishing returns.

You can configure the replica count in the .reconfigure() method.

Here’s some example VCL that sets the replica count to 50:

sub vcl_init {
new vdir = directors.shard();
vdir.add_backend(backendl);
vdir.add_backend(backend2);
vdir.add_backend(backend3);
vdir.reconfigure(590);

}
g J

7.5.1 Least connections director

The least connections director is not part of vmod_directors butis a dedicated VAOD
that is part of Varnish Enterprise.

It will route backend connections to the one with the least amount of connections at
that point. An optional ramp-up configuration is also available.

Just like the random director, this one also uses weights to prioritize traffic to specific

backends.

Here’s some example VCL to illustrate how to use vmod_leastconn:

vcl 4.1;
import leastconn;

backend backendl {

.host = "backendl.example.com";
.port = "80";

}

backend backend2 {
.host = "backend2.example.com";

457

CHAPTER 7: VARNISH FOR OPERATIONS

.port = "80";

}

backend backend3 {
.host = "backend3.example.com";
.port = "80";

}

sub vcl_init {
new vdir = leastconn.leastconn();
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 1);
vdir.add_backend(backend3, 1);

sub vcl_recv {
set req.backend_hint = vdir.backend();

}
& J

And here’s a VCL snippet where a one-minute rampup is used for backends that have
become healthy:

sub vcl_init {
new vdir = leastconn.leastconn();
vdir.rampup(1m);
vdir.add_backend(backendl, 1);
vdir.add_backend(backend2, 1);
vdir.add_backend(backend3, 1);

}
& J

This means that when an unhealthy backend becomes healthy again, its weight is ini-
tially reduced, and gradually increases, until the configured weight is reached. In the
example above, the weight increase happens over the course of a minute.

7.5.1 Dynamic backends

Remember vmod_goto, the VAOD that supports dynamic backends?

The goto.dns.director() function exposes a director object and fetches the associated
IP addresses from the hostname. It multiple IP addresses are associated, Varnish cycles
through them and performs round-robin load balancing.

Imagine having a pool of origin servers that is available via origin.example.com with
the following IP addresses:

458

CHAPTER 7: VARNISH FOR OPERATIONS

192.168.128.2
192.168.128.3
192.168.128.4

The VCL example below will extract these IP addresses via DNS and will perform
round-robin load balancing:

vcl 4.1;
import goto;
backend default none;

sub vcl_init {
new apipool = goto.dns_director("origin.example.com");

}

sub vcl_recv {
set req.backend_hint = apipool.backend();

}
& J

If you remember the strengths of vmod_goto from previous chapters, you’ll under-
stand that DNS resolution is not done at compile time but at runtime.

This means that if the hostname changes, vmod_goto will notice these changes and act
accordingly. This way you can scale out your web server farm without having to recon-
figure Varnish.

However, it is important to take DNS T'TLs into account. A refresh of the hostname
will only happen if the 77 has expired. DNS records have 77Ls, and they can be
quite high. You can also define a 777 in goto.dns_director(). Which one is consid-
ered?

The standard behavior is that vmod_goto will resolve the hostname every ten seconds.
This can be overridden via the tt1 argument.

You can also define a 77Z rule in which you define to what extent the 77 from the
DNS record is respected.

These are the possible values:

* abide: use the TTL that was extracted from the DNS record

e force: use the TTL parameter that was defined by vmod_goto

e morethan: use the 77L from the DNS record unless the 77 parameter is higher
* lessthan: use the 77L from the DNS record unless the T7L parameter is lower

459

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s a VCL snippet where we enforce a 30-second TTL unless the TTL extracted from
the DNS record is less than 30 seconds:

sub vcl_init {
new apipool = goto.dns_director("origin.example.com", ttl=30s,
ttl_rule=lessthan);

}

460

CHAPTER 7: VARNISH FOR OPERATIONS

7.6 High Availability

Uptime, stability, performance, scalability. These are all operational priorities within a

content delivery context. Nowadays, people have little tolerance for downtime, or even
small hiccups in terms of stability.

Maintaining operational stability requires scaling out your infrastructure. As explained
early on in the book: Varnish operates as an origin shield. It takes away a lot of load from
the origin servers.

But even with Varnish protecting your origin layer, there is still a need to scale your in-
frastructure. You’ll need at least two Varnish servers to ensure continuity if one of your
Varnish servers were to go down.

This concept of taking precautions in case of individual failures is what we call high
availability: you plan for failure, and you make sure fallback servers can take over when
required.

A lot of high availability strategies have an active-passive setup, where only a part of the
infrastructure is used at all times. In this case, a certain percentage of your infrastruc-
ture is only used when a failover needs to happen.

There’s a level of inefficiency there, and a lot of companies are improving the inefficien-
cy by opting to use active-active setups, where traffic is routed to all nodes.

An added benefit of scaling out for high-availability reasons is the fact that you’re also
scaling out for performance reasons: because you have a load-balanced setup with multi-
ple Varnish nodes, you’ll be able to handle a lot more trafhic.

7.6.1 Keeping the caches hot

One of the challenges when dealing with multiple Varnish servers is keeping the caches
hot. When a node fails, and the fallback server is cold, you’ll start off with a lot of cache
misses, which can have an immediate impact on the origin.

A cache is cold when it has expired, is minimal or has no content.

Making sure your caches are synchronized avoids an additional strain on the origin.
That is, if your load balancer does round-robin distribution, it is possible that a bzt from
the previous request now turns into a mss because the current node doesn’t have the
object in cache.

461

CHAPTER 7: VARNISH FOR OPERATIONS

* Onatwo-node cluster this can lead to 50% more backend requests.
* Onathree-node cluster this can lead to 66% more backend requests.
* Onafour-node cluster this can lead to 75% more backend requests.

There are solutions out there where Varnish servers are chained to each other and act as
each other’s backend. There is some additional detection logic in there to avoid loops,
but all in all this is sub-optimal, and not a real HA solution.

16.1 VHA

Varnish Enterprise comes with a full-blown high-availability suite called Varnish High
Availability. But we’ll just refer to itas VHA.

VHA will replicate cache inserts on one Varnish server to the other nodes in the cluster.
The request that resulted in a mss and triggered the broadcast on the first node will
now result in a cache bit when the equivalent request is received by the other servers in
the cluster.

The VHA logic is written in VCL, requires a couple of VM ODs, and primarily depends
on the Varnish Broadcaster for replication.

7.6.1 Leveraging the broadcaster

A key aspect of VHA is performing the actual replication, and knowing which servers
to send the data to. Instead of opting for a custom implementation, the Varnish Broad-
caster was chosen as the replication mechanism.

The broadcaster is already an important tool in the Varnish Enterprise toolbox. As dis-
cussed in chapter 6, the broadcaster is commonly used to perform cache invalidations on
multiple Varnish servers. In essence the broadcaster’s main role is in its name: broadcast-
ing HTTP messages.

In VHA, the broadcaster will broadcast replication messages containing information
about the inserted object. The exact details will be discussed when we talk about the
architecture.

Another feature of the broadcaster is the nodes.conf file that contains the server inven-
tory of the Varnish cluster. If you use the broadcaster, you're already using nodes.conf,
which means you already defined the nodes in your cluster.

This concept can also be reused for VHA: it is very likely that the inventory that is used
for cache invalidation will also be used for replication.

462

CHAPTER 7: VARNISH FOR OPERATIONS

The broadcaster can either be hosted on your individual Varnish servers, or you can have
a set of dedicated broadcaster servers that Varnish connects to.

The way VHA interacts with the broadcaster can be configured. We’ll cover this
later in this section about VHA.

7.6.1 Architecture

As mentioned, the broadcaster does a lot of the heavy lifting in V’HA. The logic that
decides what, when, and how broadcasting happens, is written in VCL.

The Varnish instance that initiates the replication is called the VHA origin. Yes, that
may sound confusing because we have always called our backend servers the origin. But
in the VHA context, the origin is the Varnish server that initiates the broadcast.

The server that receives the replication request is called the VHA peer.

Workflow

As you can see in the diagram below, V’HA has a specific workflow:

B. Request

3. VHA_BROADCAST

4. \'HA_FETCH .
Peer Varnish

Origin Varnish

2. Fetch & insert

Webserver

VHA architecture

463

CHAPTER 7: VARNISH FOR OPERATIONS

Let’s go through the different steps:

36. A client sends an HTTP request to the first Varnish server.
37. The content is not in cache and will be fetched from the backend.

38. Upon cache insertion, the VHA origin will ask the broadcaster to send a
VHA_BROADCAST request to the other nodes in the cluster.

39. The VHA peers that received this VHA_BROADCAST request will send a
VHA_FETCH request to the 'HA origin when they don’t have the object in cache.

40. The VHA origin sends the object in the form of an HTTP response to the VHA
peer that requested it. The peer then stores this object in cache for future requests.

41. When a client sends a request for that same resource to the second Varnish server, it
will be able to serve it from cache.

Remember that this diagram only illustrates unidirectional replication. In reality,
the VHA peer can become the VHA origin when it receives a request for an object
it doesn’t have in cache. So in fact, replication can be bidirectional, or even omni-
directional.

Efficient replication

The main thing to remember here is that VHA origin servers don’t push the objects di-
rectly, but instead announce new cache insertions via a VHA_BROADCAST request to all
peers. This avoids broadcasting large objects across the network, potentially resulting in
network saturation.

Another thing to remember is that when peers attempt to fetch these new objects, they
don’t get them from the backend web servers, but from the VHA origin server that
announced it. This avoids unnecessary backend requests that may jeopardize stability,
especially on a large VHA cluster.

Also important to know: the VHA peer will only acknowledge the VHA_BROADCAST re-
quest and send a corresponding VHA_FETCH request if it doesn’t have that object already
in cache. This means that replication only takes place for cache misses on the peers.

Efficiency also comes from the fact that HA is designed for millisecond range repli-
cation. VHA already starts replicating as soon as the headers of the object are received.
Even as data is streaming from the backend server to the VHA origin, the VHA peers
start streaming the same content in parallel.

464

CHAPTER 7: VARNISH FOR OPERATIONS

When does replication take place?

Not every cache miss will result in a VHA_BROADCAST request to the VHA peers. The
VHA logic will quality which backend responses can be replicated, based on a set of
rules.

Here are some rules that exclude objects from being replicated:

* When bereq.uncacheable or beresp.uncacheable for the response equal true
* When replication for an object was explicitly skipped in VCL

* When the TTL of an object is equal to or less than the min_tt1l VVHA setting.
Three seconds by default

* When the size of the object exceeds the max_bytes VHA setting. 25 MB by de-
fault

e When the amount of #n-flight transactions per second exceeds the max_requests_
sec VHA setting. 200 by default

These rules make sense: if an object is shortlived or not cacheable at all, we really don’t
want to spend time and resources replicating it to the other nodes in the cluster. It’s just
not worth it.

The rules also ensure that replication doesn’t overload the network or the peer servers.
It does this by limiting the size of replicated object and by rate limiting the number of
in-flight replications.

The thresholds that are used to quantify some of these restrictions can be configured.
We’ll talk about that soon.

Security

It is important that the VHA_BROADCAST and VHA_FETCH requests are secured. If the
requests are tampered with, this can have a serious impact on the integrity and consis-
tency of the data but also the stability of the platform.

The VHA_BROADCAST and VHA_FETCH requests are secured with a time-based HMAC
signature. This means that replication messages are protected with a cryptographic sig-
nature that cannot be tampered with. This ensures the integrity of the data.

Because the HMAC signature is time-based, it cannot be duplicated or replayed.

The VHA configuration requires a cluster-wide unique zoken. This token is used as the
signing key for the HMAC signature and is defined by the token VHA setting.

465

CHAPTER 7: VARNISH FOR OPERATIONS

The validity of the zoken can be configured via the token_tt1 VHA setting, which de-
faults to two minutes. This means that the HAAC signature is valid for two minutes.
After that, the request is no longer considered valid.

These transactions can also be done over an HTTPS connection, ensuring that the out-
side world cannot decrypt the messages.

7.6.1 Installing VHA

VHA is only available for Varnish Enterprise and is packaged as varnish-plus-ha.
Because it depends on the broadcaster, here’s how you would install this on Debian or
Ubuntu systems:

[sudo apt-get install varnish-plus-ha varnish-broadcaster]

This is the equivalent for RHEL, CentOS, and Fedora:

[sudo yum install varnish-plus-ha varnish-broadcaster]

The install will put the necessary VHA VCL files in the /usr/share/varnish-plus/
vcl/vhaé folder. It will also install the custom vmod_vha VAIOD.

nodes.conf

The next step is to define your inventory inside nodes.conf. Here’s an example from
chapter 6 when we first introduced the broadcaster:

4)
[eu]
eu-varnishl = http://varnishl.eu.example.com
eu-varnish2 = http://varnish2.eu.example.com
eu-varnish3 = http://varnish3.eu.example.com

[us]

us-varnishl = http://varnishl.us.example.com
us-varnish2 = http://varnish2.us.example.com
us-varnish3 = http://varnish3.us.example.com

- J

Unless defined otherwise, replication will happen across these six nodes.

Make sure you restart the broadcaster after you have changed your inventory.

466

CHAPTER 7: VARNISH FOR OPERATIONS

V(L
And finally, it’s a matter of including the necessary V'CL and initializing VHA:

~N
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl_init {
vhaé_opts.set("token", "secretl23");
call vha6_token_init;
}
_ J

And that’s all it takes. Enabling VVHA from your VCL code is surprisingly simple.

We already referred to VHA settings earlier and that VCL example shows how it is done
using the vhaé_opts.set() method. At the minimum a token setting should be de-
fined. All other settings are optional.

The vha6/vha_auto.vcl include is loaded from the vcl_path directories. By default
thisis /etc/varnish and /usr/share/varnish-plus/vcl. As mentioned before the
VHA files are located in /usr/share/varnish-plus/vcl/vhaé.

The VHA files and the VA OD:s that are included are important and will hook in nicely
with your existing V’CL. It is a non-intrusive solution.

7.6.1 Configuring VHA

Although token is the only required setting, there are plenty of other VHA settings
that can be configured. We’ve grouped the settings per topic.

Let’s have a look.

Broadcaster settings

The broadcaster is a key component that initiates the replication. The default broadcast-
er endpoint is http://localhost:8088.

This implies that the broadcaster is hosted locally. This is a common pattern that makes
using VHA quite simple. A potential downside is the fact that you have to manage the
nodes.conf inventory on all broadcaster nodes. If for example, your inventory increases
from a five-node cluster to a six-node cluster, you’ll need to update the nodes.conf inven-
tory on all six broadcaster nodes.

467

CHAPTER 7: VARNISH FOR OPERATIONS

If you want the broadcaster to be centralized, you can configure VHA to send VHA _
BROADCAST requests to a central endpoint.

Here’s a list of settings you can edit to change the endpoint:

* broadcaster_scheme: the URL scheme to use. Defaults to http and can be set to
https

* broadcaster_host: the hostname or IP address of the broadcaster. Defaults to
localhost

* broadcaster_port: the TCP port on which the broadcaster is available. Defaults
to 8088

Imagine that your broadcaster is available through http://broadcaster.example.com.
This would result in the following VCL code:

~
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl_init {
vha6_opts.set("token", "secretl23");
vhaé_opts.set("broadcaster_scheme", "http");
vhaé_opts.set("broadcaster_host", "broadcaster.example.com");
vhaé_opts.set("broadcaster_port", "80");
call vha6_token_init;
}
_ J

I

f we look back at our nodes.conf inventory, we have nodes in the £U and the US. We
might want to restrict replication within a geographical region; otherwise we might
experience latency because of the distance between the nodes.

Again, imagine that this is our inventory:

()
[eu]

eu-varnishl = http://varnishl.eu.example.com

eu-varnish2 = http://varnish2.eu.example.com

eu-varnish3 = http://varnish3.eu.example.com

[us]

us-varnishl = http://varnishl.us.example.com
us-varnish2 = http://varnish2.us.example.com
us-varnish3 = http://varnish3.us.example.com

468

CHAPTER 7: VARNISH FOR OPERATIONS

We can set the broadcaster_group setting to eu within the £U to limit replication to
only the EU nodes. Here’s the V'CL to do that:

~N
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl _init {
vha6_opts.set("token", "secretl23");
vha6_opts.set("broadcaster_group", "eu");
call vha6_token_init;
}
_ J
Origin settings

The VHA_BROADCAST request from the VHA origin to the VHA peer contains a
vha6-origin request header. This header contains the endpoint that the peer should
connect to when it sends out its VHA_FETCH request.

The origin endpoint is automatically generated by VHA, but you can override it if re-
quired.

The autodetection of the origin scheme and origin port is based on the port that is used
for the incoming connection to the VHA origin. The origin host is based on the VHA
origin’s server.ip value.

The origin_scheme, origin,and origin_port settings can be used to override these
automatically generated values.

Here’s an example where we will force the peer to connect back to the VHA origin over
HTTRPS, even if original request was done over HTTP:

~
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl _init {
vha6_opts.set("token", "secretl23");
vhaé_opts.set("origin_scheme", "https");
vhaé_opts.set("origin_port", "443");
call vha6_token_init;
}
g J

469

CHAPTER 7: VARNISH FOR OPERATIONS

You can even redefine the bost of the VHA origin. This allows you to potentially have
peers request the new object from another system:

vcl 4.1;
include "vha6/vha_auto.vcl";

sub vcl _init {
vha6_opts.set("token", "secretl23");
vhaé_opts.set("origin", "vha-origin.example.com")
call vha6_token_init;

}
g J

TLS

T'LS is crucial these days, and all HA components can be configured to use HTTPS
endpoints.

The broadcaster_scheme VHA setting can be set to https to ensure the communi-
cation between the VHA origin and the broadcaster is done over TLS. If you do this,
please make sure the broadcaster_port setting also matches the broadcaster’s https-
port value.

Here’s some VCL that shows you how a locally hosted broadcaster can be configured to
use TLS:

~N
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl_init {
vhaé_opts.set("token", "secretl23");
vhaé_opts.set("broadcaster_scheme", "https"),;
vha6_opts.set("broadcaster_port", "8443");
call vha6_token_init;
}
_ _J

Please keep in mind that your broadcaster instance has to be configured with 7LS
support to make this work.

The node definition in the broadcaster’s nodes.conf file can also start with https://.
This forces the broadcaster to send VHA_BROADCAST requests to the peers over HTTPS
and ensures that the VHA_FETCH and the fetched responses are sent over H7TPS.

470

CHAPTER 7: VARNISH FOR OPERATIONS

Even if your nodes.conf inventory has a http scheme, or no scheme at all, it is still
possible to enable TLS/SSL in VHA. It’s a matter of setting origin_scheme to https
and assigning the right port to origin_port.

We already featured an example with both of these settings. Let’s make it a bit more
interesting by making sure self-signed certificates can be used as well.

Here’s the code:

~
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl_init {
vhaé_opts.set("token", "secretl23");
vha6_opts.set("origin_scheme", "https");
vha6_opts.set("origin_port", "443");
vha6_opts.set("origin_ssl verify peer", "false");
vhaé_opts.set("origin_ssl_verify_host", "false");
call vha6_token_init;
}
_ J

By setting both origin_ssl_verify_peerandorigin_ssl_verify_host to false,
the authenticity of a TLS/SSL certificate is ignored. That allows using certificates that
were not issued by a certificate authority. In this case, the certificates were self-signed.

Disabling the TLS/SSL verification process can also be done for the broadcaster. How-
ever, the broadcaster plays two roles and that has an impact on the configuration.

To the VHA origin, the broadcaster acts as a server. To use self-signed certificates, you
need to set broadcaster_ssl verify peer and broadcaster_ssl verify host to
false. This ensures that ’HA4 doesn’t complain when the certificate is not authentic.

But the broadcaster also acts as the client towards the VHA peers. When https schemes
are used in the nodes. conf, those endpoints need to have valid certificates as well, re-
gardless of the VHA settings.

To make sure peer and host verification within the broadcaster is also disabled, you have
to set the broadcaster’s t1s-verify runtime configuration parameter to NONE.
Limits

As discussed earlier, ’HA has put some limitations in place that impact how and when
replication takes place.

471

CHAPTER 7: VARNISH FOR OPERATIONS

The min_tt1 setting, for example, defines what the minimum 77 of an inserted ob-
ject must be before it is considered for replication. The default value is 3s.

The max_bytes setting defines the upper limit in terms of payload size. By default this
value is 25000000. This means that for H7TTP responses with a Content-Length header
that exceeds 25000000 bytes, the object will not be replicated.

The max_requests_sec defines the maximum number of n-flight transactions per
second that are tolerated before replication is halted. The default value is 200.

The fetch_timeout setting will limit the amount of time the VHA peer can spend
waiting for the first byte of the object to be returned from the VHA origin. By default
this is unlimited.

So let’s throw these settings together into a single VCL example:

vcl 4.1;
include "vha6/vha_auto.vcl";

sub vcl init {
vha6é_opts.set("token", "secretl23");
vhaé_opts.set("min_ttl", "10s");
vhaé_opts.set("max_bytes", "100000000");
vha6_opts.set("max_requests_sec", "1000");
vhaé_opts.set("fetch_timeout", "60s");

call vha6_token_init;

}
- J

These settings will prevent objects from being replicated if their 77Z is lower than zen
seconds, if the payload of the HTTP response is larger than 100 MB, or if there are more
than 1000 requests per second in-flight.

When replication is active, the VHA_FETCH call is allowed to wait one minute before the
first byte comes in. Otherwise the replication call fails.

Skipping replication

In the previous subsection, we talked about limits and when replication is prevented.
But these are global settings. However, the skip setting allows you to skip replication
on a per-request bass.

472

CHAPTER 7: VARNISH FOR OPERATIONS

vcl 4.1;
include "vha6/vha_auto.vcl";

sub vcl_init {
vhaé_opts.set("token", "secretl23");
call vha6_token_init;

}

sub vcl_backend_fetch {
if(bereq.url ~ "~/video") {
vha6_request.set("skip", "true");
}
}
o J

The example above will skip replication if the backend request URL matches the */vid-
eo regular expression pattern. Skipping replication on a per-request basis can only be
done inside vcl_backend_fetch and vcl_backend_response.

Forcing an update

Itis possible in ”HA to force a transaction to update an existing object in cache. So
even if the VHA peers have the object in cache, and would otherwise ignore the replica-
tion request, a new cache insertion can be forced.

The example below features a news website where all UR Ls that start with /break-
ing-news are forcefully replicated:

vcl 4.1;
include "vha6/vha_auto.vcl";

sub vcl_init {
vhaé_opts.set("token", "secretl23");
call vha6_token_init;

}

sub vcl_backend_fetch {
if(bereq.url ~ "~/breaking-news") {
vha6_request.set("force_update", "true");

}

473

CHAPTER 7: VARNISH FOR OPERATIONS

7.6.1 Monitoring

VHA heavily relies on vmod_kvstore for managing options and storing metrics. With
varnishstat these metrics can be visualized.

Here’s an example of some VHAG stats using varnishstat:

$ varnishstat -f *vha6_stats* -1
KVSTORE.vha6_stats.boot.broadcast_candidates 8 ©0.02 Broadcast can-
didates
KVSTORE.vha6_stats.boot.broadcasts 7 0.02 Successful
broadcasts
KVSTORE.vha6_stats.boot.fetch_peer 2 0.01 Broadcasts
which hit this peer node (fetches)
KVSTORE.vha6_stats.boot.fetch_origin 7 ©.02 Fetches which
hit this origin node
KVSTORE.vha6_stats.boot.fetch_origin_deliver 7 ©.02 Fetches which
were delivered from origin to the peer
KVSTORE.vha6_stats.boot.fetch_peer_insert 2 0.01 Fetches which
were successfully inserted
KVSTORE.vha6_stats.boot.error_fetch @ 0.00 Fetches which
encountered a network error
KVSTORE.vha6_stats.boot.error_fetch_insert @ 0.00 Fetches which
encountered an origin error
KVSTORE.vha6_stats.boot.broadcast_skip 1 0.00 Broadcast can-
didate has a VCL override

_ J

* The first column contains the name of the counter.

e Thesecond column is the current value of the counter.

* The third column represents the average per-second change for that counter.
e The fourth column describes the meaning of the counter.

* Here’s what we know, based on the output above:

e There are eight objects on this node that can be replicated.

* Seven objects were in fact replicated to peer servers.

* One object was skipped.

* For two objects this server was the peer and fetched the objects from the corre-

sponding VHA origin.
e These two fetches were successfully stored in cache.

* The seven objects for which this node was the VHA origin were successtully

tetched by the peer and delivered to the peer.

474

CHAPTER 7: VARNISH FOR OPERATIONS

¢ No errors occurred while this node was fetching data from the corresponding
VHA origin.

The -1 varnishstat flag sends the counters to the standard output, instead of pre-
senting the statistics as a continuously updated list.

1.6.1 Logging

The varnishlog program will also contain detailed logging information on VHA
transactions.

The following varnishlog command will display logs for all transactions of which the
request method starts with VHA. This includes VHA_BROADCAST requests on VHA ori-
gin servers and VHA_FETCH requests on peer servers:

[var‘nishlog -g request -q "RegMethod ~ VHA"]

This command should be run on all nodes in your cluster, as it is unclear at what point
anodeisa VHA origin or a VHA peer. The output is extremely verbose. Let’s just look
at the VHA_BROADCAST request information:

()
- RegMethod VHA_BROADCAST
- ReqURL /fed4a6511f33937f6de966469f98ad6f6calf-
9f4a2a4la24ef5dlabdde@9980d
- RegProtocol HTTP/1.1
- RegHeader Host: example.com
- RegHeader Vha6-Date: Fri, 20 Nov 2020 13:38:12 GMT
- RegHeader Vha6-0Origin: https://192.168.0.5:443
- RegHeader Vha6-0rigin-Id: varnishil
- RegHeader Vha6-Token: c5391fd44cba8ede76f4bd9b02d6c135€e-
217608d63e5c0713979ac854918162e
- RegHeader Vha6-Url: /contact
- RegHeader vha6-method: VHA BROADCAST
- RegHeader vha6-peer-id: varnish2
- J

As you can see, the URL of the replicated object is https://example.com/con-
tact. The varnish1 server acted as the origin and can be reached through
https://192.168.0.5:443. This information was received by the varnish2 server,
which acted as the peer for this transaction.

Similar information can be extracted for the VHA_FETCH call:

475

CHAPTER 7: VARNISH FOR OPERATIONS

()
- RegMethod VHA_FETCH
- ReqURL /fed4a6511f33937f6de966469f98ad6f6calf-
9f4a2ad4la24ef5dlabdde09980d
- RegProtocol HTTP/1.1
- RegHeader Host: example.com
- RegHeader Vha6-Date: Fri, 20 Nov 2020 13:38:12 GMT
- RegHeader Vha6-0rigin: https://192.168.0.5:443
- RegHeader Vha6-0rigin-Id: varnishil
- RegHeader Vha6-Token: c5391fd44cba8ede76f4bd9b02d6c135e-
217608d63e5c0713979ac854918162e
- RegHeader Vha6-Url: /contact
- RegHeader vha6-method: VHA_FETCH
- RegHeader vha6-peer-id: varnish2
_ J

This request was processed by varnishi, which is the VHA origin for this transaction.
The information is very similar to the VHA_BROADCAST request and is an acknowledge-
ment by VHA peer.

When the VHA origin responds to the VHA peer for the VHA_FETCH request, the fol-
lowing response information can be found in the VSL logs of the VHA origin:

()
- RespProtocol HTTP/1.1
- RespStatus 200
= RespReason OK
- RespHeader Date: Fri, 20 Nov 2020 13:38:12 GMT
- RespHeader Content-Type: text/html
- RespHeader Content-Length: 612
- RespHeader Last-Modified: Tue, 27 Oct 2020 15:09:20 GMT
- RespHeader ETag: "5f983820-264"
- RespHeader X-Varnish: 23 65558
- RespHeader Age: 0
- RespHeader Via: 1.1 varnish (Varnish/6.0)
- RespHeader vha6-stevedore-ttl: 120.000s
- RespHeader vha6-stevedore-ttl-rt: 119.973s
- RespHeader vha6-stevedore-grace: 10.000s
- RespHeader vha6-stevedore-keep: 0.000s
- RespHeader vha6-stevedore-uncacheable: false
- RespHeader vha6-stevedore-storage: storage.so
- RespHeader vha6-stevedore-age: ©
- RespHeader vha6-stevedore-insert: Fri, 20 Nov 2020 13:38:12
GMT
- RespHeader vha6-origin: varnishil
- RespHeader vha6-seal: b49adlfcc95f1la740cddf65c8c9d653bdoc-
3737baa8bc684442d8988dc64feab

& J

This looks like a regular HTTP response, but it also includes some metadata in the form
of vha6-stevedore-* headers.

476

CHAPTER 7: VARNISH FOR OPERATIONS

7.6.1 Not using the broadcaster

It is technically possible to set up VHA without the broadcaster.

Although the broadcaster is essential for a multi-node cluster, it is not a hard require-
ment for a two-node cluster.

You can also send a VHA_BROADCAST request directly to your second node, as illustrated
below:

~
vcl 4.1;

include "vha6/vha_auto.vcl";

sub vcl _init {
vha6_opts.set("token", "secretl23");

vhaé_opts.set("broadcaster_host", "varnish2.example.com");
vhaé_opts.set("broadcaster_port", "443");

vha6_opts.set("broadcaster_scheme", "https");

call vha6_token_init;

}
- J

We actually set the broadcaster_host to the host of your other Varnish node instead
of relying on the broadcaster for this.

The same thing happens on your second node: setting the broadcaster_host to your
first Varnish node. By doing this, you have bidirectional replication.

Here’s the configuration for your second node:

~
vcl 4.1;
include "vha6/vha_auto.vcl";
sub vcl_init {
vha6é_opts.set("token", "secretl23");
vhaé_opts.set("broadcaster_host", "varnishl.example.com");
vhaé_opts.set("broadcaster_port", "443");
vha6_opts.set("broadcaster_scheme", "https");
call vha6_token_init;
}
_ _J

477

CHAPTER 7: VARNISH FOR OPERATIONS

Although this solution is viable and can be considered a high-availability solution, it
does take away a lot of flexibility. Unless you're certain that your two-node setup will
remain a two-node setup, using the broadcaster is the recommended way to go.

1.6.1 Discovery

There is also an important operational question that hasn’t been answered or raised:

[How do you add or remove nodes from the cluster?]

Failing nodes are supposed to be removed from the broadcaster’s inventory. This also
applies to nodes that are removed when scaling in. And when a spike in demand is ex-
pected, extra nodes should be registered in the node.conf file.

Whenever an inventory change takes place, the nodes.conf file needs to be reprovi-
sioned, and the broadcaster needs to be reloaded. By sending a SIGHUP signal to the
broadcaster, the nodes.conf file is read, and the configuration reloaded.

Here’s how the broadcaster process reports this:

DEBUG: Sighup notification received, reloading configuration
DEBUG: Reading configuration from /etc/varnish/nodes.conf
DEBUG: Done reloading configuration

You can do this manually by triggering a script to reprovision the inventory and re-
loading the broadcaster. But unless you have a proper discovery tool, you will not know
when to change your nodes.conf file and what servers are to be considered.

Especially on environments with a dynamic inventory, like the cloud, this can become a
serious challenge.

The varnish-discovery program

Luckily, Varnish Enterprise comes with the varnish-discovery program that dynami-
cally provisions your broadcaster’s nodes.conf, and reloads the broadcaster service.

Varnish Discovery supports a couple of data providers that are used to provision the
nodes.conf file.

These are the providers that are currently supported:

478

CHAPTER 7: VARNISH FOR OPERATIONS

* Amazon Web Services
* Microsoft Azure

* DNS

* Kubernetes

With the exception of DNS, API calls are made to the data provider to retrieve invento-
ry information.

For cloud platforms like AWWS or Azure, the nodes that are associated with a specific
autoscaling group are retrieved. For Kubernetes these are pods that are associated with
an endpoint list.

The node information that was collected from the data provider is then flushed to the
nodes.conf file and a SIGHUP signal is sent to the broadcaster process.

The varnish-discovery program will emit the following output when a change is
detected:

Generating new nodefile /etc/varnish/nodes.conf (2020-11-23
16:14:17.4384255 +0000 UTC m=+58.052877601)

Installing varnish-discovery

Varnish Discovery is only available for Varnish Enterprise and is packaged as var-
nish-plus-discovery. Because this service also depends on the broadcaster, here’s how
you would install this on Debian or Ubuntu systems:

[sudo apt-get install varnish-plus-discovery varnish-broadcaster]

This is the equivalent for RHEL, CentOS, and Fedora:

[sudo yum install varnish-plus-discovery varnish-broadcaster]

A systemd service file is available in /1ib/systemd/system/varnish-discovery.
service. This is the default service definition of that file:

479

CHAPTER 7: VARNISH FOR OPERATIONS

[Unit]

Description=Varnish Discovery
#After=network-online.target
#Requisite=network-online.target

[Service]
ExecStart=/usr/bin/varnish-discovery dns \
--group example.com \
--nodefile /etc/varnish/nodes.conf \
--warnpid /run/vha-agent/vha-agent.pid

[Install]

WantedBy=multi-user.target
- J

The standard configuration will most likely not work for you. But once the right run-
time parameters are set, you can run the following commands to enable and start the
service:

sudo systemctl enable varnish-discovery
sudo systemctl start varnish-discovery

Configuring varnish-discovery

Configuring varnish-discovery is done by setting the right runtime parameters.
Let’s take the default settings from the systemd service file and explain what they
mean:

The first argument is the name of the provider to use. By default this is dns, but you can
set this to aws, azure, or kubernetes.

The --group parameter is used to query the group that contains the nodes we want in
our inventory. The meaning of group varies on the provider that is used:

¢ Fordns, the --group parameter refers to the DNS record that contains the IP ad-
dresses of the Varnish nodes.

¢ For aws, the --group parameter refers to the autoscaling group that contains the
EC2 instances on which Varnish is hosted.

e Forazure, the --group parameter refers to the virtual machine scale set that con-
tains the virtual machines on which Varnish is hosted.

¢ Fork8s, the --group parameter refers to the endpoint that contains the Varnish

pods.

480

CHAPTER 7: VARNISH FOR OPERATIONS

The --nodefile parameter refers to the location of the nodes.conf file. This is where
varnish-discovery sends its output.

The --warnpid parameter is the PID file that needs to be signaled when changes to the
nodes.conf file have occurred. By default this is /run/vha-agent/vha-agent.pid,
but this should be the PID file of the broadcaster service.

Please keep in mind that you probably have to add the --pid runtime parameter to the
systemd configuration of your broadcaster. This ensures that the PID file is written out
to the desired location.

There are some other parameters you can configure as well. Here’s a quick overview:

* --protois the backup protocol that will be used in nodes.conf in case a protocol
wasn’t returned from the data provider. Defaults to http

e --portis the backup port that is used when the port wasn’ returned by the data
provider. If omitted, the port is inferred from the protocol.

e --ipv4and --ipv6 allow you to filter nodes on their IP protocol version. If omit-
ted, both /Pv4 and IPv6 addresses are allowed for nodes.

¢ --once will not continuously query the data provider, but instead will only query
it once.
e --every is used to define the frequency with which the data provider is queried.

Defaults to two seconds

Here’s an example where we use some more runtime parameters:

/usr/bin/varnish-discovery dns \
--group example.com \
--nodefile /etc/varnish/nodes.conf \
--warnpid /var/run/broadcaster.pid \
--proto https \
--port 444 \
--ipv4 --every 10
- J

This example will resolve the example.com hostname every ten seconds and will only
retrieve [Pv4 addresses. The nodes that are written to /etc/varnish/nodes.conf will
be prefixed with https:// and suffixed with :444 for the port.

Once the nodes.conf file is written to disk, the PID inside /var/run/broadcaster.
pid is used to send a SIGHUP signal to the broadcaster.

481

CHAPTER 7: VARNISH FOR OPERATIONS

DNS

The dns provider will resolve a hostname that was provided by the --group parameter.
The IP addresses resolved from the DNS call will end up in the nodes.conf file.

If an IP address matches the local machine, the local hostname is used instead of the IP
address. You can disable this behavior by adding the --no-hostname runtime parame-
ter.

This is a pretty basic solution that works on any platform. However, it is important to
make sure the 77 of your DNS records is not too high. Otherwise local DNS resolvers
might cache the value for longer than expected.

AWS

The Amazon Web Services (AWS) provider interacts with the AWS API. The --group
parameter refers to the autoscaling group that is expected to be defined in your AWS
environment.

The API call will retrieve the private DNS name and the private IP address for every
node that is part of the autoscaling group. This information is then written to the
nodes.conf.

The -region parameter sets the AWS region where the autoscaling group is defined.
This is only necessary when the default region is not configured on your system via the
aws configure command.

The aws program is a CLI interface for the AWS API The aws configure command
will assist with configuring the necessary environment variables for authenticating with

the AWS APL

You can also define the following environment variables for authentication:
e AWS_ACCESS_KEY ID

e AWS_SECRET ACCESS_KEY

° AWS_DEFAULT_REGION

Or you can define an AWS_SHARED_CREDENTIALS_FILE environment variable that re-
fers to a shared credentials file.

Once the proper environment variables are set up, VHA will dynamically replicate its
objects to Varnish servers that are part of this autoscaling group.

482

CHAPTER 7: VARNISH FOR OPERATIONS

Azure

Azure is Microsoft’s cloud platform, and the azure provider within varnish-discov-
ery is very similar to the aws one. The --group parameter refers to a virtual machine
scale set (VMSS), which is Azure’s version of an autoscaling group.

There are two custom parameters for Azure you can configure:
* -resourcegroup
* -subscriptionid

The resource group and subscription of the VASS can be configured. This is just the fall-
back value in case these weren’t configured via az configure.

The az program is also a CLI interface. It interacts with the Azure APl and sets some
environment variables that are used for authentication.

Here’s the list of environment variables that are used for authentication:
. AZURE_SUBSCRIPTION_ID

. AZURE_TENANT_ID

e AZURE_CLIENT ID

. AZURE_CLIENT_SECRET

. AZURE_LOCATION_DEFAULT

* AZURE_BASE_GROUP NAME

By using az configure, these environment variables will be set for you, and the VALSS
information is picked up.

If you’re using Azure, this is an excellent way to dynamically scale your Varnish setup
and make sure V’HA keeps working.

Kubernetes

Kubernetes is a framework for automating the deployments, scaling, and management
of containerized applications. It mostly uses Docker containers.

When Varnish Enterprise is run inside containers on a Kubernetes cluster, the k8s is there
to figure out the various endpoints of a service. The --group parameter refers to a service
inside a Kubernetes cluster. The service is the entrypoint to a set of pods, which contains
the actual containers.

483

CHAPTER 7: VARNISH FOR OPERATIONS

The service maps the endpoints of each pod, and our k8s provider will fetch those end-
points and provision them in nodes.conf.

Authentication with the 4P/ of that cluster is done based on a set of parameters:

* --server: the URL of the API Defaults to https://kubernetes

e --token: the path to the token file. Defaults to /var/run/secrets/kubernetes.
io/serviceaccount/token

e --cacert: the path to the CA certificate file. Defaults to /var/run/secrets/ku-
bernetes.io/serviceaccount/ca.crt

* --namespace: the path to the namespace file. Defaults to /var/run/secrets/ku-
bernetes.io/serviceaccount/namespace

These parameters are entirely optional, and the default values work perfectly fine if
varnish-discovery runs inside a Kubernetes pod. The /var/run/secrets/kuberne-
tes.io/serviceaccount/ path is accessible within the pod and the corresponding files
are located in there.

However, if varnish-discovery runs elsewhere, the Kubernetes API needs to be called
externally, which might require the authentication parameters to be tuned.

Here’s an example where custom parameters are used for Kubernetes authentication:

4)

/usr/bin/varnish-discovery k8s \
--group my-varnish-service \
--nodefile /etc/varnish/nodes.conf \
--warnpid /var/run/broadcaster.pid \
--server https://kubernetes-api.example.com \
--token /path/to/token \
--cacert /path/to/ca.crt \
--namespace /path/to/namespace

- J

Behind the scenes https://kubernetes-api.example.comis set as the base URL,
and the content of /path/to/namespace is used to determine the URL. If /path/to/
namespace contains my-namespace, the URL will become the following:

https://kubernetes-api.example.com/api/vl/namespaces/my-namespace/
endpoints

484

CHAPTER 7: VARNISH FOR OPERATIONS

Authentication is required to access this API call. This is done via a bearer anthentica-
tion token. The value of this token is the content of the file that was referred to via the
--token parameter. In our case this is /path/to/token.

The TLS certificates that are used to encrypt the HT'TPS connection are self-signed. In
order to correctly validate the server certificate, a custom CA certificate is passed. This is
the certificate that was used to sign the server certificates.

If you were to try this yourself using curl, this would be the corresponding call:

curl -H "Authorization: Bearer $(head -nl /path/to/token)" \
--cacert /path/to/ca.crt \
https://kubernetes-api.example.com/api/vl/namespaces/$(head -nl1 /
path/to/namespace)/endpoints

And that’s exactly what the k8s provider does behind the scenes.

485

CHAPTER 7: VARNISH FOR OPERATIONS

1.1 Monitoring

Uptime, throughput and performance are some of the key requirements of any service.
Varnish happens to be really good at these things. But despite its capabilities, there is no
guarantee that Varnish will perform great at all times.

Just like any program, process or service, monitoring tools are required to check the avail-
ability and efficiency of Varnish.

Tools like Nagios or Zabbix are very popular monitoring tools that check the availability
of services and send alerts when warnings or critical errors occur.

For an HTTP service like Varnish, a typical HTTP check is often used to monitor the
availability of Varnish.

There are also Varnish plugins for both Nagios and Zabbix, which dig a bit deeper.
These plugins use Varnish’s built-in counters to monitor conditions that go way beyond
general availability.

In these monitoring sections, we won’t be talking about Nagios or Zabbix. We’ll pri-
marily focus on Varnish counters, and how you can retrieve and visualize them.

7.71 Varnishstat

varnishstat is a program that can display the internal Varnish counters. Here’s an
extract of the output you may get when you run the command:

(.)
Uptime mgt: 0+00:01:27
Hitrate n: 10 14 14
Uptime child: 0+00:01:28

avg(n): 0.1968 0.2143 0.2143

NAME CURRENT CHANGE
AVERAGE AVG_10 AVG_100 AVG_1000
MGT.uptime 0+00:01:27
MAIN.uptime 0+00:01:28
MAIN.sess_conn 16395 0.00
186.31 219.27 231.37 231.37
MAIN.client_req 16395 0.00
186.31 219.27 231.37 231.37
MAIN.cache_hit 16291 0.00
185.12 219.27 231.37 231.37
MAIN.cache_miss 104 0.00
1.18 0.00 0.00 0.00

486

CHAPTER 7: VARNISH FOR OPERATIONS

MAIN.backend_conn 47 0.00
0.53 0.00 0.00 0.00
MAIN.backend_reuse 58 0.00
0.66 0.00 0.00 0.00
MAIN.backend_recycle 105 0.00
1.19 0.00 0.00 0.00

MAIN.fetch_length 105 0.00
1.19 0.00 0.00 0.00

MAIN.pools 2 0.00
5 2.00 2.00 2.00

MAIN.threads 127 0.00
o 127.00 127.00 127.00
MAIN.threads_created 127 0.00
1.44 0.00 0.00 0.00

MAIN.busy_sleep 70 0.00
0.80 0.00 0.00 0.00

MAIN.busy_wakeup 70 0.00
0.80 0.00 0.00 0.00

MAIN.sess_queued 20 0.00
0.23 0.00 0.00 0.00

MAIN.n_object 105 0.00
5 105.00 105.00 105.00

MAIN.n_objectcore 187 0.00
5 187.00 187.00 187.00

MAIN.n_objecthead 187 0.00
5 187.00 187.00 187.00

MAIN.n_backend 2 0.00
o 2.00 2.00 2.00

MAIN.s_sess 16395 0.00
186.31 219.27 231.37 231.37

MAIN.s_fetch 104 0.00
1.18 0.00 0.00 0.00

- J

You see the counters being listed with their absolute value, the change rate, and some
averages.

* Current represents the current value of a counter, since the start of the varnishd
process.

* Change reflects the average value per second of a counter since the last update inter-
val.

* Average is the average value of the counter since the start of the varnishd process.
¢ AVG_10is the average value of the counter over the last ten update intervals.
e AVG_100is the average value of the counter over the last 100 update intervals.

* AVG_1000is the average value of the counter over the last 1000 update intervals.

487

CHAPTER 7: VARNISH FOR OPERATIONS

Varnishstat options
The varnishstat program has a set of options that allow you to control the output.

If you run varnishstat without any options, you end up in curses mode, which dis-
plays a continuously updated list of counters.

By adding -1, as illustrated below, the output is returned via standard output:

[varnishstat -1]

The output is a lot more verbose and includes all counters, including the ones that have

a zero value. Here’s a very small extract from a very long list:

KEMGT.uptime 141 0.99 Management process uptime R
MGT.child_start 1 0.01 Child process started
MGT.child_exit 0 0.00 Child process normal exit
MGT.child_stop (4] 0.00 Child process unexpected
exit
MGT.child_died (%] 0.00 Child process died (sig-
nal)
MGT.child_dump (%] 0.00 Child process core dumped
MGT.child_panic (%] 0.00 Child process panic
MAIN. summs 73384 516.79 stat summ operations
MAIN.uptime 142 1.00 Child process uptime
MAIN.sess_conn 36469 256.82 Sessions accepted
MAIN.sess_drop (%] 0.00 Sessions dropped
MAIN.sess_fail (%] 0.00 Session accept failures

- J

If you want to get the list of available counters with a description, but without the actu-
al values, you can run the following command:

[varnishstat -1]

Because the output is so verbose, the -f option can be used to filter the output based on

a glob pattern.

Here’s an example where we only want to see the gauge values of the various shared
memory allocation (SMA) stevedores:

[var‘nishstat -f "SMA.*.g *" -1]

488

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s the output:

(SMA.s@.g alloc 40 5 Allocations outstanding R
SMA.s@.g bytes 41445760 5 Bytes outstanding
SMA.s@.g_space 63411840 5 Bytes available
SMA.Transient.g_alloc 23 . Allocations outstand-
ing
SMA.Transient.g_bytes 7176 5 Bytes outstanding
SMA.Transient.g_space 0 o Bytes available

Because the storage wasn’t explicitly named in this case, s0 is the automatic name
that is assigned to the storage. If multiple storage engines are configured, the num-
ber that is used increases.

\ J

What can we learn from these counters?

* Thetotal storage size (g_bytes + g_space)is 100 MB.

* SMA.s@.g_bytes indicates that 40 MB of storage is in use.
* SMA.s@.g_space says that about 60 MB is still available.

* The transient storage is not limited in size because of the SMA.Transient.g_space
zero byte value.

* Acthis point, 7176 bytes worth of data is stored in transient storage. This corre-
sponds to the SMA.Transient.g_bytes counter.

Here’s an example where we combine multiple filters:

varnishstat -1 -f "MAIN.cache_*" -f "MAIN.s_*" \
-f "MAIN.n_object" -f "~*bytes" -f "~*pipe *"

This command will print all the MAIN.cache_ counters, all the MAIN.s_, and the
MAIN.n_object counter. However, all counters that end with bytes, or contain pipe_
will not be shown.

This results in the following output:

489

CHAPTER 7: VARNISH FOR OPERATIONS

(EMAIN.cache_hit 26760 12.55 Cache hits
MAIN.cache_hit_grace (%] 0.00 Cache grace hits
MAIN.cache_hitpass (%] 0.00 Cache hits for pass
MAIN.cache_hitmiss 5112 2.40 Cache hits for miss
MAIN.cache_miss 5190 2.43 Cache misses
MAIN.n_object 2299 5 object structs made
MAIN.s_sess 37263 17.48 Total sessions seen
MAIN.s_pipe (%] 0.00 Total pipe sessions
seen
MAIN.s_pass 5284 2.48 Total passed requests
seen
MAIN.s fetch 10474 4.91 Total backend fetches
initiated
MAIN.s_synth 0 0.00 Total synthetic re-
sponses made

_

And let’s break it down:

* 26760 cache hits have taken place so far. Currently the hit rate is at 72.55 hits per
second.

¢ There are no grace hits, which means no objects were served passed their 77L.

¢ There are no hit-for-passes because the VCL defaults to hit-for-miss instead.

* 5112 bit-for-misses took place at a rate of 2.40 per second.

* 5190 cache misses occurred at a rate of 2.43 per second.

* A total number of 2299 objects are stored in cache at this point.

* 37263 HTTP sessions were established. This happens at a rate of 17.48 new ses-
sions per second.

* There wasn’t a single pipe request taking place.

* 5284 requests were passed to the backend. In this case because they were POST
requests. This happened at a rate of 2.48 per second.

¢ Intotal 10474 backend fetches took place. On average this happens about 4.91
times per second.

* No synthetic responses have occurred so far.

490

CHAPTER 7: VARNISH FOR OPERATIONS

Other output formats

The output that varnishstat -1 returns uses new lines to delimit counters and spaces
to delimit columns for each counter. Pretty standard stuff.

But you can also return the output as XA1L or JSON data by using the -x or -j options.

The following command will return the it and miss counters and return them in XML
format:

[var‘nishstat -f "MAIN.cache_hit" -f "MAIN.cache_miss" -x]

This is the corresponding XML output:

<?xml version="1.0"?>
<varnishstat timestamp="2020-12-10T13:55:34">
<stat>
<name>MAIN.cache_hit</name>
<value>45718</value>
<flag>c</flag>
<format>i</format>
<description>Cache hits</description>
</stat>
<stat>
<name>MAIN.cache_miss</name>
<value>8949</value>
<flag>c</flag>
<format>i</format>
<description>Cache misses</description>
</stat>
</varnishstat>

- J

The output adds a bit more context about the counters that are returned. The <flag>
and <format> tags are especially helpful.

In this case both counters have a <flag>c</flag> tag, which implies that the counter is a
regular counter, not a gauge. Its value can only increase, not decrease.

Both counters also have a <format>i</format> tag, which implies that the value is an
integer.

Butif we run varnishstat -f "SMA.s@.g_bytes" -x to get the current size of the
shared memory allocation stevedore, this is the XML output you’d get:

491

CHAPTER 7: VARNISH FOR OPERATIONS

~
<?xml version="1.0"?>
<varnishstat timestamp="2020-12-10T14:02:28">
<stat>
<name>SMA.s@.g bytes</name>
<value>18876</value>
<flag>g</flag>
<format>B</format>
<description>Bytes outstanding</description>
</stat>
</varnishstat>
g J

The <flag>g</flag> specifies that this value is a gauge: it can increase and decrease. The
format of this output returns a byte value, hence the <format>B</format> tag.

Let’s run the same commands again, and use the -j option to return /SON output:

(: varnishstat -f "MAIN.cache_hit" -f "MAIN.cache_miss" -j :)

This is the corresponding /SON output:

()
{

"timestamp": "2020-12-10T13:55:34",
"MAIN.cache_hit": {

"description"”: "Cache hits",
"flag": "c",
"format": "i",
"value": 45718

s

"MAIN.cache_miss": {
"description"”: "Cache misses",
"flag": "c",
"format": "i",
"value": 8949

¥

¥
_ J

Again, you see the flag and format fields, and if we run varnishstat -f "SMA.s@.g_
bytes" -j, we’ll see gauges and byte counts:

492

CHAPTER 7: VARNISH FOR OPERATIONS

4)
{

"timestamp": "2020-12-10T14:02:28",
"SMA.s@.g bytes": {
"description”: "Bytes outstanding",
"flag": "g",
"format": "B",
"value": 18876
}

}
- J

Curses mode

Curses mode is actually the standard mode when you run varnishstat. Only when you
use the -1, -x, or -j mode, you’ll end up not using curses.

The very first varnishstat example we showed you was in curses mode. The output
can be quite verbose, but just like in the other output modes, you can use glob filters to
reduce the noise.

Let’s run the following command in curses mode:

[var‘nishstat -f "VBE.*"]

This one will list some stats for every registered backend. The more backends you de-

fined, the more output you’ll get.

Here’s some output while using a single backend:

(N

Uptime mgt: 0+00:05:24 Hitrate n:
10 51 51
Uptime child: 0+00:05:25 avg(n):
0.7171 0.5066 0.5066

NAME CURRENT CHANGE AVERAGE
AVG_10
MGT.uptime 0+00:05:24
MAIN.uptime 0+00:05:25
MAIN.cache_hit 122288 107 .80 376.27
516.95
MAIN.cache_miss 6931 1.00 21.33
26.08
VBE.boot.default.bere... 3.28M 1.77K 10.32K
11.73K
VBE.boot.default.bere... 62.68K 53.90 197.50
211.65

493

CHAPTER 7: VARNISH FOR OPERATIONS

VBE.boot.default.bere... 2.73M 1.33K 8.59K
9.86K
VBE.boot.default.bere... 9.34M 4.79K 29.42K
33.60K
VBE.boot.default.conn 3 2.99
1.27
VBE.boot.default.req 14108 9.98 43.41
49.79
\ J

We deliberately kept the window size quite small while grabbing this output. This

results in the AVG_100 and AVG_1000 columns being hidden.
N\ J

While we only filtered for counters matching the VBE category, some extra MGT and
MAIN counters ended up in the output as well.

Curses mode has some key bindings that allow you to manipulate the view.

When you use the <UP> or <DOWN> keys, you can navigate through the counter list. At
the bottom of your windows, you’ll see some extra information when a specific counter
is highlighted. Here’s what you see when the VBE.boot.default.bereq_hdrbytes
counter is selected:

VBE .boot.default.bereq_hdrbytes
INFO 1-10/10
Request header bytes:
Total backend request header bytes sent

You can also use <PAGEUP> or , and <PAGEDOWN> or <SPACE> to skip through page by
page. And as expected, the <HOME> and <END> keys are there to take you to the top and
bottom of the list.

When you press the <d> key, you can toggle between showing and hiding counters with
a zero value. As you can see, some extra counters appear in the output:

494

CHAPTER 7: VARNISH FOR OPERATIONS

NAME CURRENT CHANGE
AVERAGE AVG_10 AVG_100 AVG_1000
MGT.uptime 0+00:14:03
MAIN.uptime 0+00:14:04
MAIN.cache_hit 248289 0.00
294.18 0.00 53.83 258.67
MAIN.cache_miss 12872 0.00
15.25 0.00 2.57 12.21
VBE.boot.default.happy 0000000000
VBE.boot.default.bereq_hdrbytes 6.05M 0.00
7 .35K 0.00 1.23K 5.84K
VBE.boot.default.bereq_bodybytes 115.40K 0.00
140.01 0.00 23.23 110.58
VBE.boot.default.beresp_hdrbytes 5.05M 0.00
6.12K 0.00 1.03K 4.87K
VBE.boot.default.beresp_bodybytes 17.27M 0.00
20.95K 0.00 3.51K 16.65K
VBE.boot.default.pipe_hdrbytes 0
5 0.00 0.00 0.00
VBE.boot.default.pipe_out 0
5 0.00 0.00 0.00
VBE.boot.default.pipe_in (%]
. 0.00 0.00 0.00
VBE.boot.default.conn 0 0.00
5 0.00 0.05 0.23
VBE.boot.default.req 26086 0.00
30.91 0.00 5.18 24.57
VBE.boot.default.unhealthy 0
. 0.00 0.00 0.00
VBE.boot.default.busy 0
5 0.00 0.00 0.00
VBE.boot.default.fail 0
o 0.00 0.00 0.00
VBE.boot.default.fail_ eacces (4]
5 0.00 0.00 0.00
VBE.boot.default.fail_eaddrnota... 0
5 0.00 0.00 0.00
VBE.boot.default.fail_econnrefused 0
o 0.00 0.00 0.00
VBE.boot.default.fail_enetunreach (4]
5 0.00 0.00 0.00
VBE.boot.default.fail_etimedout 0
5 0.00 0.00 0.00
VBE.boot.default.fail_other 0
o 0.00 0.00 0.00
VBE.boot.default.helddown 0

0.00 0.00 0.00

495

CHAPTER 7: VARNISH FOR OPERATIONS

When you press the <e> key, you can toggle the scaling values between the byze connt
and the standard value that includes a suffix.

This is the standard scaling of values:

[VBE.boot.default.beresp_bodybytes 18.22M 0.00 18.17K]

Megabytes and kilobytes are used as a unit of size. When you press <e>, this is what you’ll
see for this counter:

[VBE.boot.default.beresp_bodybytes 19105054.72 0.00 18606.08]

There are also some hidden counters that are only there for debug purposes. By pressing
the <v> key, you cycle through the verbosity levels.

* infois the standard verbosity level.
e diagis the next level, which also shows diagnostic counters.
* debug is the final level, which also shows debug counters.

You can test this by running the following command:

varnishstat -f "MAIN.n_obj_purged" -f "MAIN.esi_warnings" -f "MAIN.
hcb_nolock™"

* MAIN.n_obj_purged is an informational counter that will be visible by default.

* By pressing <v>, you’ll end up in diagnostic mode and the MAIN.esi_warnings
counter will appear.

* By pressing <v> again, you’ll end up in debug mode and the MAIN.hcb_nolock
counter will also appear.

Make sure you press <d> as well for this example because some of these counters
may have a zero value, and would otherwise remain hidden.

By pressing the <+> and <-> keys, you can increase and decrease the refresh interval. The
standard refresh interval is one second. Increasing or decreasing the interval is done per
0.1 second.

And finally you can press <g> to exit varnishstat.

496

CHAPTER 7: VARNISH FOR OPERATIONS

7.7.2 Varnish counters

The Varnish source code has hundreds of counters that keep track of measurable events.
Here’s some example code that increases the cache bit counter when a cached object is
served:

[wrk->stats->cache_hit++;]

As mentioned eatlier, varnishstat is used to visualize these counters.

We already showed you a number of counters, but in this section we’ll highlight the
most important counters, grouped per category.

Main counters

There are about 130 main counters. They are prefixed with MAIN. and give you a basic
understanding of what is happening.

Here’s a first group of counters:

()
MAIN.uptime Child process uptime
MAIN.sess_conn Sessions accepted
MAIN.client_req Good client requests received
MAIN.cache_hit Cache hits
MAIN.cache_hit_grace Cache grace hits
MAIN.cache_hitpass Cache hits for pass
MAIN.cache_hitmiss Cache hits for miss
MAIN.cache_miss Cache misses
MAIN.s_pipe Total pipe sessions seen
MAIN.s_pass Total passed requests seen
MAIN.s_fetch Total backend fetches initiated
MAIN.s_synth Total synthetic responses made
_ J

The fact that a description is part of the output doesn’t require much elaboration. The
MAIN.cache_* and MAIN.s_* counters give insight into the finste state machine, and
which paths are the most common.

You can have a pretty decent view of the offload using the counters. This means the
number of requests that were offloaded from the origin. For the requests that weren’t
offloaded, you can see why that was the case.

497

CHAPTER 7: VARNISH FOR OPERATIONS

These are all basic counters, not gauges: they increase and cannot decrease. For
analysis purposes the absolute values don’t always matter. It’s the change rate that
matters.

There are also backend counters, session counters, threading counters, client counters,
fetch counters, ban counters, workspace counters. A lot of counters, really.

Before we go to the next category, we just want to show you a set of counters that start
with MAIN.n_*, Here’s an extract of that list:

MAIN.n_object object structs made

MAIN.n_backend Number of backends

MAIN.n_expired Number of expired objects
MAIN.n_lru_nuked Number of LRU nuked objects
MAIN.n_purges Number of purge operations executed
MAIN.n_obj_purged Number of purged objects

The MAIN.n_object is a very common one to use. It indicates how many objects are
stored in cache. The other counters are also pretty straightforward.

Management process counters

The counters of the management process are prefixed with MGT., and only the MGT.up-
time counter is displayed in the standard mode.

Here’s the complete list of management process counters:

()
MGT.uptime Management process uptime
MGT.child_start Child process started
MGT.child_exit Child process normal exit
MGT.child_stop Child process unexpected exit
MGT.child_died Child process died (signal)
MGT.child_dump Child process core dumped
MGT.child_panic Child process panic

_ _J

When a counter like MGT.child_panic increases, you know something is wrong.

Malloc stevedore counters

When you run Varnish using the -s malloc runtime parameter, the SMA counters will
keep track of memory allocation and memory consumption.

498

CHAPTER 7: VARNISH FOR OPERATIONS

If you only use a single unnamed malloc stevedore, the standard name will be s@. If you
use two of them, both s0 and s1 counters will exist.

However, if you use -s mem=malloc to name your stevedore that name will be avail-
able on the counters instead of s@.

Here’s the list of SMA counters:

(N
SMA.s@.c_req Allocator requests
SMA.s@.c_fail Allocator failures
SMA.s@.c_bytes Bytes allocated
SMA.s@.c_freed Bytes freed
SMA.s@.g alloc Allocations outstanding
SMA.s@.g_bytes Bytes outstanding
SMA.s@.g_space Bytes available
SMA.Transient.c_req Allocator requests
SMA.Transient.c_fail Allocator failures
SMA.Transient.c_bytes Bytes allocated
SMA.Transient.c_freed Bytes freed
SMA.Transient.g alloc Allocations outstanding
SMA.Transient.g_bytes Bytes outstanding
SMA.Transient.g_space Bytes available
_ J

The counters that start with c_ are regular counters, and the ones that start with g_ are
gauges.

The most common ones you’ll use are SMA.s@.g_bytes and SMA.s@.g_space to view
memory usage and available space. These counters are also available for the t7ansient
storage in the form of SMA.Transient.g_bytes and SMA.Transient.g_space.

By default SMA.Transient.g_space will be zero because transient storage is usually
unbounded.

Backend counters

We’ve referred to the MAIN.backend_* counters earlier. These counters paint a general
picture of your backends. But there are also VBE counters that focus on individual back-
ends. The more backends you have, the longer the output.

Here’s a collection of counters for backends defined in the standard VCL configura-
tion that was loaded at boot time. Hence the boot prefix. As there is only one backend
named default in that VCL configuration, the VBE.boot.default.* prefix contains
all the required counters:

499

CHAPTER 7: VARNISH FOR OPERATIONS

VBE.boot.default.happy Happy health probes
VBE.boot.default.bereq_hdrbytes Request header bytes
VBE.boot.default.bereq_bodybytes Request body bytes
VBE.boot.default.beresp_hdrbytes Response header bytes
VBE.boot.default.beresp bodybytes Response body bytes
VBE.boot.default.pipe_hdrbytes Pipe request header bytes

VBE.boot.default.pipe_out Piped bytes to backend
VBE.boot.default.pipe_in Piped bytes from backend
VBE.boot.default.conn Concurrent connections to backend
VBE.boot.default.req Backend requests sent
VBE.boot.default.unhealthy Fetches not attempted due to backend
being unhealthy

VBE.boot.default.busy Fetches not attempted due to backend
being busy

VBE.boot.default.fail Connections failed
VBE.boot.default.fail_eacces Connections failed with EACCES or
EPERM

VBE.boot.default.fail_eaddrnotavail Connections failed with EADDRNOT-
AVAIL

VBE.boot.default.fail_econnrefused Connections failed with ECONNRE-
FUSED

VBE.boot.default.fail_enetunreach Connections failed with ENETUNREACH
VBE.boot.default.fail etimedout Connections failed ETIMEDOUT
VBE.boot.default.fail_other Connections failed for other reason

VBE.boot.default.helddown Connection opens not attempted
- J

Some of these counters are byte counters; some of them regular ones. The VBE.boot.
default.happy is an odd one, though.

When we run varnishstat -x -f VBE.boot.default.happy to see the details about
this counter, this is the output we get:

~
<?xml version="1.0"?>
<varnishstat timestamp="2020-12-11T10:56:58">
<stat>
<name>VBE.boot.default.happy</name>
<value>18446744073709551615</value>
<flag>b</flag>
<format>b</format>
<description>Happy health probes</description>
</stat>
</varnishstat>
- J

This counter is not a regular one, nor is it a gauge. It’s a bitmap. The 1 represents a suc-

cessful health check. The @ of the bitmap is a failed health check.

500

CHAPTER 7: VARNISH FOR OPERATIONS

The absolute integer value doesn’ really matter; the change rate does. When we see this
counter in curses mode, it makes a lot more sense:

[VBE.boot.default.happy ffffffffff VVVVVVVVVVVVVWVVVVWV]

We can conclude that the last five checks failed. This is visualized by

The other counters can be used to get more information about the offload of a specific
backend. And if health checks start failing, the VBE.boot.default.fail_* counters
can tell you why.

MSE counters

Varnish Enterprise adds three extra categories of counters for MSE alone. When you
run MSE using a single book and a single store, you already have more than 100 counters
available. Most of which are diagnostic and debug counters.

Here’s some the output when running varnishstat -f MSE*:

NAME CURRENT CHANGE o
AVERAGE AVG_10 AVG_100 AVG_1000
MGT.uptime 0+00:09:24
MAIN.uptime 0+00:09:25
MAIN.cache_hit 13002 16.97
23.01 18.04 3.13 1.62
MAIN.cache_miss 655 1.00
1.16 1.46 0.33 0.17
MSE.mse.c_req 0
5 0.00 0.00 0.00
MSE.mse.c_fail (%]
5 0.00 0.00 0.00
MSE.mse.c_bytes 80.58M 1.05K
146.04K 1020.08K 353.78K 194.94K
MSE.mse.c_freed 41.05M 1.05K
74.40K 2.22K 412.70 213.75
MSE.mse.g_alloc 41 0.00
5 38.82 38.53 38.53
MSE.mse.g_bytes 39.53M -1.00
o 37.43M 37.16M 37.16M
MSE.mse.g_space 212.43M 0.00
o 221.63M 246.76M 249.25M
MSE.mse.n_lru_nuked (%]
o 0.00 0.00 0.00
MSE.mse.n_vary 0
5 0.00 0.00 0.00
MSE.mse.c_memcache_hit 4.29G 33.54M
7.77M 36.68M 6.54M 3.39M

501

CHAPTER 7: VARNISH FOR OPERATIONS

L 5

MSE.mse.c_memcache_miss 0
0.00 0.00 0.00
MSE BOOK . book.n_vary 0
0.00 0.00 0.00
MSE BOOK.book.g_bytes 36.00K .00
33.53K 25.68K 24.87K
MSE BOOK.book.g_space 99.96M .00
99.97M 99.97M 99.98M
MSE BOOK.book.g_banlist_bytes 0
0.00 0.00 0.00
MSE BOOK.book.g banlist_space 1020.00K .00
1020.00K 1020.00K 1020.00K
MSE BOOK.book.g banlist_database 16 .00
16.00 16.00 16.00
MSE _STORE.store.g_aio_running 0
5 0.00 0.00 0.00
MSE_STORE.store.g_aio_running_bytes (%
o 0.00 0.00 0.00
MSE_STORE.store.c_aio_finished 101 .00
0.18 1.03 0.35 0.19
MSE_STORE.store.c_aio_finished_bytes 79.14M .00
143.44K 1.02M 353.92K 194.44K
MSE_STORE.store.g_aio_queue (4]
. 0.00 0.00 0.00
MSE_STORE.store.c_aio_queue (%]
5 0.00 0.00 0.00
MSE_STORE.store.c_aio_write_queue_o... 0
5 0.00 0.00 0.00
MSE_STORE.store.g_objects 20 .00
. 18.94 18.80 18.80
MSE_STORE.store.g_alloc_extents 20 .00
5 18.94 18.80 18.80
MSE_STORE.store.g_alloc_bytes 39.53M .00
5 37.43M 37.1eM 37.16M
MSE_STORE.store.g_free_extents 1 .00
. 1.00 1.00 1.00
MSE_STORE.store.g_free_bytes 984.46M .00
993.45M 1018.77M 1021.32M

There are three distinct counter categories related to ALSE:

* MSE: the memory caching counters of MSE

* MSE_BOOK: the persistence metadata counters per book

* MSE_STORE: the persistence counters per store

The MSE.mse.g_bytes and MSE.mse.g_space counters are very straightforward: they
let you know how much object storage memory is in use, and how much is left for stor-
ing new objects.

502

CHAPTER 7: VARNISH FOR OPERATIONS

The MSE.mse.n_1ru_nuked lets us know how many objects were removed from cache
because of lack of space.

The MSE.mse.c_memcache_hit and MSE.mse.c_memcache_miss represent the
amount of hits and misses on the MSE memory cache.

Our test configuration only has one book named book, and one store named store.
Hence the MSE_BOOK.book.* and MSE_STORE.store.* counters.

The MSE_BOOK.book.g_bytes and MSE_BOOK.book.g_space come as no surprise, and
require no additional information.

In terms of metadata, the MSE_BOOK.book.n_vary holds the number of cache variations
for that book. The MSE_BOOK.book.g_banlist_ bytes and MSE_BOOK.book.g ban-
list_space refer to ban list journal usage, whereas MSE_BOOK.book.g_banlist_da-
tabase refers to persisted bans.

The MSE_STORE.store.g_objects counter counts the number of objects stored in a
store named store. That sounds quite poetic, doesn’t it?

And in the end, MSE_STORE.store.g_alloc_bytes counts the number of bytes in allo-
cated extents, and MSE_STORE.store.g_free_bytes counts the number of free bytes in
unallocated extents.

What you’ve seen so far are only the basic counters. If you increase the verbosity, there
are more interesting counters available.

The waterlevel counters are particularly interesting, as they paint a picture of the contin-
uous free space that is guaranteed by MSE:

4)
MSE_BOOK.book.g waterlevel queue Number of threads queued waiting for

database space

MSE_BOOK.book.c_waterlevel queue Number of times a thread has been
queued waiting for database space

MSE_BOOK.book.c_waterlevel runs Number of times the waterlevel purge
thread was activated

MSE_BOOK.book.c_waterlevel purge Number of objects purged to achieve
database waterlevel

MSE_STORE.store.g waterlevel queue Number of threads queued waiting
for store space

MSE_STORE.store.c_waterlevel_queue Number of times a thread has been
queued waiting for store space

MSE_STORE.store.c_waterlevel purge Number of objects purged to
achieve store waterlevel

503

CHAPTER 7: VARNISH FOR OPERATIONS

And then there’s the anti-fragmentation counters. Here’s a small extract of these count-
ers:

4)

MSE_STORE.store.g _alloc_small extents Number of allocation extents
smaller than 16k

MSE_STORE.store.g alloc_small_bytes Number of bytes in allocation ex-
tents smaller than 16k

MSE_STORE.store.g_alloc_16k_extents Number of allocation extents be-
tween 16k and 32k

MSE_STORE.store.g_alloc_16k_bytes Number of bytes in allocation ex-
tents between 16k and 32k

MSE_STORE.store.g _alloc_32k_extents Number of allocation extents be-
tween 32k and 64k

MSE_STORE.store.g_alloc_32k_bytes Number of bytes in allocation ex-
tents between 32k and 64k

MSE_STORE.store.g_free_small_extents Number of free extents smaller
than 16k

MSE_STORE.store.g free_small _bytes Number of bytes in free extents
smaller than 16k

MSE_STORE.store.g free_16k_extents Number of free extents between 16k
and 32k

MSE_STORE.store.g_free_16k_bytes Number of bytes in free extents be-
tween 16k and 32k

MSE_STORE.store.g_free_32k_extents Number of free extents between 32k
and 64k

MSE_STORE.store.g free_32k_bytes Number of bytes in free extents be-
tween 32k and 64k

- J

The full list goes way up and handles 11 different kinds of extents, each with their own
counters. It’s impossible to cover them all, but at least you know what is out there.

KVStore counters

When using vmod_kvstore, you can actually send custom counters to the Varnish
Shared Memory, which can be used by varnishstat.

Imagine the following VCL code:

()
vcl 4.1;

import kvstore;
import std;

sub vcl_init{
new stats = kvstore.init();

}

504

CHAPTER 7: VARNISH FOR OPERATIONS

sub vcl_recv {

stats.counter("request_method_" + std.tolower(req.method), 1,
varnishstat = true, "The number of HTTP " + req.method + " re-
quests");

}
& J

This code tracks the usage of the different reguest methods and stores them with the re-
quest_method_ prefix. By setting the varnishstat argument to true in the .count-
er() function, these counters can be displayed via varnishstat.

If we were to run varnishstat -1 -f KVSTORE.*, we could end up seeing the follow-
ing output:

()
KVSTORE.stats.boot.__keys 3 0.02 Number of keys

KVSTORE.stats.boot.request_method_get 816 4.23 The number of HTTP
GET requests
KVSTORE.stats.boot.request_method_post 53 0.27 The number of HTTP
POST requests
KVSTORE.stats.boot.request_method_head 7 0.04 The number of HTTP

HEAD requests
_ J

Because we named our KV Store object stats, and our VCL configuration is labeled as
boot, the KVSTORE.stats.boot prefix is going to appear in varnishstat.

Please note that KVSTORE.* counters aren’t visible by default when running in
curses mode. You either have to increase the verbosity or just use -1, -x, or -J.

Another interesting detail is the fact that there’s a comment argument where you can
add more context and meaning to the counter you are returning.

713 Prometheus

varnishstat is a great tool. But if you have 50 Varnish servers to monitor, you’re going
to have a lot of work. One way or the other, all these counters need to be centralized
into a single database, and you’re also going to want to visualize them using a dash-

board.
There are many ways to do this, but we tend to prefer Prometheus for this.

Prometheus is an open-source monitoring and alerting tool that ingests timeseries data
and has a built-in querying language called PromQL to retrieve metrics.

505

CHAPTER 7: VARNISH FOR OPERATIONS

Data ingestion is based on an HTTP pull model. As long as the service you’re moni-
toring has an HTTP endpoint that exposes metrics in the right format, Promethens can
pull that data and store it in its database. We call these services exporzers. Besides the
standard node exporter to retrieve global server metrics, there are many custom exporters
to expose custom metrics.

There are a lot of integrations with third-party tools for visualization and data retrieval.
Grafana is one of those integrations. It allows you to create dashboards based on the
PromQL syntax.

There’s only one piece of the puzzle that is missing: an exporter for Varnish.

Varnish Exporter

There are a couple of Varnish exporters in the wild, and some of them are really good,
such as https://github.com/jonnenauha/prometheus_varnish_exporter.

It is a project written in Go and is easy to build. It leverages the varnishstat binary
and exposes the output as Prometheus metrics.

Here are the options for the exporter:

$ prometheus_varnish_exporter --help

Usage of prometheus_varnish_exporter:
-N string
varnishstat -N value.
-docker-container-name string
Docker container name to exec varnishstat in.
-exit-on-errors
Exit process on scrape errors.

-n string
varnishstat -n value.
-no-exit
Deprecated: see -exit-on-errors
-raw
Raw stdout logging without timestamps.
-test
Test varnishstat availability, prints available metrics and
exits.

-varnishstat-path string
Path to varnishstat. (default "varnishstat")
-verbose
Verbose logging.
-version
Print version and exit
-web.health-path string

506

https://github.com/jonnenauha/prometheus_varnish_exporter

CHAPTER 7: VARNISH FOR OPERATIONS

Path under which to expose healthcheck. Disabled unless con-
figured.
-web.listen-address string
Address on which to expose metrics and web interface. (de-
fault ":9131")
-web.telemetry-path string
Path under which to expose metrics. (default "/metrics")
-with-go-metrics
Export go runtime and http handler metrics

Debian and Ubuntu provide packages for prometheus_varnish_exporter. It
makes installation easier and comes out of the box with a Systemd service file.

- J

Prometheus will call the exporter over HTTP via the http://<hostname>:9131/met-
rics endpoint to retrieve the metrics.

If your Varnish server runs inside a Docker container and your exporter doesn’, you can
even use the prometheus_varnish_exporter -docker-container-name <name>
command to capture the varnishstat output from a conzainer.

The output this Varnish exporter generates is extremely verbose, so here’s an extract of
some of the metrics:

HELP varnish_main_cache_hit Cache hits

TYPE varnish_main_cache_hit counter
varnish_main_cache_hit 3055

HELP varnish_main_cache_hit_grace Cache grace hits
TYPE varnish_main_cache_hit_grace counter
varnish_main_cache_hit_grace 20

HELP varnish_main_cache_hitmiss Cache hits for miss
TYPE varnish_main_cache_hitmiss counter
varnish_main_cache_hitmiss 166

HELP varnish_main_cache_hitpass Cache hits for pass
TYPE varnish_main_cache_hitpass counter
varnish_main_cache_hitpass ©

HELP varnish_main_cache_miss Cache misses

TYPE varnish_main_cache_miss counter
varnish_main_cache_miss 187

HELP varnish_sma_g bytes Bytes outstanding

TYPE varnish_sma_g bytes gauge
varnish_sma_g_bytes{type="s0"} 4.144576e+07
varnish_sma_g bytes{type="transient"} 2184

HELP varnish_sma_g space Bytes available

TYPE varnish_sma_g_space gauge

varnish_sma_g space{type="s0"} 6.341184e+07
varnish_sma_g space{type="transient"} @

507

CHAPTER 7: VARNISH FOR OPERATIONS

Prometheus will call the Varnish Exporter endpoint, read the data, and store the 300+
metrics in its database.

Telegraf

Telegrafis an open-source server agent that collects metrics. It has a wide range of input
plugins and even has a native Varnish plugin. It’s similar to prometheus_varnish_ex-
porter but is more flexible.

Telegraf metrics aren’t restricted to Promethens and can be used by various monitoring
systems. However, it does make sense in our context to expose Telegraf metrics in a Pro-
metheus format.

Here’s an example of a Telegraf configuration file:

[global_tags]
[agent]
interval = "1@s"
round_interval = true
metric_batch_size = 1000
metric_buffer_limit = 10000
collection_jitter = "@s"
flush_interval = "10s"
flush_jitter = "@s"
precision = ""
hostname =
omit_hostname = false
[[outputs.prometheus_client]]
listen = ":9273"
path = "/metrics"
[[inputs.varnish]]
binary = "/usr/bin/varnishstat"”
stats = ["MAIN.cache_hit", "MAIN.cache_miss", "MAIN.n_object"]
_ J

The [[outputs.prometheus_client]] directive will set the necessary parameters for
Prometheus to pull the metrics. The [[inputs.varnish]] directive will set parameters
for metrics retrieval based on varnishstat.

A big difference in comparison to the Varnish Exporter is that you have to define which
metrics you want to retrieve. In this example, we’re collecting MAIN.cache_hit, MAIN.
cache_miss,and MAIN.n_object. Butitis also possible to specify a glob pattern to
retrieve multiple metrics at once.

508

CHAPTER 7: VARNISH FOR OPERATIONS

Running Télegraf can be done via the telegraf --config /path/to/telegraf.conf.
But you might be better off running this as a Systemd service. If you install Telegraf
through the packages provided by InfluxData, you’ll already have a Systemd unit file.

These are the Varnish metrics coming out of 7Telegraf through http://<host-
name>:9273/metrics:

HELP varnish_cache_hit Telegraf collected metric o
TYPE varnish_cache_hit untyped
varnish_cache_hit{host="varnish",section="MAIN"} ©
HELP varnish_cache_miss Telegraf collected metric
TYPE varnish_cache_miss untyped
varnish_cache_miss{host="varnish",section="MAIN"} ©
HELP varnish_n_object Telegraf collected metric
TYPE varnish_n_object untyped
varnish_n_object{host="varnish",section="MAIN"} ©

_ J

But as mentioned, you can specify which metrics you want to collect in the Telegraf
configuration file.

Setting up Prometheus

Now that we’ve figured out a way to export metrics from Varnish, we need to pull them
from Prometheus. This requires a Prometheus server to be set up. Packages will do the
job quite easily and come with a collection of exporters. The /etc/prometheus/pro-
metheus.yml configuration file defines how metrics will be collected.

Here’s a simplified configuration file that registers a Varnish exporter:

~
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: f‘varnish’
static_configs:
- targets: [‘varnish.example.com:9273’]
_ J

When you navigate to the homepage of your Prometheus server, you’ll get a dashboard
where you can search for metrics and where you can plot those metrics on a variety of

graphs:

509

CHAPTER 7: VARNISH FOR OPERATIONS

Prometheus

Enable guery history Use local time & Enable autocomplete

Q varnish_cache_hit m

Load time: Gms Resolution: 15 Result series: 1

Table Graph

- im n End time Res. (s) =2 s

13.00k

12.00k

1 .00k

10.00k

9.00k

R.00k

7.00K

E.00k

5.00k

4.00Kk

3.00k

12:45:55 12:46:00 1Z:46:05 124610 12:46:15 12:d46:20 12:46:25 12:46:30 12:46:35 1Z246:40 12:46:45 12:46:50

varnish_cache_hit{host="varnich”, instance="localhost:B0", job="varnish", section="MAIN"}

Remove Panel

Prometheus

Although the Prometheus dashboard can do the job, it’s not a real dashboard service.
There are better alternatives, and Grafana is one of them.

Grafana

Grafana is a great way to visualize metrics and offers various different panels, dash-

boards, and plugins.

In our case, we want to make sure our Prometheus server is configured as a data source.
This is very easy to configure in Grafana as you can see in the screenshot below:

510

CHAPTER 7: VARNISH FOR OPERATIONS

Data Sources / Varnish Prometheus

= Settings

Name Varnish Prometheus

Type Prometheus

HETE

URL http://localhost:9090

Access Server (Default)

Auth

Basic Auth O With Credentials

TLS Client Auth O With CA Cert

Grafana data source

511

CHAPTER 7: VARNISH FOR OPERATIONS

Once Grafana is aware of the Prometheus metrics, we can create a dashboard. As you
can see in the screenshot below, you can plot multiple Prometheus metrics on a graph:

Data Source default - + Options » Query Inspector

varnish_cache_hit
Legend format HIT 0 Min step

Resolution 1/1 » Format as Time series = Instant

varnish_cache_miss|

Legend format MISS @ Minstep

Resolution 11 - Format as Time series ~ Instant

Grafana dashboard config

PromQL has various functions, expressions, and operators. You can filter metrics
using various labels, and you can apply statistical functions. However, the details
of this are beyond the scope of this book.

512

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s what the result looks like:

88 Vamish -

Objects in cache

5481

Hit/Miss ratio

0 L
142750 14:28:00 14:28:10 14:28:30 14:28:40

w= HIT == MISS

Grafana

Besides the graph, we also defined a Singlestar that displays the current value of a metric.
We use this to gauge the number of objects currently stored in cache.

7.74 Varnish Custom Stafistics

We already know that KV Store counters can be used to display custom varnishstat
metrics. However, there’s also a Varnish Enterprise product called Varnish Custom
Statistics (VCS), which sends metrics from a Varnish server via the VCS agent to a VCS
server.

The difference with varnishstat is that /’CS performs measurements for a predefined
set of metrics but grouped by keys that are defined in VCL.

V(S metrics

VCS metrics are stored in timeseries buckets. The length of a bucket defines the granulari-
ty of our measurements. The number of buckets we keep around will influence the total
tracking time.

513

CHAPTER 7: VARNISH FOR OPERATIONS

A bucket contains the following metrics:

Field Description
timestamp This is the timestamp for the start of the bucket’s period
n_req

n_req_uniq

n_miss
avg_restarts

n_bodybytes

ttfb_miss

ttfb_hit

resp_1xx...resp_5xx

regbytes
respbytes
berespbytes
beregbytes
pipe_bytes_in
pipe_bytes_out
pipe_hdrbytes req

pipe_hdrbytes_bereq

The number of requests

The number of unique requests, it configured through the
vcs-unique-id key in VCL

Number of cache misses
The average number of VCL restarts triggered per request

The total number of bytes transferred for the response

bodies

Average time to first byte for requests that resulted in a
backend request

Average time to first byte for requests that were served
directly from cache

Counters for response status codes

Number of bytes received from clients

Number of bytes transmitted to clients

Number of bytes received from backends

Number of bytes transmitted to backends

Number of bytes received from clients in pipe operations
Number of bytes transmitted to clients in pipe operations

Number of bytes in headers received from clients where the
request lead to a pipe operation

Number of bytes in headers transmitted to backends where
the request lead to a pipe operation

Based on these metrics, other metrics can be calculated. For example: by subtracting

n_miss from n_req, we know the number of hits.

514

CHAPTER 7: VARNISH FOR OPERATIONS

Defining keys

In your VCL file, you can define custom keys that will be collected by the VCS agent
and aggregated in the VCS server.

Even if you don’t specify any custom keys, the VCS agent will create three default keys if
the -d option was passed to the vcs-agent:

. ALL
. HOST/<host>
. URL/<url>

The ALL key is a static key. It will be a constant value for all requests to Varnish. The ALL
key essentially provides an overview of all incoming and outgoing requests.

The other two, HOST/<host> and URL/<url>, are dynamic keys. They reflect individual
requests to Varnish. Dynamic keys provide insight into specific trafhic patterns.

The VCL equivalent for these keys would be:

vcl 4.1;
import std;

sub vcl_deliver {
std.log("vcs-key:ALL");
std.log("vcs-key:HOST/" + req.http.Host);
std.log("vcs-key:URL/" + req.http.Host + req.url);

}
- J

For the http://example.com/welcome page, the keys would be as follows:
* ALL

* HOST/example.com

* URL/example.com/welcome

For each of these three keys the metrics can be retrieved via an HTTP API, TCP output,
or the graphical user interface.

This is the HTTP API output of a single bucket for the ALL key:

515

CHAPTER 7: VARNISH FOR OPERATIONS

"timestamp": "2020-12-18T09:57:50+00",
"n_req": 64,
"n_req_uniq": o,
"n_miss": 11,
"avg_restarts": 0.000000,
"n_bodybytes": 72538778,
"regbytes": 12080,
"respbytes": 72556553,
"berespbytes": 9895,
"bereqgbytes": 2766,
"pipe_bytes_in": 0,
"pipe_bytes_out": o,
"pipe_hdrbytes_req": o,
"pipe_hdrbytes_bereq": o,
"ttfb_miss": ©.004838,
"ttfb_hit": 0.000138,
"resp_1xx": 0,
"resp_2xx": 64,
"resp_3xx": 0,
"resp_4xx": 0,
"resp_5xx": ©

}
& J

Because our VCS server was configured with a bucket length of two seconds, we can con-
clude that 64 requests were received in a two-second time period. There were 11 misses.
The logical conclusion is that there were 53 bits. Every single request resulted in an
HTTP/2XX response status code.

If we wanted to investigate the 11 misses, we could request a fop miss report from the
VCS server:

{
"ALL":11,
"HOST/example.com":11,
"URL/example.com/faq": 11
}

By default the zop miss report will list up to ten keys that have the most misses in the
latest bucket. We will talk more about zop reports soon.

But what if you wanted more custom keys? As long as you log the right key, you can
aggregate and query on any parameter that you want.

Let’s say you want to see the metrics per request method. You’d use the following VCL

snippet to make this happen:
516

CHAPTER 7: VARNISH FOR OPERATIONS

[std.log("vcs—key:METHOD/" + req.method);]

This would result in keys like:
° METHOD/GET

° METHOD/HEAD

° METHOD/POST

° METHOD/PUT

. METHOD/DELETE

. METHOD/OPTIONS

Here’s another interesting use case: imagine we wanted to measure the conversion from
articles to a signup page. Basically, we’re tracking conversions based on the referer
request header.

Here’s the V'CL to get it done:

vcl 4.1;
import std;

sub vcl_deliver {
if (req.url == "/signup" && req.http.referer ~ "~https?://[*\/]+/
article/([0-9]+)") {
set req.http.articleid = regsub(req.http.referer,"~https?://
[*\/]+/article/([0-9]+)","\1");
std.log("vcs-key:CONVERSION/SIGNUP/" + req.http.articleid);
unset req.http.articleid;

}
g J

If for example a person is reading https://example.com/article/1234 and clicks on
alink that navigates to /signup, the resulting V'CS key would be:

vcs-key:CONVERSION/SIGNUP/1234

And eventually, the VCS server will allow you to visualize, report, and query based on
the custom CONVERSION/SIGNUP/<articleid> key.

517

CHAPTER 7: VARNISH FOR OPERATIONS

The VCS agent

The vcs-agent program reads the Varnish Shared Log and captures vcs-key entries.

The agent then sends that data to the central vcs server program, which is aggregated
and persisted.

The VCS components, including the vcs-agent program, are part of Varnish Enter-
prise. vcs-agent can be installed using the varnish-custom-statistics-agent
package on your Linux system.

[The packages are proprietary and require a license key to be accessed. j

If you'’re on Debian or Ubuntu, you can run the following command:

[sudo apt-get install varnish-custom-statics-agent]

And on Red Hat or CentQS, it’s the following command:

[sudo yum install varnish-custom-statistics-agent]

The ves-agent should be installed on every Varnish server you want to monitor. Once
the package is installed, you have to configure the Systemd service file to make it work for
you.

The following commands should be run to edit the configuration and restart the ser-
vice with the new settings:

sudo systemctl edit --full vcs-agent
sudo systemctl restart vcs-agent

This is the standard vcs-agent.service file:

518

CHAPTER 7: VARNISH FOR OPERATIONS

&

[Unit]
Description=Varnish Custom Statistics Agent
After=varnish.service

[Service]

Type=simple

Give varnish a little startup pause

Could be improved with notify functionality
ExecStartPre=/bin/sleep 2
ExecStart=/usr/sbin/vcs-agent -d localhost
Restart=on-failure

[Install]
WantedBy=multi-user.target

J

The -d parameter is what creates the default ALL, HOST, and URL keys. The reference to
localhost is the location of the VCS server. You’ll most likely change that value and set
it to the hostname of your VCS server.

There are other vcs-agent command line options you can tune:

The -g option will output debug information. This could be useful when you're

troubleshooting.

The -k option allows you to customize the prefix that is used to match VSL log

entries. The default value is vcs-key.

The -m option sets the number of messages that should be queued when the V'CS
server is not available. Setting it to zero will create an unlimited queue.

The -p option sets the remote port the agent should use when connecting to the

server. The default value is 5558.

The -n option sets which Varnish instance the agent should read in case multiple

Varnish instances are hosted on the same machine.

The VCS server

The VCS server collects, aggregates, and persists data from the VCS agents.

Installing the vcs can be done using packages.

[The packages are also proprietary and require a license key to be accessed.

If you’re on Debian or Ubuntu, you can run the following command:

519

CHAPTER 7: VARNISH FOR OPERATIONS

[sudo apt-get install varnish-custom-statics]

And on Red Hat or CentOS, you use the following command:

[sudo yum install varnish-custom-statistics]

There’s also a Systemd unit file. Here’s the content of vcs.service:

(.)
[Unit]

Description=Varnish Custom Statistics

After=syslog.target network.target

[Service]

Type=forking

PIDFile=/var/run/vcs.pid

ExecStart=/usr/sbin/vcs \
-P /var/run/vcs.pid \
-Z

[Install]
WantedBy=multi-user.target

J

The -P option will set the location of the PID file, and the -Z option sets bucket time-
stamps to use the UTC time zone.

If you want to modify the runtime configuration, you can run the following com-
mands:

sudo systemctl edit --full vcs
sudo systemctl restart vcs

You can change some of the vcs options prior to restarting the service. Here are some of
the options we haven’t yet discussed:

¢ The -b option sets the length of an individual bucket in seconds. Defaults to 30. By
setting -b 2, a bucket will aggregate two seconds worth of data. This can be con-
sidered the level of granularity for VCS.

e The -m option sets the maximum number of buckets for a key. Defaults to 15. If
you multiply the number of buckets by the length of a bucket, you get the total
duration of the tracking period.

520

CHAPTER 7: VARNISH FOR OPERATIONS

¢ The -z option sets the listening port that a vcs-agent will connect to. Defaults to
port 5558.

e The -a option sets the listening port for the HTTP interface. Defaults to port 6555.

* The -1 option limits access to the HTTP interface using an ACL. Setting it to
-0.0.0.0/0,+192.168.0.0/16 will disable access for the general public, and only
allow access from the 192.168.0.0 IP range.

* The -0 option sets the hostname and port for TCP output. When set, VCS will
transmit finished buckets in [SON format using TCP. This could be used for
third-party processing or storage of the V'CS data.

¢ The -u option sets the folder in which the UI fles are stored. Defaults to /usr/
share/varnish-custom-statistics/html.

* The -g option sets the debug level. This can be useful during troubleshooting.

e The -K option sets the credential file for basic HT'TP authentication to protect ac-
cess to the HTTP endpoint.

¢ The -d option sets the realm domain that is used with basic HT'TP aunthentication.

The VCS API

Once you're up and running, and the vcs-agent is sending data, you can use the
HTTP API to query VCS and to retrieve metrics in JSSON format.

The HTTP endpoint runs on port 6555 by default and provides both the APl and the
GUI. There are various HT TP resources available at that endpoint.

The homepage, the /#/1ive/keys resource, and the /#/1ive/realtime resource dis-
play various elements of the graphical user interface, which we’ll cover soon.

The /key/<key> resource, the /match/<regex> resource, the /all resource, and the /
status are API resources.

Let’s talk about /all first. This URL lists all available keys.

Here’s some example output for /all:

()
{
"keys": [
"URL/example.com/",
"URL/example.com/welcome",
"URL/example.com/contact”,
"URL/www.example.com/",

521

CHAPTER 7: VARNISH FOR OPERATIONS

"ALL",
"HOST/example.com",
"HOST/www.example.com",
"METHOD/GET",
"METHOD/POST",

]

}
g J

The output doesn’t require a lot more explanation and should make sense if you paid
attention when reading the Defining keys subsection.

To see the bucket metrics for all keys, just enable verbose mode /all?verbose=1:

()
{
"keys": [
"ALL": [
{
}
1
]
}
\ J

The /match/<regex> resource matches keys based on a regular expression. The regex
should be URL encoded.

Here’s an example where we match all keys that start with URL/example.com:

[/match/URL%2Fexample.com%2F]
This could be the output:
()
{
"keys": [

"URL/example.com/",
"URL/example.com/welcome",
"URL/example.com/contact”
]
}
- J

Another way of listing and sorting keys is with a top report.

522

CHAPTER 7: VARNISH FOR OPERATIONS

A top report will examine all the keys in a request and return a sorted list of keys that is
based on a specific metric.

The keys that will be examined by a zop report is determined by either the /all or the /
match/<regex> AP[URL.

By appending one of the zop reports to your key listing request, a sorted list of keys will
be returned:

e /top Sort based on number of n_req metric

* /top_ttfb Sort based on the ttfb_miss metric

e /top_size Sortbased on the n_bodybytes metric

* /top_miss Sort based on the n_miss metric

e /top_respbytes Sort based on the respbytes metric

e /top_regbytes Sort based on regbytes metric

e /top_berespbytes Sort based on berespbytes metric
e /top_beregbytes Sort based on beregbytes metric

* /top_restarts Sort based on the avg_restarts metric

* /top_5xx, /top_4xx, /top_3xx, /top_2xx, /top_1xx Sort based on number of
resp_Xxx metric

e /top_uniq Sort based on the n_req_uniq metric

Here are a couple of top report examples:

/all/top

/all/top_4xx
/match/URL%2Fexample.com%2F/top_miss
/match/URL%2Fexample.com%2F/top_size

By default a zop report will be ranked by a key’s latest bucket and will return a list of ten
sorted keys.

It is possible to customize the zop report by specifying the bucket ?b=<buckets> query
parameter and/or the count /<count> parameter in the AP/ URL.

The count parameter determines the number of keys that will be returned.

Imagine if we wanted the top three keys that have the most cache misses. This would be
the APT URL:

523

CHAPTER 7: VARNISH FOR OPERATIONS

[/all/top_miss/3]

If we wanted a similar report for all keys matching the example.com URL, this would
be the API URL:

[/match/URL%2Fexample.com/top_miss/3]

When processing a top report, the ranking will be based on a metric value in one or more
buckets. By default only the key’s latest bucket will be used, but the bucket ?b=<buck-
ets> query parameter can specify the total number of buckets that should be summa-

rized for a key.

Here’s an example where we want the top eight keys that have the most misses for the
last five buckets:

[/all/top_miss/8/?b=5]

Once you've figured out what key you want to examine, based on the various key filter-
ing techniques, you can use the /key/<key> API URL to retrieve all the key’s metrics.

Here’s the API URL we’re accessing when we want the metrics for the URL/example.
com/welcome key:

[/key/URL%2Fexample.com%2Fwelcome]

This could be the output:

524

CHAPTER 7: VARNISH FOR OPERATIONS

"URL/example.com/welcome": [
{

"timestamp": "2020-12-18T14:05:34+00",
"n_req": 877,
"n_req_uniq": 0,
"n_miss": 0,
"avg_restarts": 0.000000,
"n_bodybytes": 546371,
"regbytes": 149967,
"respbytes”: 788865,
"berespbytes": 0,
"beregbytes": 0,
"pipe_bytes_in": 0,
"pipe_bytes_out": o,
"pipe_hdrbytes req": o,
"pipe_hdrbytes_bereq": o,
"ttfb_miss": 0,
"ttfb_hit": 0.000129,
"resp_1xx": @,
"resp_2xx": 877,
"resp_3xx": O,
"resp_4xx": 0,
"resp_5xx": ©

"timestamp": "2020-12-18T14:05:32+00",
"n_req": 249,
"n_req_uniq": 0,
"n_miss": 1,
"avg_restarts": 0.000000,
"n_bodybytes": 155127,
"regbytes": 42579,
"respbytes": 223995,
"berespbytes": 814,
"beregbytes": 193,
"pipe_bytes_in": 0,
"pipe_bytes_out": o,
"pipe_hdrbytes _req": o,
"pipe_hdrbytes_bereq": o,
"ttfb_miss": 0.006705,
"ttfb_hit": 0.000286,
"resp_1xx": @,
"resp_2xx": 249,
"resp_3xx": 0,
"resp_4xx": 0,
"resp_5xx": ©

525

CHAPTER 7: VARNISH FOR OPERATIONS

And finally, there’s the /status resource that displays some simple counters which rep-
resent the state of the VCS server:

()
{
"uptime": 93033,
"n_keys": 24,
"n_trans": 682026,
"db_mem_usage": 1197760,
"output_queue_len": ©

}
g J

Let’s break down this output:

¢ The server has been up and running for 93033 seconds.

e We’re currently tracking 24 keys.

e We've processed 682026 transactions.

* The storage engine is estimated to consume 1197760 bytes of memory.

¢ Thereis currently no output queue.

The VCS user interface

The HT'TP API returns a lot of useful information. There is surely enough flexibility
to sort, group, and filter the metrics. However, the output isn’t intuitive. That’s why the
ves HTTP endpoint can also return a graphical user interface.

This GUI leverages the AP and visualizes the metrics through graphs and counters.
We’ll illustrate this fact using a set of screenshots.

et cm - TR I e [5o |

ALL nee URLjlocalhostjwelcome o METHOD/POST

VCS metrics per key

526

CHAPTER 7: VARNISH FOR OPERATIONS

This first screenshot displays a set of metrics for three selected keys:
. ALL

* URL/localhost/welcome

. METHOD/POST

The metrics for the ALL key indicate that we have a cache bit ratio (CHR) of 99%. All
responses were in the 2XX range. When we look at the results of the URL/localhost/
welcome key, we notice a nearly 100% hit rate. However, the METHOD/POST keys as a 0%
hit rate, which makes sense given buzlt-in VCL behavior.

15:27:00

M ALL (n_req) 85k
M URLAocalnostiwedcome (n_req) 8,34 k
M METHODIPOST in_req) 0k

VCS metrics

When we scroll down, we see the summarized metrics for all keys, which are shown in
the second screenshot.

Each metric is displayed separately, and the results are plotted on the graph per selected
key. We highlighted a single measurement point on the n_req graph, which visualizes
the number of requests.

Our setup had a bucket length of 30 seconds, which means that in this 30-second interval,
8500 requests were processed, 8430 of which were sent to http://localhost/welcome.
The amount of HTTP POST requests wasn’t high enough to be visible in this interval.

527

CHAPTER 7: VARNISH FOR OPERATIONS

« @ VARNISH

® SOFTWARE

Realtime disable _
;

Keys top_ttfb
o | 14 Re! top_size at
top_miss
Saved charts (0) B
m ALL top_respbytes
@ 3 days top_regbytes

(FFIT) HOST/localhos top_perespbytes
€ETE) METHOD/GET fop-bereabytes

top_pipe_bytes_in
I URLflocalhost ogpie vtee it

ED) URL/localhost/167 top_pipe_hdrbytes_req

30

ot
& 125.119

top_pipe_hdrbytes_bereq
£ URL/localhostf24) e reits
£1) URL/localhost/25 top xx
top_2xx
METHOD/POST
m / top_3xx

£I3 URLflocalhostf7?€ top_axx
1) URL/localhost/s7¢ ©oP=5*

top_unig
EID URLflocalhostf152ecnu_me=jappyzmm.uxu
£ URL localhost/13?echo_file=/app/2mb.txt
EI) URL/flocalhost/12?echo_file=/app/2mb.txt

£F) URLflecalhost/117echo_file=/app/2mb.txt

VCS key filer

The following screenshot shows what happens when you press the keys button. It al-
lows you to select keys based on a search box. Top keys can be sorted on specific metrics,
and the count and bucket parameters can be specified.

The list shows how metrics are available for the matching keys. By selecting a key, the
corresponding metrics are added to the overview.

528

CHAPTER 7: VARNISH FOR OPERATIONS

« @ VARNISH
® SOFTWARE

top

top_size
Saved charts (D) top_miss
top_respbytes
3 days =
® « 26 URL/ i anbota
o 30 > 26 localhost/ top_berespbytes
@ 155.274 top_bereqbytes
« 2 METHODY top_pipe_bytas_in
¥ POST top_pipe_bytes_out
. GET top_pipe_hdrbytes_req
top_pipe_hdrbytes_bereg
« 1 HOST/ top_restarts
top_lux
B localhost T
[top_8xx
top_dxx
top_Bxx

top_unig

VCS key explorer

The final screenshot features a separate part of the V'CS GUI that focuses on key selec-
tion. Key search and sorting is also supported. The selected keys can then be turned
into a dashboard by pressing the View realtime button.

7.1.5 When things go wrong

Metrics are interesting: graphs are fun and fancy, but they serve a purpose. The main
purpose is understanding what’s going on under the hood. And when something goes
wrong, the metrics and graphs should help you investigate why.

It’s not just about uptime and availability. Classic monitoring systems that perform an
HTTP check can easily spot when Varnish is down. The problems that occur are often
subtler and more related to performance and cacheability.

With the dozens of metrics that are available, it’s tough to see the forest for the trees.
And a basic metric like the bit rate isn’t really a tell-tale sign.

The absolute values of the counters are often irrelevant: it’s the change rate that matters.
However there are still some metrics you want to keep as low as possible.

529

CHAPTER 7: VARNISH FOR OPERATIONS

Counters we want as low as possible

The MGT.child_panic is one of the counters we want to see as low as possible. A panic
is always something that should be avoided. Panics can be displayed by running varni-
shadm panic.show.

The MAIN.thread_queue_len metric should also be kept as low as possible. Queued
threads indicate a lack of available threads, which means your varnishd process is ei-
ther super busy, or your thread_pool_max runtime parameter is set too low.

The MAIN.sess_fail metric should also be as low as possible. This counter is the sum
of all other MAIN.sess_fail * counters. Here’s a list of counters that track session fail-
ures:

* MAIN.sess_fail_econnaborted: connection aborted by the client, which is usu-
ally quite harmless.

* MAIN.sess_fail_eintr: the accept() system call was interrupted.
* MAIN.sess_fail_emfile: there are not file descriptors available.

* MAIN.sess_fail_ebadf: the listen socket file descriptor was invalid.
* MAIN.sess_fail_enomem: insufficient socket buffer memory.

* MAIN.sess_fail_other: some other reason, which will be clarified in the debug
log.

It’s not just the session failures that indicate problematic behavior. Sessions could also
be queued while waiting for an available thread. The MAIN.sess_queued counter
exposes this kind of behavior. The MAIN.sess_dropped counter will increase when
there is a lack of worker threads, and when the session queue is too long. The thread_
queue_limit runtime parameter controls the size of the thread quene per thread pool.

Dropped sessions happen for HTTP/1.1 traftic. For HTTP/2 traffic, the MAIN.req_
dropped counter is used to count dropped streams.

The MAIN.n_lru_nuked counter indicates that the cache was full and that the least
recently used object was removed to free up space. When this counter skyrockets, you
should consider increasing the size of your cache or re-evaluate the 77Ls of your ob-
jects.

If you're using MSE on Varnish Enterprise, you should have a look at MSE.*.n_1ru_
nuked if you want to monitor object nuking.

Nuked objects aren’t great, but they are not catastrophic. But if the MAIN.n_1ru_lim-
ited counter increases, varnishd wasn’t able to nuke enough space to fit the new ob-

530

CHAPTER 7: VARNISH FOR OPERATIONS

ject. The corresponding fetch will fail, and the end user will either receive no response,
or a partial response, because of content streaming.

The nuke_limit runtime parameter indicates the number of nuking attempts. The
standard value is 50, and after 50 nuking attempts, Varnish will give up, and the
MAIN.n_lru_limited counter will increase.

The failure to create enough free space is often a race condition between the
thread that clears the space and another thread that tries to insert a new object. As
mentioned before, MSE has a level of isolation to avoid these issues.

Debugging

There are many other reasons why things go wrong, and many counters to visualize
these issues. However, the counters tell you what’s going on, but not why these issues
are occurring.

We have to revert to Varnish Shared Memory Logging to get more information, and the
Debug tag can help us with that. We can either include the Debug tag in your regular
VSL output, but we can also filter out debugging information using the following com-
mand:

[var‘nishlog -g raw -I Debug j

The raw transaction grouping will ensure debug information is not restricted to sessions
and requests. But as mentioned before, without VSL queries or rate limiting, the output
will become overwhelming on a busy production server.

By default Varnish will not keep track of debugging information, but the debug run-
time parameter can enable and disable specific debugging features.

There is an extensive list of debugging features, some of which are only used for testing.
Here’s an example that includes some useful debugging symbols, which will be exposed
in VSL:

varnishd -p debug=+req_state,+workspace,+waiter,+waitinglist,+lurk-
er,+processors,+protocol

But as mentioned, enabling them all will result in a lot of nozse. Be selective, consider
using VSL queries, and also consider using rate limiting.

531

CHAPTER 7: VARNISH FOR OPERATIONS

7.7.6 Varnish scoreboard

In chapter 1, we talked about the Varnish threading model as part of the Under the hood
section.

It was made clear that both the manager and the child process use threads to perform
various tasks.

varnishstat allows us to monitor various metrics, some of which relate to Varnish’
threads. varnishlog provides information about individual actions that leverage
threads behind the scenes.

By running varnishscoreboard you can actually monitor the state of the currently
active threads on your Varnish server. This utility is part of Varnish Enterprise and was
redesigned for Varnish Enterprise 6.0.7r1.

Here’s some example output:

$ varnishscoreboard h
Age Type State Transaction Parent Address
Description

1.64s probe waiting (%] 0 -
boot.default

2.11m acceptor accept 0 0 :6443
al

2.11m acceptor accept 0 0 :6443
al

2.11m acceptor accept 0 0 :80
a0

0.03s acceptor accept 0 0 :80
ao

0.01s backend startfetch 360910 360909 -
POST example.com /login

0.01s client fetch 360909 360908
172.19.0.1:63610 POST example.com /login

2.11m acceptor accept 0 0 :6443
al

2.11m acceptor accept (] 0 :6443
al

2.11m acceptor accept 0 0 :80
ao

0.01s acceptor accept 0 0 :80
ao
Threads running/in pool: 10/90

- J

532

CHAPTER 7: VARNISH FOR OPERATIONS

This output indicates that we have 100 worker threads available. Ten are running, and
90 are waiting in the thread pool. As we learned in the Under the hood section, there are
a fixed number of threads for various tasks, but the worker threads are dynamic and are

kept in thread pools.

The thread number in this example reflects the dynamic threads. The static ones are
not reflected.

We also learn that there is a health probe available, which monitors boot.default.
This refers to the default backend, which was defined in the boot VCL configuration.

There are also some acceptor threads active, both on port 6643 for TLS and port 80 for
plain HT'TP. These threads are responsible for accepting new connections.

There is a client-side thread that is fetching content from the backend. This is done for
an HTTP POST request to http://example.com/login. This is also reflected in a cor-
responding thread that performs a backend fetch.

Here’s another example:

$ varnishscoreboard
Age Type State Transaction Parent Address
Description

0.00s session newreq 11436541 0
172.19.0.1:60542

1.07s client transmit 8356616 8356615
172.19.0.1:60384 GET localhost /download/video.mp4

0.37s client transmit 11370849 7078552 -
GET localhost /download/audio.mp3

0.00s acceptor accept 0 0 :80
ao

3.22s probe waiting (%] 0 -
boot.default

37.70m acceptor accept 0 0 :6443
al

37.70m acceptor accept 0 0 :6443
al

37.70m acceptor accept 0 0 :80
ao

0.00s acceptor accept 0 0 :80
ao

37.70m acceptor accept 0 0 :6443
al

37.70m acceptor accept 0 0 :6443
al

37.70m acceptor accept 0 0 :80
a0
Threads running/in pool: 11/89

- J

533

CHAPTER 7: VARNISH FOR OPERATIONS

In this example you can also see new requests being made in the form of session threads.
And you can also witness c/ient threads performing transmissions. For large files it is
easier to spot transmissions, as they take more time.

By default the varnishscoreboard doesn’t output anything. By enabling the
scoreboard_enable runtime parameter in varnishd, the scoreboard will emit
the right data. Please note that as of Varnish Enterprise 6.0.7rI the scoreboard_
enable runtime parameter is a deprecated alias of thread_pool_track.

534

CHAPTER 7: VARNISH FOR OPERATIONS

/.8 Logging

When you put Varnish in front of your origin servers, the logs on the origin will not be
very useful. Because the goal is to dramatically reduce the number of requests to the
origin, the server logs will only contain a fraction of what the actual traffic represents.

That’s why Varnish has a quite extensive logging mechanism: not only to mimic NC-
SA-style logs, but to give operators insight about the flow within Varnish.

Varnish comes with various logging tools to provide this insight:
¢ varnishlog: displays log entries

* varnishtop: presents a continuously updated list of the most commonly occur-
ring log entries

e varnishncsa: formats log entries in Apache/NCSA "combined” log format

7.8.1 Varnish Shared Memory Log

Storing Varnish logs in files by default is a bad idea. A system like Varnish is used to
process massive amounts of concurrent requests. If every request were to be persisted
on disk as a log line, the load on the system would be unbearable.

Even if your system can handle the load, there’s the challenge of fitting these logs on
disk. Depending on the kind of logs you generate, the verbosity and size can be huge.

Although it is possible to have log files in Varnish, the standard mechanism is to store
logs in an in-memory circular buffer. This means that as soon as the buffer is full, it is
overwritten.

We call this the Varnish Shared Memory Log (VSL), and it is the core of Varnish’s log-
ging infrastructure. The vs1_space runtime parameter defines the size of the VSL,
which defaults to 80 M B. This value can be increased all the way up to 4 GB.

[The -1 option of varnishd is shorthand for -p vsl_space=]

varnishlog, varnishtop, and varnishncsa use the VSL as their source of input and
offer various ways to format, filter, and query the logs.

Here’s a quick teaser of what varnishlog output looks like:

535

CHAPTER 7: VARNISH FOR OPERATIONS

()
o << Request >> 2
- Begin req 1 rxreq
- Timestamp Start: 1606224128.870382 0.000000 0.000000
- Timestamp Req: 1606224128.870382 0.000000 ©.000000
- RegStart 172.19.0.1 37632 a@
- RegMethod GET
- ReqURL /
- ReqgProtocol HTTP/1.1
- RegHeader Host: localhost
- RegHeader User-Agent: curl/7.64.1
- RegHeader Accept: */*
- RegHeader X-Forwarded-For: 172.19.0.1
- J

This output is only an extract because the full log output for this transaction is far too
verbose.

7.8.2 Transactions

VSL keeps track of transactions. Each transaction contains a number of log lines and is
identified by a transaction identifier, which we call the VXID.

Transactions are either sesszons or requests:

* A session represents the TCP connection between the cient and Varnish.
e Avrequestis any HTTP request that involves Varnish.

* There are different kinds of request transactions:

* The dient request to Varnish

* The backend request from Varnish to the origin

* An ESIsubrequest from Varnish to the origin

Transaction hierarchy

There is a hierarchy between transactions, which is illustrated in the diagram below:

536

CHAPTER 7: VARNISH FOR OPERATIONS

Client request

Backend request

VSL transaction hierarchy

e The session is the top-level transaction.

e Asession can have multiple requests.

ESI subrequest

Backend request

* Non-cached objects will result in backend requests.

* Backend responses may include EST tags. When parsed, they result in EST subre-

quests.

* Non-cached EST responses may result in corresponding backend requests.

Here’s what this looks like in VSL:

-
& << BeReq

- Begin

* << BeReq
= Begin

& << Request
- Begin

* << Request
= Begin

* << Session
- Begin

>> 3
bereq 2 fetch

>> 5
bereq 4 fetch

>> 4
req 2 esi

>> 2
req 1 rxreq

>> 1
sess @ HTTP/1

537

CHAPTER 7: VARNISH FOR OPERATIONS

The Begin tag is used at the start of each transaction.

The first << BeReq >> transaction has VXD 3. The Begin tag for this transaction
indicates that this is a regular fetch that was initiated by VXID 2.

The second << BeReq >> transaction has V’XID 5. The Begin tag for this transaction
indicates that this is a regular fetch that was initiated by VXID 4.

The first << Request >> transaction is identified by VXID 4, and its Begin tagis an
ESI subrequest that was initiated by VXID 2.

The second << Request >> transaction is identified by VXID 2, and its Begin tagisa
regular request that was initiated by VXID 1.

The << Session >> transaction is identified by VXID 1 and opens up a connection
for HTTP/1.1 traffic. It doesn’t depend on any other transaction, hence the reference to
VXID 0.

Transaction grouping

Transactions can be grouped, and the type of grouping that is used will influence the
order of the transactions.

By default transactions are displayed in the order in which they complete, which at first
glance looks like the reverse order and can seem puzzling.

Here’s another diagram that should illustrate this effect:

VXID 1

VXID 2

e 7

v

i Reguest handling Backend Request handling Session
start until backend request request after backend request end
Timeline I

VSL transaction hierarchy timeline

538

CHAPTER 7: VARNISH FOR OPERATIONS

In this simple example, the backend request, identified by VXID 3, is the only transac-
tion that doesn’t depend on another and is displayed first.

The request, identified by VXID 2, can only complete after the backend transaction and
will be displayed next.

And finally the session, identified by VXID 1, is displayed because it was waiting for the
client request to complete.

You can choose the following grouping modes to change the order:
e vxid (default)

* session

* request

* raw

This is our VSL output grouped by session:

()
* << Session >> 1
- Begin sess @ HTTP/1
¥ << Request >> 2
-- Begin req 1 rxreq
*¥** << BeReq >> 3
--- Begin bereq 2 fetch
¥¥* << Request >> 4
--- Begin req 2 esi
4 << BeReq >> 5
-4- Begin bereq 4 fetch
_ J

As you can see, the order is more intuitive, and there’s a level of indentation.

In situations where you primarily care about requests and not the TCP session informa-
tion, you can group by request and omit the session transaction.

Here’s what that looks like:

(N
e << Request >> 2
- Begin req 1 rxreq
¥ << BeReq >> 3
-- Begin bereq 2 fetch
¥ << Request >> 4
-- Begin req 2 esi
*¥** << BeReq >> 5
--- Begin bereq 4 fetch
_ J

539

CHAPTER 7: VARNISH FOR OPERATIONS

You can see that VXID 1 is no longer included and that VXID 2 is not the top-level
transaction. And the indentation remained.

As far as raw grouping goes, here’s some example output:

1 Begin c sess @ HTTP/1
3 Begin b bereq 2 fetch
5 Begin b bereq 4 fetch
4 Begin Cc req 2 esi

2 Begin c req 1 rxreq

As you can see, the log lines are no longer grouped in transactions. They are displayed
as they are received. As soon as some production traffic hits your Varnish server, raw
grouping becomes nearly impossible to use.

However, raw grouping still has its purpose and is also the only way to collect non-trans-
actional logs, logs that aren’t tied to a session, request or backend request task. Non-trans-
actional logs have the VXTD 0 to reflect the absence of a transaction ID.

When using varnishlog, varnishtop, or varnishncsa, the -g parameter can be used
to control the grouping.

Here are some examples:

varnishlog -g request
varnishlog -g session
varnishlog -g vxid
varnishlog -g raw

/8.3 Tags

Each VSL transaction contains a number of log lines. Each line has a za¢ and that tag has
a corresponding value.

In the previous examples we’ve limited ourselves to the Begin tag to indicate the begin-
ning of each transaction. But there are a lot more tags that can be displayed in the VSL
output.

Transaction tags

We first need to finish our work with transactions. Here’s the list of transaction-related
tags:

540

CHAPTER 7: VARNISH FOR OPERATIONS

e Begin: marks the start of an VXID transaction
¢ End: marks the end of an VXID transaction
e Link: links to a child VXID transaction

And here’s an example where these tags are used:

s
* << Request >> 2
- Begin req 1 rxreq
- Link bereq 3 fetch
- End
** << BeReq >> 3
-- Begin bereq 2 fetch
-- End

_

This is the format of the Begin tag:

%s %d %s

[| |

| | +- Reason

| +---- Parent vxid

PR Type ("sess", "req" or "bereq")

As you can see it starts either sess, req, or bereq to indicate the type of transaction.
The parent VXID has been covered extensively, so there’s no reason to elaborate on
that. The reason field clearly indicates why or how this transaction is taking place.

The End tag may look a bit unnecessary, because it seemingly doesn’t add any value to
the logs. But it is used internally to delimit transactions, and if a transaction takes too
long to complete an End synth record might be synthesized to reflect that. The var-
nishlog options -L and -T might lead to incomplete transactions being displayed.

The Link tag is also quite useful, as it shows what kind of child transaction is initiated
from the current one.

Here’s the format:

%s %d %s
[| |

| | +- Reason
| +---- Child vxid
e Child type ("req" or "bereq")

541

CHAPTER 7: VARNISH FOR OPERATIONS

A transaction can either trigger a (sub-)request, or a backend request. Hence the types req
and bereq. The Link tag will also display the VXID of the child transaction. And fi-
nally, the reason why this happens is displayed.

Session tags

SessOpen: displays the socket endpoints when a client connection has been opened

SessClose: displays the reason for the socket closure and the duration of the ses-
sion

Here’s an example where these two tags are used within a session transaction:

* << Session »>> 1

= SessOpen 127.0.0.1 51726 a0 127.0.0.1 80 1606299467.161264
19

= SessClose REM_CLOSE 0.004

In order to understand what the values of SessOpen are, here’s the format for this tag:

()

%s %d %s %s %s %f %d

[I

| 1 | +- File descriptor number

| | +----- Session start time (unix epoch)
| +-------- Local TCP port

fommm o Local IPv4/6 address
fmmmmmmmmmmeeee Socket name (from -a argument)
Pocoooossosoooonos Remote TCP port

m e e e e Remote IPv4/6 address

So let’s explain the meaning of the values from the example:
e 127.0.0.1 is the IP addyress of the client.
* 51726 is the port number of the client.

a0 is the name of our socket. Because we didn’t name it via -a, the name a® was
automatically assigned by Varnish.

e 127.0.0.1is also the /P addyress of the server.
* 80 is the port number of the server. This indicates regular HTTP traffic.

1606299467.161264 is the epoch equivalent of Wednesday, November 25, 2020
10:17:47.161 AM.

* 19 is the file descriptor number.

542

CHAPTER 7: VARNISH FOR OPERATIONS

And from the SessClose tag we can determine that the session was closed normally
and lasted four milliseconds.

Request tags

The most commonly used VSL tags are request tags. They refer to the HTTP reguest
that is made by the client.

Here’s an overview of these tags:

* RegStart: the start of request processing

* RegMethod: the HTTP method used to perform the request
* ReqURL: the URL that is addressed by the request

* RegProtocol: the HTTP version used by the request

* RegHeader: aset of request headers that were passed

* RegAcct: the byte counts for the request handling

Here’s an example that features these tags:

()
- RegStart 127.0.0.1 51726 a0
= RegMethod GET
- ReqURL /
- RegProtocol HTTP/1.1
- RegHeader Host: localhost
- RegHeader User-Agent: curl/7.64.0
- RegHeader Accept: */*
- RegHeader X-Forwarded-For: 127.0.0.1
- RegAcct 73 © 73 268 540 808
_ J

The RegStart tag lets us know what the IP address and port number of the client is.
The a0 refers to the socket that was used to connect. This socket is defined using the -a
startup parameter.

The RegMethod tag indicates a regular H7TP GET request, and the ReqURL shows that
this request happened on the / URL.

The HTTP protocol version for this request was HTTP/1.1, as indicated by the RegPro-
tocol tag.

A set of ReqHeader tags are used to list the request headers that were passed with this
HTTP request.

543

CHAPTER 7: VARNISH FOR OPERATIONS

Finally, the RegAcct tag is there to provide request accounting information. Here’s the
format of this tag, which will allow us to explain the meaning of RegAcct from our
example:

()
d %d %d %d
||
I
I
+

I
| +- Total bytes transmitted
+---- Body bytes transmitted
------- Header bytes transmitted
---------- Total bytes received
_____________ Body bytes received

———————————————— Header bytes received
- J

What this means in our example is that the incoming request contained 73 bytes of re-
quest headers, and no request body, which results in a total incoming byte count of 73

bytes.

The response contained 268 bytes of response header data, and 540 bytes of body payload.
This body payload size will also be reflected in the Content-Length response header.

The total number of transmitted bytes is 808.

Response tags

Whenever there’s an HT TP request, there must an HTTP response. The response tags are

responsible for displaying information about the HTTP response that was generated by
Varnish.

Here’s the list of response tags:
* RespProtocol: the HTTP version that is used in the response
* RespStatus: the HTTP response status code of the response

* RespReason: the response-reason phrase that clarifies the status

* RespHeader: aset of response headers that were returned

Here’s a short example of a response containing the response tags that were mentioned:

(N
- RespProtocol HTTP/1.1
- RespStatus 200
= RespReason OK
- RespHeader Content-Type: text/html
- RespHeader Content-Encoding: gzip
- RespHeader X-Varnish: 2
- RespHeader Age: 1000
_ J

544

CHAPTER 7: VARNISH FOR OPERATIONS

We know the response was made using the HTTP/1.1 protocol, as indicated in by the
RespProtocol tag. The response was a regular 200 OK. The RespStatus and Re-
spReason will return this information. And finally, there is a set of RespHeader tags
that contains the HTTP response headlers that were returned.

In this case two response headers were injected by Varnish:

* Age: how long the object has been in cache

¢ X-Varnish: the VXID of the transaction

Backend tags

The backend tags are used when a miss or pass occurs, and a connection needs to be es-
tablished with the origin server.

Here’s an example:

- BackendOpen 31 boot.default 172.22.0.2 8080 172.22.0.3 45378
- BackendStart 172.22.0.2 8080
- BackendClose 31 boot.default

The BackendOpen tag provides information about the 7CP or UDS connection that is
established with the backend. Here’s the format of the tag:

()
%d %s %s %s %s %s
[O I
| | | | | +- Local port
| | | | +---- Local address
| | | #------- Remote port
|] #-----m---- Remote address
|+ Backend display name
R Connection file descriptor
_ J

In our example file descriptor 31 is used for the backend, and the actual backend that

was selected came from a VCL configuration named boot. Inside that VCL configuration
a backend named default was used.

You’ll agree that this is a very standard situation.

The connection with the origin was done via IP address 172.22.0.2 on port 8080. The
connection originated from IP address 172.22.0.3, and the source port was 45378. The
BackendStart tag provides similar information and doesn’t add that much value.

545

CHAPTER 7: VARNISH FOR OPERATIONS

However, it is interesting to see that a BackendClose tag was found. This means the
connection was not recycled for future requests to this backend.

If keep-alive was enabled, the origin would return a Connection: Keep-Alive header,
and Varnish would reuse that connection. This would result in the BackendReuse tag
to appear in VSL, as illustrated below:

[- BackendReuse 31 boot.default j

Backend request tags

When a backend is opened, the goal is the send a backend request. The backend request
tags are there to provide information about the backend request.

In most cases, the backend request will be identical to the client request. However, VCL
does allow you to change request information, which might be reflected in the backend
request.

These are the backend request tags:
* BeregMethod

* BereqURL

* BeregProtocol

* BeregHeader

o BeregAcct

This probably needs further explanation.

Backend response tags

Just like regular response tags, there are also backend response tags. These are displayed
when the response wasn’t served from cache but required a backend request.

These are the tags, and they look very similar to regular response tags:
* BerespProtocol

° BerespStatus

° BerespReason

* BerespHeader

Again, this needs further explanation.

546

CHAPTER 7: VARNISH FOR OPERATIONS

Object tags

* ObjProtocol
* ObjStatus

* ObjReason

* ObjHeader

V(L tags

So far we’ve focused on input and output:

¢ What request information is received by Varnish?

¢ What backend request information is sent to the origin?

¢ What backend response does the origin provide?

¢ What response are we sending back to the cliens?

Although this is very useful, we also need to focus on what happens within Varnish.
Luckily, there are some VCL-related tags that do just that. Here’s a list of those tags:
* VCL_Error: returns the error message in case of a V’CL execution failure

* VCL_Log: custom log messages that were logged via std.log() in VCL

* VCL_acl: evaluation of ACLs in VCL

* VCL_call: the name of the VCL state that is currently being executed

* VCL_return: the return statement that was used to transition to the next state
* VCL_use: the name of the VCL configuration that is being used

Here’s an example containing some VCL tags:

s
* << Request >> 2
= VCL_call RECV
- VCL_return hash
- VCL_call HASH
- VCL_return lookup
- VCL_call MISS
- VCL_return fetch
- Link bereq 3 fetch
- VCL_call DELIVER
- VCL_return deliver
** << BeReq >> 3
-- VCL_use boot

547

CHAPTER 7: VARNISH FOR OPERATIONS

-- VCL_call BACKEND_FETCH

-- VCL_return fetch

-- VCL_call BACKEND_RESPONSE
-- VCL_return deliver

If you remember the VCL flow from earlier in the book, you’ll notice that this log ex-
tract represents a cache miss.

TFhCVCL_Calltagsgof}onlRECV,U)HASH,U)MISS,U)BACKEND_FETCH,H)BACKEND_
RESPONSE, to DELIVER. The VCL_return tags are responsible for this sequence of VCL
subroutines being called.

As mentioned before, a cache miss is not necessarily a bad thing. It’s just a cache hit that
hasn’t happened yet. And as you can see in the log extract below, the next request will
result in a lot less output:

()
* << Request >> 5
= VCL_call RECV
- VCL_return hash
- VCL_call HASH
- VCL_return lookup
- VCL_call HIT
- VCL_return deliver
= VCL_call DELIVER
- VCL_return deliver
_ J

This is because this sequence of events represents a cache hit. No need to open up a <<
BeReq >> transaction and fetch data from the backend because the object can be served
from cache.

The VCL_acl tag can contain the following information when an ACL wasn’t success-

fully matched:

[- VCL_acl NO_MATCH purge]

In this case an ACL named purge couldn’ match the IP address of the client.

The next example reflects a successful ACL match on the purge ACL for a client whose
client.ip value could be matched to localhost:

[— VCL_acl MATCH purge "localhost"]

548

CHAPTER 7: VARNISH FOR OPERATIONS

If you can, use std.log() in your V'CL to log custom messages. Here’s some VCL that
was used to log ACL mismatches with some extra information:

[std.log(client.ip + " didn’t match the ‘purge’ ACL");]

This log line appears in VSL viaa VCL_Log tag.

[— VCL_Log 172.28.0.1 didn’t match the ‘purge’ ACL.]

And if you have multiple V’CL configurations registered in Varnish, the VCL_use tag
will remind you which ones were being executed.

Here’s the standard value for that tag:

[--- VCL_use boot]

If you didn’t register any extra VCL files, boot would be the one that was used when
varnishd was booted.

When an error occurs within your VCL configuration, the VCL_Error tag is displayed,
containing the error that occurred.

Here’s an example where too many levels of ES7 were used:

[—6— VCL_Error ESI depth limit reach (param max_esi_depth = 5)]

The fimestamp tag

The timestamp tag is very important, as it shows how long individual aspects of the
HTTP request took.

Here’s the format of this tag:

%s: %f %f %f

I I

| | | +- Time since last timestamp

| | +---- Time since start of work unit
| +---m - Absolute time of event
e Event label

549

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s an example of the timing for a typical request that resulted in a cache miss:

()
* << Request »>> 11
- Timestamp Start: 1606398588.811189 0.000000 0.000000
- Timestamp Req: 1606398588.811189 0.000000 0.000000
- Timestamp Fetch: 1606398588.818399 0.007210 0.007210
= Timestamp Process: 1606398588.818432 0.007243 0.000032
= Timestamp Resp: 1606398588.818609 0.007421 0.000178
¥ << BeReq >> 12
-- Timestamp Start: 1606398588.811381 0.000000 0.000000
-- Timestamp Bereq: 1606398588.814423 0.003042 0.003042
-- Timestamp Beresp: 1606398588.817982 0.006601 ©0.003559
-- Timestamp BerespBody: 1606398588.818372 0.006991 0.000390
- J

Difterent aspects of the execution flow are timed:

¢ Start: when did the request start?

* Req: how long after the start did we receive the request?

* Fetch: in the case of a miss, how long did the ferch take?

* Process: howlong did the processing of the backend response take?

* Resp: how long until we can return the response to the client that requested it?

The same applies to the << BeReq >> transaction:

e Start: when did the backend request start?

* Bereg: how long after the start did we send out the backend request?
* Beresp: how long did it take for the backend response to arrive?

* BerespBody: how long until we processed the response body from the backend

response?

The Unix timestamps in the second column gives you the exact time when each mea-
surement took place with microsecond precision. However, we care more about the

duration than the absolute time of execution.

The third column is the total time of execution since the start, and the fourth is the

duration of this specific unit of work.

In our example it took the backend 72 milliseconds to respond, and it took Varnish a
little over 74 milliseconds to return the response. But the individual task of returning

the response to the client only took 178 microseconds.

For a cached object, the following logs could be generated:

550

CHAPTER 7: VARNISH FOR OPERATIONS

e << Request >> 14

= Timestamp Start: 1606399284.176260 0.000000 0.000000

= Timestamp Req: 1606399284.176260 0.000000 ©.000000

= Timestamp Process: 1606399284.176393 0.000133 0.000133
= Timestamp Resp: 1606399284.176648 0.000388 0.000255

Because this was a cache bit, there is no Fetch timestamp tag. There’s also no << BeReq

>> transaction. The total execution time of the request is a mere 388 microseconds.

The TTL tag

Earlier in this book, we explained extensively how the 77'L of an object is calculated:
¢ The TTL of a cached object can be set via HTTP headers.
¢ The TTL of a cached object can be overridden in VCL.

¢ The object might not be cacheable at all, which results in a bit-for-pass or hit-for-
miss object.

All this information can be found in the 77°L tag. Here’s its format:

(%s %d %d %d %d [%d %d %u %u] %s
[I I I I |
[I I | I I . +- "cacheable" or "uncacheable"
[| | | [| | +------ Max-Age from Cache-Control header
I | | 4--------- Expires header
Y T I | 4o Date header
Y O I S LR T Age (incl Age: header value)
N T I B Reference time for TTL
| | | A--mmmmmmmmmm e Keep
| | #-mmmmmmmm e Grace
| oo mmm e TTL
S e s e e e e se e "RFC", "VCL" or "HFP"
L

Let’s throw in a couple of examples to show the different values.

Here’s the first one:

-- TTL RFC 120 10 0 1606398419 1606398419 1606398419 0 ©
cacheable

551

CHAPTER 7: VARNISH FOR OPERATIONS

This object is cacheable and is stored in the cache for 120 seconds. Because it is cacheable,
it is definitely not a HFP object. But because no Expires or Cache-Control header was
set, Varnish will fall back on its default_ttl value, which is set at two minutes.

Also interesting to note is that zen seconds of grace was added but no extra keep time.

Here’s another cacheable response:

-- TTL RFC 25 10 0 1606400425 1606400425 1606400425 0 25
cacheable

The TTL for this example was set to 25 seconds, and that was because the max-age value
of the Cache-Control header was set to 25.

Here’s an example of a bit-for-miss object being created after a Cache-Control: pri-
vate, no-cache, no-store header was received:

[—— TTL VCL 120 10 © 1606400537 uncacheable]

For the next two minutes, all requests for this object will bypass the waiting list and will
directly hit the backend. If in the meantime a cacheable response is returned, a regular
object is inserted.

The more aggressive version of this is bit-for-pass. The following example is uncacheable
for the same reasons but because return(pass(10s)); was added as an explicit return
statement, the bzt-for-miss is turned into a bit-for-pass:

[—— TTL HFP 10 © © 1606402666 uncacheable]

The TTL value is ten seconds because of the fact that this duration was explicitly used in
return(pass(10s));.

In the final T7TL example, we’ll juice up grace and keep a bit:

-- TTL RFC 500 10 0 1606403184 1606403184 1606403183 0O
500 cacheable

The Cache-Control header had a max-age value of 500 seconds; we set the grace to an
hour, and the keep to a day.

The fact that we set the 77L via an HT TP header turned this into an RFC log item.

552

CHAPTER 7: VARNISH FOR OPERATIONS

784 Output filtering

Now that we’ve familiarized ourselves with the various VSL tags, it’s time to put these
tags to use.

If you run varnishlog on a production server, you’ll be overwhelmed by the amount
of output coming your way. By filtering out specific tags, the information is easier to
process.

Tag inclusion
The -i parameter in varnishlog will only include the tags that were mentioned.

Here’s a standard example, where we want to know the URL of a request and its flow
through the finite state machine:

[var‘nishlog -i ReqUrl,VCL_call,VCL_return -g session]

This example will only include the ReqUrl, VCL_call, and VCL_return tags for trans-
actions that were grouped by session:

()
o << Session >> 1
** << Request >> 2
-- ReqURL /
-- VCL_call RECV
-- VCL_return hash
-- VCL_call HASH
-- VCL_return lookup
-- VCL_call MISS
-- VCL_return fetch
-- VCL_call DELIVER
-- VCL_return deliver
*** << BeReq >> 3
--- VCL_call BACKEND_FETCH
--- VCL_return fetch
--- VCL_call BACKEND_RESPONSE
--- VCL_return deliver
_ J

As you can see, the homepage was consulted but was not served from cache. A backend
fetch was required.

A very common example, and thanks to output filtering, the logs are easier to interpret.

Wildcards are also supported. Our previous example can even be rewritten as follows:

553

CHAPTER 7: VARNISH FOR OPERATIONS

[var‘nishlog -i "ReqUrl,VCL_*" -g session]

Tag exclusion
You can also exclude tags from the output. This is done by using the -x parameter.

Here’s an example where we include all tags that start with Req, but we want to exclude
the ReqHeader and ReqUnset tags:

[var‘nishlog -i "Reg*" -x RegHeader,ReqUnset]
And here’s the output:

= ReqgStart 172.28.0.1 52280 http

- RegMethod GET

- ReqURL /

- RegProtocol HTTP/1.1

= RegAcct 140 0 140 294 608 902

Tag inclusion by regular expression

Basic tag inclusion and exclusion is already a step in the right direction. But some tags
have many occurrences in a single transaction.

Take for example a request where you only care about the Accept-Language header.
Including ReqHeader can create a lot of noise.

The solution is to filter out tags by value. The -I uppercase parameter does just that.

The following example retrieves the URL of the request and the Accept-Language
header:

[var‘nishlog -g request -i ReqUrl -I RegHeader:Accept-Language]

Here’s the output for the next request:

- ReqURL /
- RegHeader Accept-Language: en-US,en;q=0.9,nl;q=0.8,nl-
NL;qg=0.7

554

CHAPTER 7: VARNISH FOR OPERATIONS

If it weren’t for the -I parameter, you’d get a lot more irrelevant output, even if you use
-i.

Tag exclusion by regular expression

Whereas -I includes tags by matching the value, the same thing can be done for exclu-
sion. The -X uppercase parameter can be used to exclude tags based on a regular expres-
sion.

Here’s an example where we include the ReqUrl and RespHeader tags, but we exclude
all response headers that start with an X, both uppercase and lowercase:

[var‘nishlog -g request -i ReqUrl -i RespHeader -X "RespHeader:(X|x)-"]

Here’s the output for the next request:

4)
* << Request >> 5
- ReqURL /
- RespHeader Content-Type: application/json; charset=utf-8
- RespHeader Content-Length: 539
- RespHeader ETag: W/"21b-faj3J9BgOwmX965fRcvtQFgPZr4"
- RespHeader Date: Fri, 27 Nov 2020 09:19:48 GMT
- RespHeader Age: 99
- RespHeader Accept-Ranges: bytes
- RespHeader Connection: keep-alive
o J

The X-Varnish response header is removed from this transaction, possibly along with
some other headers that were sent by the orzgzn that started with an X.

Filtering by request type

Unless the -c or -b flags were added to varnishlog, both << Request >>and <<
BeReq >> transactions are included in the output.

However, you can filter out entire transactions:

* Ifyou only care about the client-side request, you can use the -c parameter.

¢ Ifyou only care about the backend request, you can use the -b parameter.

555

CHAPTER 7: VARNISH FOR OPERATIONS

Using both -c and -b will include both types of requests, but that has the same
effect as not mentioning them at all.

The following example will list both the URL that was provided by the client, and the
URL that was sent to the origin. However, the -c flag will prevent the << BeReq >>
transaction from being included in the output:

[var‘nishlog -g request -c -i ReqUrl -i Berequrl

Here’s the output:

* << Request >> 12
- ReqURL /

The all-in-one example

Let’s end the output filtering subsection with an all-in-one example that uses all filter-
ing techniques.

Here’s the varnishlog command:

varnishlog -c -g request -i Req* -i Resp* \
-I Timestamp:Resp -x ReqAcct -x RespUnset \
-X "RespHeader: (x|X)-(url|host)"

And before we display the log information, we need to add some context to the story.

The VCL for this example adds two custom response headers: x-url and x-host. Be-
fore delivering the content to the client, these headers are stripped off again.

If you remember asynchronous bans from chapter 6, you’ll know that request context
needs to be injected in the response object; otherwise the ban lurker cannot ban objects
based on the UR L and hostname.

As areminder, here’s the VCL that adds and removes these headers:

556

CHAPTER 7: VARNISH FOR OPERATIONS

&

sub vcl _backend_response { h
set beresp.http.x-url = bereq.url;
set beresp.http.x-host = bereq.http.host;
}
sub vcl deliver {
unset resp.http.x-url;
unset resp.http.x-host;
}
J

These actions are also reported in VSL through RespHeader and RespUnset tags. The
RespUnset tag reports response tags being removed.

But we don’t want our VSL output to be polluted with this kind of information, hence
the -x RespUnset and -X "RespHeader:(x|X)-(url|host)" parameters.

With that in mind, here’s the output:

()
o << Request »>> 1
- RegStart 172.18.0.1 38076 http
- RegMethod GET
- ReqURL /
- RegProtocol HTTP/1.1
- RegHeader Host: localhost
- RegHeader User-Agent: curl/7.64.1
- RegHeader Accept: */*
- RegHeader X-Forwarded-For: 172.18.0.1
- RespProtocol HTTP/1.1
- RespStatus 200
= RespReason oK
- RespHeader Content-Type: application/json; charset=utf-8
- RespHeader Content-Length: 555
- RespHeader ETag: W/"22b-nCrko@g3BQi5EC4Z9AcxPigbGms"
- RespHeader Date: Fri, 27 Nov 2020 09:40:46 GMT
- RespHeader X-Varnish: 65543
- RespHeader Age: 100
- RespHeader Via: 1.1 varnish (Varnish/6.0)
- RespHeader Accept-Ranges: bytes
- RespHeader Connection: keep-alive
- Timestamp Resp: 1606470046.159483 0.003742 0.000081
_ J

The log output gives us request information, response information, and the total dura-

tion of execution.

557

CHAPTER 7: VARNISH FOR OPERATIONS

18.5 VSL queries

So far we’ve been filtering output and have only been displaying the tags we care about.
This definitely decreases the amount of log lines in the output.

But there’s still the potential for noise. Although we’ve been reducing the size of the
transactions, we’re still displaying all transactions.

In this section we’re going to apply VSL gueries to include only transactions that match
specific criteria.

The -q parameter will allow us to specify a query. The syntax for VSL queries goes as
follows:

[«‘ecord selection criteria> <operator> <operand> j

Yes, this is quite vague. An example will make this make more sense. Here it is:

[var‘nishlog -i VCL_call -i VCL_return -q "ReqUrl eq ‘/°"]

This varnishlog command will display the VCL flow by including VCL_call and
VCL_return tags, but only for the homepage, that is, only when the Requrl tags is
equal to /.

If we refer back to the VSL query syntax, we can break this down as follows:
* ReqUrlis part of the record selection criteria.
* eqis the operator.

e/’ isthe operand.

Record selection criteria

The record selection criteria can be alot more elaborate than what we just showed you.
Here’s the syntax for these criteria:

{level}taglist:record-prefix[field]

The {1level} syntax refers to the transaction hierarchy in VSL. Here’s a diagram that
clarifies these levels:

558

CHAPTER 7: VARNISH FOR OPERATIONS

Client request
(cache miss)

Backend request ESI subrequest ESI subrequest

(cache miss) (cache hit)

ESI subrequest

leachs meas) Backend request

Backend request

VSL transaction levels

These levels only apply when reguest grouping takes place. And the level 1 transaction is
the client request.

When a cache miss takes place, a level 2 transaction appears in the logs. This contains a
backend request, but at the same time can also contain a set of ESI subrequests.

In the diagram, we’ve made a distinction between ESI subrequests that resulted in a cache
hit or a cache miss.

For ESI subrequests that cause a cache miss, a level 3 backend request is required. Maybe
that ESI subrequest triggers another ESI subrequest.

If that level 3 ESI subrequest also results in a cache miss, a level 4 backend request is trig-
gered.

This can go on and on until you hit the max_esi_depth limit. The default value for
the max_esi_depth runtime parameter is currently fzve.

The taglist directive refers to one tag or a glob pattern that matches multiple tags.

559

CHAPTER 7: VARNISH FOR OPERATIONS

If a transaction has multiple occurrences of a tag, the record-prefix can be used to
single out log lines that match the prefix.

And if you want to match specific values from individual fields in a log line, the [field]
syntax can be used.

This is a lot of information to digest. Let’s throw in an example that uses the full syn-
tax:

varnishlog -c -i ReqUrl -I Timestamp:Resp -g request -q "{2+}
Time*:Resp[2] > 2.0"

This example will only display transactions that have subtransactions. The number of
levels doesn’t matter as long as it is more than two.

For these transactions, only the client-side transaction is shown, and only the request
URL and timestamp are displayed for responses that took longer than two seconds to
generate.

Let’s break down the query:

* {2+}: the query applies to transactions at level 2 or greater

* Time*:aglob pattern that matches all tags that start with Time

* :Resp: refers to prefixes of log lines that match Resp for these tags

* [2]:looks at the second field of a matched log line

* > 2.0:ensures that value is greater than two

And let’s have a look at parameters as well:

e -c:only displays czent-side transactions

e -i ReqUrl:displays the URL of the request

* -I Timestamp:Resp: displays Timestamp tags that have a Resp prefix
* -g request: groups the transactions by request

e -q:performsa VSL guery, and only displays transactions that match the query

This could be the output of the varnishlog command:

560

CHAPTER 7: VARNISH FOR OPERATIONS

o << Request
= ReqURL
- Timestamp
¥ << Request
-- ReqURL
-- ReqURL
-- Timestamp

>> 13
/

Resp:

>> 15
/esi
/esi

Resp:

1606733707.261102 3.012484 3.007354

1606733707.260886 3.006929 0.000161

J

As we can see, the / page takes more than three seconds to load and that is because the /

esi subrequest took so long to load.

Operators

We’ve already seen some VSL query examples that feature both string comparison and

numerical comparison.

For the sake of completeness, here’s a list of the operators that are supported by the VSL

query synmx:

==: the operand numerically equals the record value

I=: the operand doesn’t numerically equal the record value

<: the operand is greater than the record value

<=: the operand is greater than or equal to the record value

>: the operand is less than the record value

>=: the operand is less than or equal to the record value

eq: the operand equals the record string value

ne: the operand doesn’t equal the record string value

~: the record value matches the regular expression pattern

I~: the record value doesn’t match the regular expression pattern

Operands

We've already covered the record selection criteria, and we listed the operators. We just

need to talk about operands, which is very straightforward.

561

CHAPTER 7: VARNISH FOR OPERATIONS

There are four types of operands:
* Integers

* Floating point numbers

* Strings

* Regular expressions

Let’s have an example for each operand type. Here’s the one for the znzeger type:

[var‘nishlog -g request -q "BerespStatus >= 500"]

This example will only show transactions whose status code is greater than or equal to
500. This implies retrieving server errors.

Here’s the float example:

[var‘nishlog -g request -q "Timestamp:Resp[2] > 2.0"]

This example command looks familiar and was already featured. Just remember that
the timestamps have microsecond precision and are expressed as floating point numbers.

The string example is also quite simple:

[var‘nishlog -g request -q "ReqUrl eq ‘/’"]

This example will only show transactions for the homepage.

And here’s the regular expression example:

[var-nishlog -g request -q "ReqUrl ~ “*/contact’"]

This example will match all transactions that start with /contact. This also includes
requests for a URL like /contact-page.

You may wonder why booleans aren’t included in the list of types. This is because trans-
actions don’t have boolean values. However, boolean comparisons are supported.

Here’s an example of a boolean comparison:

562

CHAPTER 7: VARNISH FOR OPERATIONS

[var‘nishlog -g request -q "RegHeader:Accept-Language"]

This query will include all transactions that have an Accept-Language request header.
The exact opposite is also supported by adding the not keyword:

[var‘nishlog -g request -q "not RegHeader:Accept-Language"]

This example will include all transactions that do not have an Accept-Language re-
quest header.

Chaining queries
All the VSL guery examples we’ve featured so far used a single comparison.

Multiple comparisons are supported, and queries can be chained using the and boolean
function, or the or boolean function.

Here’s an example that combines two comparisons:

varnishlog -c -i ReqUrl -I RespHeader:Content-Type \

-1 reqacct -g request \

-q "RespHeader:Content-Type ~ ‘~image/’ and RegAcct[5] >=
2000000"

This example will display the URL, Content-Type header, and request handling byte
counts for all transactions where the Content-Type response header matches the ~im-
age/ pattern, and the number of bytes returned by the body is greater than 2 A1B.

Long story short: we’re displaying transactions for images larger than 2 MB.

Here’s the potential output:

* << Request >> 65562

- ReqURL /image.jpg
- RespHeader Content-Type: image/jpeg
- RegAcct 82 © 82 311 2832889 2833200

As you can see, the Content-Type header is image/jpeg, which matches the regular
expression. And also the fifth field of the RegAcct tag is 2832889, which is more than 2
MB. The combination of these two comparisons results in the output.

563

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s an example where the or boolean function is used to chain comparisons:

varnishlog -c -g request -i ReqUrl \
-I VCL_call:PASS -I VCL_call:MISS \
-q "VCL_call eq ‘MISS’ or VCL_call eq ‘PASS’"

This example will show the URL and MISS/PASS status for all requests that are cache
misses, or where the cache is bypassed.

Here’s the potential output for such a query:

e << Request >> 10

- ReqURL /

- VCL_call MISS

* << Request >> 525

= ReqURL /account
- VCL_call PASS

And finally, parentheses can be used when and and or are combined. Here’s an example
where we use parentheses for this:

varnishlog -c -g request -i ReqUrl \
-q "TTL[6] eq ‘uncacheable’ and (BerespHeader:Set-Cookie or Bere-
spHeader:Cache-Control ~ ‘(private|no-cache|no-store)’)"

This example will display the URL of the corresponding request for uncacheable re-
sponses that were caused by the presence of a Set-Cookie response header, or the fact
that the Cache-Control response header contained non-cacheable directives.

7.8.6 Other VSL options

Up until this point we primarily focused on filtering and querying options. Tools like
varnishlog, varnishtop, and varnishncsa also have some other useful options,
which we’ll discuss now.

We’ll primarily apply them to varnishlog, but varnishtop and varnishncsa
will also covered separately.

564

CHAPTER 7: VARNISH FOR OPERATIONS

Processing the enfire buffer

When VSL programs are run, input is collected from the moment the program is start-
ed. However, there is already a lot more information in the VSL circular buffer.

By adding the -d option to varnishlog, varnishtop, or varnishncsa, the output
starts at the head of the log and exits.

Here are the corresponding examples:

varnishlog -i Requrl -d
varnishtop -i ReqUrl -d
varnishcsa -d

The -d option is useful for getting the full picture. The size of the VSL space is con-
trolled by the -1 option for varnishd, and as stated previously the default size is 80
MB. The bigger you set this, the more information is held in this buffer.

Here’s an example where you get the URL and starting timestamp for all transactions in
the VSL buffer that started at 1/12/2020 11:00:00 UTC or later:

varnishlog -g request -i requrl -d \
-q "Timestamp:Start[1] >= $(date -d €1/12/2020 11:00:00° +%s.0)"

The $(date -d €1/12/2020 11:00:00° +%s.0) subcommand was used to convert the
date and time into the Unix timestamp format that is used by the Timestamp tag.

Dumping the contents of the buffer is a lot more interesting when you aggregate the
data using varnishtop:

[var‘nishtop -i ReqUrl -d -1]

In this example the top request UR Ls are computed. -d will dump the buffer and use

this as input. The -1 ensures the computation only happens once, and the output is sent
to standard output, instead of constantly being refreshed.

This is the potential output:

6582.00 ReqURL /
3920.00 ReqURL /contact
2640.00 ReqURL /products

565

CHAPTER 7: VARNISH FOR OPERATIONS

The homepage is by far the most popular page with an average request rate of 6582 re-
quests per second.

Here’s an extract of the output if varnishncsa -dis used to process the VSL buffer:

(>192.168.6.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
products HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
contact HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
products HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
contact HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
contact HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
contact HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +080@] "GET http://localhost/
contact HTTP/1.1" 200 6 "-" "curl/7.64.1"
192.168.0.1 - - [01/Dec/2020:12:11:31 +0000] "GET http://localhost/
products HTTP/1.1" 200 6 "-" "curl/7.64.1"

_ J

This output is different from varnishlog because it formats it in Apache/NCSA for-
mat. This format is suitable for access logs.

Rate limiting

VSL is extremely verbose. Running a tool like varnishlog on a production server will
become somewhat overwhelming.

Tag filtering and using VSL gueries to reduce the output will only get you so far. On
busy systems where a lot of transactions meet the querying criteria, there will still be
tons of output.

If you don’t need every single log line to get the required insight, you can opt to use rate
limiting.

The -R uppercase parameter will limit the number of transactions that are returned
based on a ratio.

Here’s an example where only ten transactions per minute are displayed:

[var‘nishlog -g request -R 10/1m]

566

CHAPTER 7: VARNISH FOR OPERATIONS

The format of -R is <number-of-requests>/<duration>. The duration is expressed as
a VCL duration type. This includes the numerical value and the time unit suffix.

The same limits can be imposed on a varnishncsa command, as illustrated below:

[var‘nishncsa -R 10/1m]

Rate limiting is not available for varnishtop, which makes sense. The varnishtop

program aggregates the output and is not that noisy. The results would be heavily
skewed if rate limiting were to be applied.

Storing and replaying logs

The output from varnishlog can be stored in a file. This can either be done in a hu-
man-readable format for analysis later on, but we can also store it in a binary format.

Logs in binary format can be replayed in varnishlog where filters and queries can be

applied after the fact.

The easiest way to store the log in a file is by running the following command:

[var‘nishlog -w vsl.log]

Aslong as the command is running, VSL logs will be stored in vs1.1og. When this

command is run again, vs1.log will be overwritten.
The logs are persisted in a binary format, which makes replaying them quite easy.

Replaying those logs is done using the following command:

[var‘nishlog -r vsl.log]

And as mentioned before, queries and filters can be applied. Here’s an example:

varnishlog -i ReqUrl -i RegAcct \
-q "RespHeader:Content-Type ~ ‘~(image|video)/’" \
-r vsl.log

This example will read vs1.1og and will find all transactions where the Content-Type
header of the response matches images and video files. For those transactions the URL
and the byte count sizes are returned.

567

CHAPTER 7: VARNISH FOR OPERATIONS

When you want to ensure that your log file is not overwritten every time the varnish-
log -w vsl.logis called, you can use the -a parameter. This parameter ensures that
data is appended to the log file every time the command is called.

Remember that anything filtered out when writing log files will be missing during
replay. We advise you not to use the -i and -I options in this situation, and just let var-
nishlog write the complete transaction.

VSL queries are allowed, but the full transaction is expected to be written to file. Please
also watch out what kind of transaction grouping you use. It you use -g request,
please understand that session grouping is not supported when you replay the logs be-
cause you are effectively filtering sessions out.

The -g raw grouping is the fastest one and can be useful to increase write throughput,
but it also increases the chance of collecting partial transactions that wouldn’t be useful
during replay. Since raw grouping will capture both transactional and non-transac-
tional logs, you might want to clarify this with a query. For example to only collect
non-transactional logs:

[var‘nishlog -g raw -q ‘vxid == @’]

If you don’t care about log replaying and applying filters and queries after the fact, you

can also store varnishlog output in ASCII format. Just add the -A uppercase parame-

ter to make this happen. Remember that you will lose the ability to perform structured
querying or filtering.

Let’s revisit the example where we’re inspecting the URL and byze count sizes for images
and video files, and append that information in a human-readable format to vs1.log:

varnishlog -i ReqUrl -i RegAcct \
-q "RespHeader:Content-Type ~ ~(image|video)/’" \
-w vsl.log -a -A

7.8.7 varnishncsa

We spent a lot of time talking about varnishlog. It’s an important tool, maybe even
the most important logging tool in our toolkit.

But let’s not forget that varnishncsa is also a very powerful tool. Perhaps not as ver-
bose as varnishlog, but the advantage of varnishncsa is usually a single-line, concise
output™,

568

CHAPTER 7: VARNISH FOR OPERATIONS

This output is formatted in the Apache/NCSA combined format. This is what the format
looks like by default:

[%h %1 %u %t "%r" %s %b "%{Referer}i" "%{User-agent}i"]

* %h: the hostname or IP address of the remote host
* %I: remote log name

* %u: remote authenticated user

* %t: time when the request was received

e %r: firstline of the HT'TP request

* %s: HTTP status code of the response

* %b: size of the response body in bytes

* %{Referer}i: the Referer request header

* %{User-Agent}i: the User-Agent request header

Here’s some potential output in this format:

192.168.0.1 - - [01/Dec/2020:13:45:23 +0000] "GET http://localhost/
HTTP/1.1" 200 6 "-" "curl"

By default varnishncsa will only output dient transactions. That is because varnish-
ncsa is there to replace your regular web server logs. Because of caching and the fact
that requests are offloaded from the origin server, the logs you usually consult will re-
main mostly empty. The higher the hit rate of your cache, the lower the number of log
lines.

Standard NCSA4-style log files are stored on disk. By default varnishncsa just consults
the VSL circular memory buffer, so there is no disk access.

It is quite common to store varnishncsa output on disk. Here’s an example:

[var‘nishncsa -a -w /var/log/varnish/access.log]

If your pre-Varnish setup used log analysis or log centralization tools, varnishncsa log
files are an excellent surrogate.

569

CHAPTER 7: VARNISH FOR OPERATIONS

Logging modes

As mentioned, the standard logging mode will only output client transactions. It is pos-
sible to display backend transactions by adding the -b parameter to varnishncsa.

If you want to combine client and backend transactions in your output, you can add
both the -c and -b parameters. However, the output may be confusing.

You can add the %{Varnish:side}x formatter to your output. This formatter will re-
turn ¢ for client requests and b for backend requests.

This is the corresponding command to create that sort of output:

varnishncsa -c -b -F “%h %1 %u %t "%r" %s %b "%{Referer}i" "%{Us-
er-agent}i" "%{Varnish:side}x"’

And here’s some example output for this command:

172.18.0.3 - - [02/Dec/2020:10:18:38 +0000] "GET http://localhost/
HTTP/1.1" 200 6 "-" "curl" "b"
127.0.0.1 - - [02/Dec/2020:10:18:38 +0000] "GET http://localhost/
HTTP/1.1" 200 6 "-" "curl" "c"

As you can see the %h formatter that outputs the remote host is different for each of the
lines. Their meaning is also a bit different, depending on the mode:

* In backend mode, the %h formatter refers to the IP address of the backend server.
* In client mode, the %h formatter refers to the IP address of the client.
e There’s also a difference in meaning for the %b formatter:

* In backend mode, the %b formatter refers to the number of bytes received from the

backend for the response body.

e Indient mode, the %b formatter refers to the total byte size of the response for the

response body.

If the response body is modified in ’CL, these counters can have a different value.

Modifying the log format

The standard format for varnishncsa is the NCS4 combined log format. We've de-
scribed the format earlier. It is a conventional format that most log analyzers support.

570

CHAPTER 7: VARNISH FOR OPERATIONS

However, you’re not obligated to respect that format. For the sake of completeness, here

is list of all supported formatters:

Formatter Meaning

%b Size of the response body in bytes

%D Time taken to serve the request in microseconds

#H The request protocol

%h The hostname or IP address of the remote host

%1 Total bytes received

%{XH Contents of request header X

%1 Remote log name

%m Request method

%{X}o Contents of response header X

%0 In client mode, total bytes sent to client. In backend mode, total bytes
received from the backend

%q The query string

%r First line of the HT'TP request composed using other formatters

%S HTTP status code of the response

%t Time when the request was received

%{X}t Time when request was received in the strftime time specification
format

%T Time taken to serve the request

U Request URL without query string

%u Remote authenticated user

%{X}x Extended Varnish & VCL variables

The -F parameter allows you to specify a format string. Here’s a simple example:

[varnishncsa -F “%U %T°

571

CHAPTER 7: VARNISH FOR OPERATIONS

This format will return the URL of the request and the time in seconds it took to serve
the request.

You can also save your log format in a file. If we revisit the example where %{Var-
nish:side}x wasadded to the format, we could store the following content in /etc/
varnish/varnishncsa_combined_and_side_formatter:

%h %1 %u %t "%r" %s %b "%{Referer}i" "%{User-agent}i"
"%{Varnish:side}x"

Loading this format can be done via the - parameter, as illustrated below:

varnishncsa -c -b -f /etc/varnish/varnishncsa_combined_and_side_for-
matter

This way you can store multiple formats in separate files and easily call them when re-

quired.

There are also some special formatters that allow you to inject headers and other special
values.

Let’s have a look at headers first. The %{X}i formatter replaces the X with a valid request
header and returns its values. The same applies to %{X}o, where the X is replaced with a
valid response header.

Here’s an example where we care about the URL, the Accept-Language request header,
and the Content-Type response header:

[var‘nishncsa -F ‘%U "%{Accept-Language}i" "%{Content-Type}o™"’]

This is the output that is generated:

/ "en-US,en;q=0.9,n1;q=0.8,nl1-NL;q=0.7" "text/html;
charset=UTF-8"

And there is also another special one, which is %(X)t. This formatter allows you to
return the request time in a custom time format. As stated in the table above, the strf-
time format is used. See the strftime(3) manual on your system by running man 3
strftime for more information about this format.

Here’s an example where we display the full date, including the day of the week, and the
hour of the day:

[var‘nishncsa -F “%{%A %B %-d %Y %-I %p}t’]

572

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s some output w¢E generated:

[Wednesday December 2 2020 11 AM

Let’s break down the date formart:

%A: the full name of the day of the week

%B: the full month name

%-d: the day of the month as a decimal number without the zero-padding
%Y: the year as a decimal number including the century

%-I: the hour as a decimal number using a 12-hour clock without the zero-padding

%p: AM or PM

Extended variables

There is one type of formatter that deserves its own subsection. The extended variables

formatter, which uses the %{X}x notation, allows us to use specific variables and access
VSL information. The sky is the limit, basically.

Let’s look at the extended variables first before talking about VSL.

Here’s the list of variables that can be accessed:

Varnish:time_firstbyte: time until the first byte is returned
Varnish:hitmiss: bit/miss marker

Varnish:handling: returns either hit, miss, pass, pipe, or synth. Indicates how
the request was handled

Varnish:side: returns ¢ when in dient mode, and b when in backend mode. We’ve
already covered this one carlier

Varnish:vxid: the Varnish transaction ID

Here’s an example where Varnish:handling and Varnish:side are used. It gives you

some insight as to what happened behind the scenes for this request.

Here’s the command:

[varnishncsa -F “%U %{Varnish:handling}x %{Varnish:side}x’ -b -c

In the example, two requests for /test are being sent. This is the output:

573

CHAPTER 7: VARNISH FOR OPERATIONS

/test - b
/test miss c
/test hit c

As you can see, the backend transaction doesn’t decide on the handling. However, the
client transaction does and qualifies it as a cache miss. For the second request, there is not
a backend transaction because it was a cache bit.

The next request contained a cookze, based on the built-in VCL, which resulted in a pass:

/test - b
/test pass c

The final request was made using an unrecognized request method. The built-in VCL
uses piping to send that request to the backend. As you may remember, Varnish no lon-
ger considers this an HTTP request and shuffles the bytes directly to the origin.

Here’s the output:

/test - b
/test pipe ¢

And then there’s the VSL information we can include. According to the specification,
this is the format:

[VSL:tag:r‘ecor‘d—pr‘e-Fix[field]]

This should look familiar to you.

Here’s a first example where we use %b to display the body bytes that were transmitted.
But thanks to %{VSL:ReqAcct[4]}x, we can also display the beader bytes that were
transmitted:

[var‘nishncsa -F "%b (body bytes) %{VSL:RegAcct[4]}x (header bytes)"]

This is the output:

[3257 (body bytes) 276 (header bytes)]

574

CHAPTER 7: VARNISH FOR OPERATIONS

The following example will display the TTL, grace, and keep values for an object, along
with its URL. Here’s the command:

varnishncsa -b -F "%U TTL: %{VSL:TTL[2]}x - Grace: %{VSL:TTL[3]}x -
Keep: %{VSL:TTL[4]}x"

This is the output:

[/ TTL: 100 - Grace: 10 - Keep: 0]

VSL queries

VSL queries are not restricted to varnishlog. We can also use them in varnishncsa to
narrow down the scope of what we want to log.

Once you start adding queries, this is no longer a surrogate for regular access logs. Chanc-
es are that you’ll be running multiple varnishncsa services, depending on the things
you want to log.

The -q parameter, which we covered extensively, is also used here. The following exam-
ple will log backend responses that took more than a second to load:

varnishncsa -b -F “%{VSL:Timestamp:BerespBody[2]}x %{Host}i %U%q’ -q
‘Timestamp:BerespBody[2] > 1.0’

Here’s the output:

[2.007142 localhost /]

This example only outputs backend transactions when the query matches. It would seem

as though you have the same flexibility as with varnishlog. An extra benefit is sin-
gle-line output. However, you’re very strictly tied to the mode you're in.

Unless you combine -c and -b, there is no way to return backend transaction informa-
tion and c/ient transaction information at the same time. And if you do combine both
modes, the output will be spread across two lines.

Other varnishncsa options

Justlike varnishlog, varnishncsa also had the well-known -w and -a options to
write and append logs to a file.

575

CHAPTER 7: VARNISH FOR OPERATIONS

The -d option is also there to dump the entire VSL buffer and exit. And unsurprisingly
the -R option is there to perform rate limiting,

Transaction grouping via -g is also supported but is limited to -g request and -g
vxid.

You can even replay binary VSL logs from a file and present them in NCSA4 combined
format using the -r option.

This is all very similar to varnishlog and needs no further explanation.

Log rotation

When you start logging incoming requests via varnishncsa, and these logs end up be-
ing stored in files, we have to be careful. On busy production systems, the size of these
logs can become gigantic.

That’s why a proper log rotation strategy is in order. Log rotation ensures that logs are
automatically archived to avoid running out of disk space.

A number of logs are kept, based on certain criteria. Given the configured frequency,
the current log file is moved and renamed, while an empty log file is used by varnish-
ncsa. When the maximum number of log files is reached, the oldest one is removed.
This is a cyclical process.

When you install Varnish via packages, a log-rotate configuration is available for var-
nishncsa.

This is what it looks like:

/var/log/varnish/varnishncsa.log {

daily

rotate 7

compress

delaycompress

missingok

postrotate
systemctl -q is-active varnishncsa.service || exit @
systemctl reload varnishncsa.service

endscript

}
- J

This configuration is located in /etc/logrotate.d/varnish and is picked up auto-
matically by the logrotate program.

576

CHAPTER 7: VARNISH FOR OPERATIONS

This configuration will perform dazly log rotation and rotates as soon as seven log files
exist.

This is what the directory layout will look like:

4)

varnishncsa.log

varnishncsa.log.1
varnishncsa.log.2.gz
varnishncsa.log.3.gz

varnishncsa.log.4.gz

varnishncsa.log.5.gz
varnishncsa.log.6.gz
varnishncsa.log.7.gz
_ J

Log files will be compressed via gzzp, and compression is delayed until the next rotation.
That’s why varnishncsa.log.1 is not compressed.

The missingok directive makes sure that logrotate doesn’t complain when a log file
is missing.

The commands between postrotate and endscript are tasks that can be performed
after the log rotation. In our case, it is important to signal to varnishncsa that it can
release the log file and reopen it. Otherwise varnishncsa will still attempt to write to

the original file.

By sending a SIGHUP signal to the varnishncsa process, it will release and reopen. This
requires prior knowledge about the process ID of the varnishncsa process.

If you were to manually run varnishncsa as a daemon, you could specify the -P pa-
rameter to write the process ID to a file.

Here’s an example of running varnishncsa as a service but without a proper service
manager supporting it:

varnishncsa -a -D -w /var/log/varnish/access.log -P /var/run/varnish-
ncsa.pid

The -D parameter will daemonize the process and -P will write the PID file to /var/
run/varnishncsa.pid.

You can use the following postrotate command:

577

CHAPTER 7: VARNISH FOR OPERATIONS

postrotate
kill -HUP $(cat /var/run/varnishncsa.pid)
endscript

This basically sends a SIGHUP signal to the process identified by what’s inside /var/
run/varnishncsa.pid and forces varnishncsa to release and reopen the log file.

But on production systems, a service manager like systemd will be used to start var-
nishncsa for you and will have reload logic to handle the SIGHUP. The systemctl re-
load varnishncsa.service command handles this.

/8.8 varnishtop

VSL is consumed by three programs. We already talked about varnishlog and var-
nishncsa. We still need to cover varnishtop.

The input that varnishtop consumes is the same: it reads from the VSL circular memo-
ry buffer. The output, on the other hand, is very different. varnishtop does not output
log lines like the other tools. It presents a continuously updated list of the most com-
monly occurring log entries.

The tags that appear the most across transactions are displayed first.

Here’s a raw output extract when running varnishtop:

~
list length 8517
11125.37 VCL_return deliver
5562.96 Begin sess @ HTTP/1
5562.78 RespStatus 200
5562.78 RespReason OK
5562.78 VCL_call HASH
5562.78 RespProtocol HTTP/1.1
5562.78 VCL_call DELIVER
5562.78 VCL_return lookup
5562.78 RespHeader Server: nginx/1.19.0
5562.78 RespHeader Connection: close
5562.78 RespHeader X-Powered-By: PHP/7.4.7
5562.78 RespHeader Accept-Ranges: bytes
5562.78 RegHeader Accept-Encoding: gzip
5562.78 RespHeader Date: Wed, 02 Dec 2020 16:23:15 GMT
5562.78 RespHeader Via: 1.1 varnish (Varnish/6.0)
5562.78 RespHeader Cache-Control: public ,max-age=100
5562.78 RespHeader Content-Type: text/html; charset=UTF-8
5562.73 RegMethod GET

578

CHAPTER 7: VARNISH FOR OPERATIONS

5562.73 VCL_call RECV
5562.73 VCL_return hash

It comes as no surprise that the VCL_return deliver logline is the most popular. Giv-
en the traffic patterns of this example, it occurs about 77125.37 times per second.

We have to be honest here: this output is not very helpful without proper tag filtering
and VSL queries.

Here’s a more sensible varnishtop command:

[var‘nishtop -i requrl]

This command will list the most popular UR Ls. This could be the output:

list length 3

31.67 ReqURL /contact
24.33 ReqURL /products
8.50 ReqURL /

This output shows that the /contact page is the most popular one with an average of
31.67 requests per second.

Other questions that may be answered with varnishtop are:

¢ Which URLs cause the most cache misses?
¢ Which URLs cause the most cache bypasses?
* What are the most popular uncacheable objects?

¢ What are the most consumed pages that take the origin more than two seconds to
generate?

* Which versions of HT TP are the most popular?
* Whatis the ratio between HT'TP and HTTPS requests?

And these questions are answered by the following varnishtop commands:

varnishtop -i ReqUrl -q "VCL_call eq ‘MISS’"
varnishtop -i ReqUrl -q "VCL_return eq €pass
varnishtop -i BeReqUrl -q "TTL[6] eq €‘uncacheable’"
varnishtop -i BeReqUrl -q "Timestamp:Beresp[3] > 2.0"
varnishtop -i RespProtocol

varnishtop -I Begin:sess

FX

579

CHAPTER 7: VARNISH FOR OPERATIONS

We won’t be showing the output for the commands where only the ReqUrl or BeReq-
Url are used because that output is very predictable.

However, we am going to show some output for the last three commands.

Here’s the output you get when you want to figure out what the most popular HTTP
version is:

list length 2
310.29 RespProtocol HTTP/1.1
19.56 RespProtocol HTTP/2.0

As you can see, the test setup received a lot more HTTP/1.1 requests than HTTP/2.0 re-
quests.

As far as HT'TPversus HTTPS is concerned, you have to interpret the following output
the right way:

list length 2

234.25 Begin sess @ HTTP/1
49.89 Begin sess @ PROXY

The sess @ HTTP/1 log line represents straightforward H7TP requests that were re-
ceived via a standard HT TP listener. Because HTTPS was terminated via Hitch and sent
over the PROXY protocol, the sess @ PROXY log line represents H7TPS traffic.

Not that straightforward, admittedly. An easier way is to inject custom logging infor-
mation, as illustrated below:

vcl 4.1;

import proxy;
import std;

sub vcl_recv {
if(proxy.is_ssl()) {
std.log("scheme: HTTPS");
} else {
std.log("scheme: HTTP");

}

580

CHAPTER 7: VARNISH FOR OPERATIONS

We can log the URL scheme using std.log() and use the scheme prefix for filtering.

This would result in the following varnishtop command:

[var‘nishtop -I VCL_Log:scheme]

And finally, we would get some sensible output:

list length 2

16.49 VCL_Log scheme: HTTPS
11.36 VCL_Log scheme: HTTP

On Varnish Enterprise such custom logging is even required because native TLS doesn’t
use the PROXY protocol. There is no way to easily distinguish HT7TP from HTTPS via
Begin:sess.

We can take our vmod_proxy example and refactor it for native TLS purposes:

vcl 4.1;

import tls;
import std;

sub vcl_recv {
if(tls.is_tls()) {
std.log("scheme: HTTPS");
} else {
std.log("scheme: HTTP");
}
}
_ J

This would allow us to use the same varnishtop -I VCL_Log:scheme command and
get the same type of output.

7.8.9 Running varnishncsa as a service

If you install Varnish via packages, not only is there a systemd unit file for varnishd,
there’s also one for varnishncsa.

It’s located in /1ib/systemd/system/varnishncsa.service and looks like this:

581

CHAPTER 7: VARNISH FOR OPERATIONS

[Unit]
Description=Varnish Cache HTTP accelerator NCSA logging daemon
After=varnish.service

[Service]
RuntimeDirectory=varnishncsa
Type=forking
User=varnishlog
Group=varnish

ExecStart=/usr/bin/varnishncsa -a -w /var/log/varnish/varnishncsa.log
-D
ExecReload=/bin/kill -HUP $MAINPID

[Install]

WantedBy=multi-user.target
- J

The following varnishncsa command runs:

The fact that the -D option is used, means varnishncsa is daemonized to run in the
background. You are basically running varnishncsa as a service. The service is man-
aged by systemd.

However, the service is not active by default. Run the following commands to enable
and start the varnishncsa service:

sudo systemctl enable varnishncsa
sudo systemctl start varnishncsa

You’ll find the logs in /var/log/varnish/varnishncsa.log. The logrotate service
will ensure that the logs are properly rotated, based on the /etc/logrotate.d/var-
nish configuration.

When log rotation is due, the systemctl reload varnishncsa.service will be
called via logrotate. As you can see, the varnishncsa.service file handles reloads
using the following command:

[/bin/kill -HUP $MAINPID]

And this brings us back to the SIGHUP signal that varnishncsa uses to release and re-
open the log file.

Without further adjustments to the varnishncsa.service file, the standard log for-
mat will be used.

582

CHAPTER 7: VARNISH FOR OPERATIONS

Please beware of using custom formats in varnishncsa.service. Please note that
systemd also uses percent % expansion in unit files. If you’re changing the format via
the -F option, you need to double the percent signs in your format string.

For example the default format would look like this:

[—F %xh %HL %%u %Kt "%%r" %k%s %%b "%%{Referer}i" "%%{User-agent}i"’]

Alternatively you can read the format from a file using the -f option in your varnish-
ncsa command.

Editing the service to modify the format can be done using the following command:

[sudo systemctl edit --full varnishncsa.service]

After having added a -F or -f option, and after having modified the output format,
don’t forget to restart the service using the following command:

[sudo systemctl restart varnishncsa.service]

(")
Editing the unit file via systemctl edit results in a symlink of the unit file being

created in /etc/systemd/system. You can also edit that file directly or create the

symlink directly instead of using sudo systemctl edit --full varnishncsa.
service. However, don’ forget to call sudo systemctl daemon-reload before
restarting your service.

- J

By copying the varnishncsa.service and giving it another name, you can run other
varnishncsa services that may include custom formatting and VSL gueries. However,
don’t forget to update /etc/logrotate.d/varnish with the location and log-rotation
scenario for those services, otherwise you might run out of disk space.

7.8.10 Why wasn't this page served from cache?

To us, varnishlog is an indispensable tool.

You can set up Varnish and properly configure it. You can make sure your origin appli-
cation sends the right HTTP headers to control the behavior of Varnish. You can even
tailor the behavior of Varnish to your exact needs by writing VCL.

583

CHAPTER 7: VARNISH FOR OPERATIONS

But how do you know your content delivery strategy is performing well? VSL, and more
specifically, varnishlog can answer that question in great detail. Let’s approach this
using the built-in VCL and ask ourselves a very common question:

[Why wasn’t this page served from cache? j

You could list all transactions that resulted in a pass. The following command will help
you with that:

varnishlog -i ReqUrl -i ReqMethod -i RegProtocol -I ReqHeader:Host \
-I ReqgHeader:Cookie -I RegHeader:Authorization \
-1 VCL_call -i VCL_return \
-q "VCL_call eq €PASS’"

You could also be looking at a specific URL and ask yourself the same question:

varnishlog -i ReqUrl -i RegMethod -i RegProtocol -I RegHeader:Host \
-I RegHeader:Cookie -I RegHeader:Authorization \
-i VCL_call -i VCL_return \
-q "ReqUrl eq /°"

Let’s cover the various buzlt-in VCL scenarios, and show how the varnishlog output
answers our question.

[Remember: these decisions are made within the vcl_recv subroutine. j

Because it was a POST request

Based on the following output, we can conclude that http://localhost/ wasn’t served
from cache because it was a POST call:

()
* << Request >> 2
- RegMethod POST
- ReqURL /
- RegProtocol HTTP/1.1
- RegHeader Host: localhost
- VCL_call RECV
= VCL_return pass
= VCL_call HASH
- VCL_return lookup

584

CHAPTER 7: VARNISH FOR OPERATIONS

- VCL_call PASS

- VCL_return fetch

- VCL_call DELIVER
- VCL_return deliver

Remember, only GET and HEAD requests are cached in the buzlt-in VCL.

Because the request contained a cookie

The following output shows that the page wasn’t served from cache because the request
contained a cookie:

()
* << Request >> 3
- RegMethod GET
- ReqURL /
- RegProtocol HTTP/1.1
- RegHeader Host: localhost
- RegHeader Cookie: lang=en
- VCL_call RECV
= VCL_return pass
= VCL_call HASH
- VCL_return lookup
- VCL_call PASS
- VCL_return fetch
- VCL_call DELIVER
- VCL_return deliver
g J

The built-in VCL performs a pass when cookzes appear in the request.

In situations where regsub(), regsuball(), cookie.delete(), cookie.filter(),
cookie.keep(), cookieplus.delete(), or cookieplus.keep() are used to remove or
keep specific cookies, it is possible that an unexpected cookie slipped through the cracks
and caused an unexpected pass. VSL helps you figure this out.

Because an authorization header was passed

The built-in VCL also doesn’t cache when an Authorization header is part of the re-
quest.

You can easily spot it in the output below:

585

CHAPTER 7: VARNISH FOR OPERATIONS

KE* << Request >> 98327
- RegMethod GET
- ReqURL /
- RegProtocol HTTP/1.1
- RegHeader Host: localhost
- RegHeader Authorization: Basic dGVzdDp@ZXNe
- VCL_call RECV
= VCL_return pass
= VCL_call HASH
- VCL_return lookup
= VCL_call PASS
- VCL_return fetch
- VCL_call DELIVER
- VCL_return deliver

g

Because we couldn’t recognize the request method

There is still another reason why an object wasn’t served from cache. This situation
doesn’t result in a pass, but instead results in a pzpe.

This occurs when an unrecognized request method is used. return(pipe); is called
from within the V'CL, and what was supposed to be an HTTP request is simply treated
as a TCP byte stream.

To track these kinds of requests, we need to slightly modify our varnishlog com-
mand:

varnishlog -c -i ReqUrl -i RegMethod -i ReqProtocol -I ReqgHeader:Host
\

-I RegHeader:Cookie -I RegHeader:Authorization \

-i VCL_call -i VCL_return \

-q "VCL_return eq ‘pipe’"

Asyou cansee VCL_return eq ‘pipe’ isour VSL guery, and this is the result:

4)
* << Request >> 20
= RegMethod FOO
- ReqURL /
- RegProtocol HTTP/1.1
- RegHeader Host: localhost
= VCL_call RECV
- VCL_return pipe
- VCL_call HASH
- VCL_return lookup
_ J

586

CHAPTER 7: VARNISH FOR OPERATIONS

Because our request method was FOO, the built-in VCL didn’t exactly know what to do
with that and decided to pzpe the request directly to the backend.

7.8.11 Why wasn't this page stored in cache?

Whereas serving objects from cache is a dient-side responsibility, storing objects in cache
is a backend responsibility. varnishlog also has the capabilities of explaining why cer-
tain pages weren’t stored in cache.

We will again base ourselves on the criteria of the buzlt-in VCL. If you remember the
flow correctly, you’ll know that these decisions are made in the vcl_backend_re-
sponse subroutine.

This is the command we will use to figure out what’s going on:

varnishlog -g request -b -i BeReqUrl -I BerespHeader:Cache-Control \
-I BerespHeader:Expires -I BerespHeader:Vary -I BerespHead-
er:Set-Cookie \
-I BerespHeader:Surrogate-Control -i TTL -q "TTL[6] eq f‘uncache-
able’"

It’s quite lengthy, but here’s a breakdown for you:

* Transactions are grouped by request (-g request).

* We’re only displaying backend transactions (-b).

* The backend request URL is included in the output (-1 BeRequrl).

* We want to see the value of the Cache-Control header (-I BerespHeader:-
Cache-Control).

* We want to see the value of the Expires header (-I BerespHeader:Expires).

* We want to see the value of the Surrogate-Control header (-I BerespHeader:-
Surrogate-Control).

¢ The Vary header should also be displayed (-I BerespHeader:Vary).

¢ The Set-Cookie header is also an important part of the output (-I BerespHead-
er:Set-Cookie).

* The TTL tag will help us understand what 77L is chosen (-i TTL).

e Thatsame TTL tag is used in the VSL query to only selected uncacheable responses
(-q "TTL[6] eq ‘uncacheable’").

587

CHAPTER 7: VARNISH FOR OPERATIONS

Lero TTL

The first case we’re going to examine is a gzero TTL. This means that the origin returned

a Cache-Control header, or an Expires header, which set the TTL to zero.

These are the cases that could trigger this:

Cache-Control: max-age=0
Cache-Control: s-maxage=0
Expires: Thu, 1 Jan 1970 12:00:00 GMT

A zero TTL can also be setin VCL:

[set beresp.ttl = Os;

Let’s have a look at some VSL output that shows this in the logs:

** << BeReq >> 24

-- BereqURL /

-- BerespHeader Cache-Control: max-age=0

-- TTL RFC © 10 0 1607071591 1607071591 1607071590 0 ©
cacheable

== L VCL © 10 3600 1607071591 cacheable

-- TTL VCL 120 10 3600 1607071591 cacheable

-- TTL VCL 120 10 3600 1607071591 uncacheable

g

J

The Cache-Control header has a max-age that is zero. This is enough to set beresp.
ttl to zero seconds.

The first occurrence of the TTL tag shows this:

* The RFC value indicates the TTL was set via headers.

e The TTL field is @.

¢ The second to last field, which represents the max-age value, is also 0.

Although it is considered cacheable at first, the buzlt-in VCL will set it to uncacheable,
which triggers bit-for-miss behavior. And as you can see the 77L is set to 120.

When the s-maxage is set to zero, even though max-age equals 100, the same thing
happens:

588

CHAPTER 7: VARNISH FOR OPERATIONS

(N
** << BeReq >> 32783
-- BereqURL /uncacheable
-- BerespHeader Cache-Control: max-age=100 s-maxage=0
-- TTL RFC © 10 @ 1607072077 1607072077 1607072077 © ©
cacheable
-- TTL VCL © 10 3600 1607072077 cacheable
-- TTL VCL 120 10 3600 1607072077 cacheable
-- TTL VCL 120 10 3600 1607072077 uncacheable
_ J

The same thing happens when the Expires header is set to the past, but the
Cache-Control header has cacheable max-age and s-maxage values:

¥ << BeReq >> 32798

-- BereqURL /

-- BerespHeader Cache-Control: max-age=100 s-maxage=100
-- BerespHeader Expires: Thu, 1 Jan 1970 12:00:00 GMT

-- TTL RFC © 10 © 1607072365 1607072365 1607072364 0 O
cacheable
-- TTL VCL © 10 3600 1607072365 cacheable
-- TTL VCL 120 10 3600 1607072365 cacheable
-- TTL VCL 120 10 3600 1607072365 uncacheable
\§ J

Private, no-cache, no-store

And even if max-age is greater than zero, it is still possible that Cache-Control seman-
tics prevent the object from being cached.

Here’s an example where private results in the object becoming uncacheable:

()
** << BeReq >> 44
-- BereqURL /
-- BerespHeader Cache-Control: private, max-age=3600
-- TTL RFC 3600 10 © 1607072499 1607072499 1607072498 ©
3600 cacheable
-- TTL VCL 3600 10 3600 1607072499 cacheable
-- TTL VCL 120 10 3600 1607072499 cacheable
-- TTL VCL 120 10 3600 1607072499 uncacheable
- J

You see in the first occurrence of the TTL tag that the second-to-last field is set to 3600.
This corresponds to the max-age value from the Cache-Control header. But because
of the private keyword, the object is going in hit-for-miss mode for the next two min-
utes.

589

CHAPTER 7: VARNISH FOR OPERATIONS

Either private, no-cache, or no-store will cause this to happen. Here’s an example
where all three are used:

4)
¥ << BeReq >> 32801
-- BereqURL /
-- BerespHeader Cache-Control: private, no-cache, no-store
-- TTL RFC 120 10 0 1607072684 1607072684 1607072683 0 ©
cacheable
-- TTL VCL 120 10 3600 1607072684 cacheable
-- TTL VCL 120 10 3600 1607072684 cacheable
-- TTL VCL 120 10 3600 1607072684 uncacheable
\§ J

Surrogate-control no-store

The Surrogate-Control header is also an important one. When it contains no-store,
it takes precedence over any valid Cache-Control header in the buzlt-in VCL.

You can see for yourself in the following VSL output:

** << BeReq >> 32810

-- BereqURL /

-- BerespHeader Cache-Control: public ,max-age=100
-- BerespHeader Surrogate-Control: no-store

-- TTL RFC 100 10 0 1607073237 1607073237 1607073237 ©
100 cacheable
-- TTL VCL 100 10 3600 1607073237 cacheable
-- TTL VCL 120 10 3600 1607073237 cacheable
-- TTL VCL 120 10 3600 1607073237 uncacheable
_ J

EventhoughtheRFC 100 10 © 1607073237 1607073237 1607073237 © 100 ca-
cheable line indicates that the response is cacheable because of the Cache-Control
value, it eventually is deemed uncacheable because of the Surrogate-Control: no-
store header.

Setting a cookie

Setting a cookie implies a state change. The built-in VCL takes this into account and
prevents such objects from being stored in cache.

As you can see in the following VSL output, despite the Cache-Control header that re-
sulted in a T7TL of 100 seconds, the object is still considered uncacheable. The Set-Cook-
ie header is to blame for that:

590

CHAPTER 7: VARNISH FOR OPERATIONS

** << BeReq >> 59

-- BereqURL /1

-- BerespHeader Cache-Control: public ,max-age=100

-- BerespHeader Set-Cookie: id=098f6bcd4621d373cade4e832627b4f6

-- TTL RFC 100 10 0 1607073445 1607073445 1607073444 0
100 cacheable
-- TTL VCL 100 10 3600 1607073445 cacheable
-- TTL VCL 120 10 3600 1607073445 cacheable
-- TTL VCL 120 10 3600 1607073445 uncacheable
N\ J

Wildcard variations

There’s still one condition that would trigger hit-for-miss behavior that we need to cov-
er: wildcard variations.

As you can see in the output below, the response contains a Vary: * header:

¥ << BeReq >> 32813

-- BereqURL /12

-- BerespHeader Cache-Control: public ,max-age=100
-- BerespHeader Vary: *

-- TTL RFC 100 10 0 1607074172 1607074172 1607074172 ©
100 cacheable
-- TTL VCL 100 10 3600 1607074172 cacheable
-- TTL VCL 120 10 3600 1607074172 cacheable
-- TTL VCL 120 10 3600 1607074172 uncacheable
_ J

By setting a variation on every header, which is represented by the asterisk, your hit rate
is going to fall oft a cliff. The buzlt-in VCL considers this to be an uncacheable case,
which is reflected in the last occurrence of the TTL tag.

1.8.12 The significance of VSL

We’ve reached the end of this section, and you must admit that it was quite in-depth.
That is because VSL should be a crucial part of your debugging strategy.

Although monitoring counters via varnishstat can give you an indication of what is
g g givey

going on, varnishlog, varnishncsa, and varnishtop allow you to test some of these
assumptions or conclusions.

Please also use V'SL when setting up Varnish and when writing V'CL. Sometimes your
origin behaves differently than you would expect. The logs will help you figure out

what’s going on and may result in 'CL changes.

591

CHAPTER 7: VARNISH FOR OPERATIONS

And finally, we would advise anyone to install Varnish and the VSL tools, even if you’re
not planning to cache any HT TP responses. Just the fact of having such an in-depth tool
with so many filtering capabilities is an asset on its own.

592

CHAPTER 7: VARNISH FOR OPERATIONS

19 Security

As the significance of online services increases, and as security risks increase at the same
time, it is crucial to have the necessary security measures in place.

Widely covered vulnerabilities like Heartbleed, Shellshock, Spectre, and Meltdown were a
wakeup call for the IT industry and changed the security landscape.

In this section we’ll cover security from two angles:
e Prevention: how do we reduce attack vectors?
* Mitigation: how do we reduce the damage if we still manage to get hacked?

Because Varnish operates at the edge, it is our first line of defense, but also the first com-
ponent that will be under attack.

Although caches are designed to store large amounts of data in a tightly packed space,
and although these systems prioritize performance, Varnish itself does an exceptional
job in defensive coding practices, secure design, and maintaining cache integrity.

But that doesn’t mean we shouldn’t pay attention to security and potential risks. Let’s
look at how we can prevent hacking and mitigate damage.

79.1 Firewalling

The very first thing we do is to shut down all ports that are not essential. This is a pre-
ventive measure.

Varnish will typically operate on port 80. If native-TLLS is active, port 443 also needs to
be accessible. The same applies if Hizch is used for TLS termination.

There are situations where Varnish sits behind a load balancer. In that case, the load
balancer will be exposed to the outside world, and Varnish isn’t.

Although port 80 and 443 will be exposed to the outside world, there is of course the
access to the Varnish CLI

The Varnish CLI, which runs on port 6082 by default, should only be accessed by IP
addresses or IP ranges that are entitled to access it.

In most cases these will be private IP addresses or ranges that aren’t accessible via the
internet. In that case it makes sense to set the -T parameter to only listen on an private
IP address within the range of the management network.

593

CHAPTER 7: VARNISH FOR OPERATIONS

79.2 Cache encryption

In the unlikely event that someone can hack the varnishd process, cached data can
be accessed, and maybe even modified. Depending on the sensitivity of that data, this
might result in a serious security risk.

A possible mitigation strategy for Varnish Enterprise users is to use Total Encryption.

Total Encryption is a Varnish Enterprise feature, written in VCL, that leverages vmod_

crypto.

Using Total Encryption for non-persistent memory caches only requires the following
include:

[include "total-encryption/random_key.vcl";]

The files you include are automatically shipped with Varnish Enterprise.

Objects are encrypted using an AES256 encryption cipher with a dual-key algorithm for
extra security.

e Thefirstkey is 128-bit randomly generated number that is stored in kernel space for
the duration of varnishd’s lifetime.

* The second key contains the reguest hash and isn’t stored anywhere.

These two keys are used to create an HMAC signature that represents our master key.
The random number is the key of our HMAC signing object, and the request hash is the
value that is signed.

The HMAC signature is generated using the Linux Kernel Crypto API. This means that
values are never stored in user space and are kept inside the Linux kernel. When var-
nishd restarts, a new master key is generated.

Once we have the master key, we can start encrypting. Behind the scenes the crypto.
aes_encrypt_response() and crypto.aes_decrypt_response() functions are
used to encrypt and decrypt content. Encryption happensinavcl_backend_re-
sponse hook, whereas the decryption happens in a vcl_deliver hook.

Not only does our AES256 encryption use our dual-key algorithm, we also add a ran-
domly generated salt for extra security.

Total Encryption doesn’t really care whether or not you passed the right master key. It
uses whatever key is presented, and if it cannot successfully decrypt the content, gar-

bage is returned. So even if you tamper with the settings, the only way to successfully
decrypt an object is if you know the request hash, the master key, and the salt.

594

CHAPTER 7: VARNISH FOR OPERATIONS

And even if you succeed, you can only decrypt that single object because every object
uses a different key.

Encrypting persisted cache objects
For persisted objects, our dual-key algorithm is implemented slightly differently.

Because the persisted cache can outlive the varnishd process, we cannot rely on the
random key to still be the same for that object.

The solution is to use a local secret key that is stored on disk. We still use the reguest hash
for the second key.

Here’s a safe way to generate the local key:

$ cat /dev/urandom | head -c 1024 > /etc/varnish/disk_secret
$ sudo chmod 600 /etc/varnish/disk_secret
$ sudo chown root: /etc/varnish/disk_secret

As you can see, the key is long enough to be secure, and the permissions are tightly
locked down. The end result is the /etc/varnish/disk_secret file.

Varnish Enterprise uses the -E runtime parameter to take in the secret key that is used
by the crypto.secret() function to expose it to VCL.

Again, the key is not stored inside the varnishd process but is kept in the Linux kernel.

Here’s an example of the -E runtime parameter:

varnishd -a :80 -f /etc/varnish/default.vcl -E /et/varnish/disk_se-
cret

Whereas memory caches include the total-encryption/random_key.vcl file, this is
how persisted caches should enable Total Encryption:

[include "total-encryption/secret_key.vcl";]

The rest of the behavior is identical and will ensure that persisted objects can also be

encrypted and decrypted.

595

CHAPTER 7: VARNISH FOR OPERATIONS

Performance impact

Varnish Total Encryption performance is on par with any other AES implementation.
AES calculations are hardware accelerated and are quite CPU-intensive.

We performed some benchmarks, and here are some performance results with and
without Total Encryption:

Requests Bandwidth Response time
Unencrypted 23068 17.61 Gbit 0.084 ms
Total Encryption 11353 8.68 Gbit 0.135 ms
Overhead 50.78% 50.77% 61.68%

As you can derive from the table, there is a 50% performance overhead when using Total
Encryption. These tests were run on a four-core server with 100 KB objects.

Because the performance decrease is related to the CPU, adding more CPUs will bring
your performance back to original levels.

Skipping encryption

Primarily because of the performance overhead, there might be situations where you
don’t want to encrypt certain objects.

The crypto.aes_skip_response() will make sure the current object is not encrypt-
ed. The example below uses this function to skip encryption on video files:

\
vcl 4.1;
sub vcl_backend_response {
if (beresp.http.Content-Type ~ "video") {
crypto.aes_skip_response();
}
}
_ J

If you're certain that some objects don’t contain any sensitive data, and if you suspect
these objects are quite big, skipping them might be a good decision.

Some objects are automatically skipped: if it turns out the object contains an HTTP
304 response, it will be skipped. Because if you remember, an HTTP 304 response has
no response body, so there’s no need to encrypt it.

596

VARNISH

Choosing an alternate encryption cipher

The standard AES implementation uses cipher block chaining (CBC). If you want to
switch to propagating cipher block chaining (PCBC), you can set it by modifying the al-

gorithm configuration setting in the te_opts key-value store.

Here’s how you can do this:

sub vcl _init {
te_opts.set("algorithm", "pcbc(aes)");
}

Header encryption

Although Total Encryption encrypts the reponse body of an HTTP response, it doesn’t
encrypt the headers.

vmod_crypto does have the required methods to achieve this. However, you’ll have to
encrypt each header manually, and separately, as you can see in the example below:

~

sub vcl_backend_response {
set beresp.http.Content-Type = crypto.hex_encode(crypto.aes_en-
crypt(beresp.http.Content-Type));

sub vcl _deliver {
if (resp.http.Content-Type != "") {
set resp.http.Content-Type = crypto.aes_decrypt(crypto.hex_
decode(resp.http.Content-Type));
}
}
_ _J

79.3 Jailing

Varnish uses jails to reduce the privileges of the Varnish processes.

Usually, the varnishd process will be run with root privileges. It uses these privileges
to load the files it needs for its operations.

Once that has happened, the jailing mechanism kicks in, and varnishd switches to an
alternative user. This is the varnish user by default.

The worker process that is spawned will run as the vcache user.

It is possible to change these values via the -j runtime parameter.

597

CHAPTER 7: VARNISH FOR OPERATIONS

Here’s an example where the management process uses the varnish-mgt user, and the
worker process uses the varnish-wrk user:

varnishd -a :80 -f /etc/varnish/default.vcl -j unix,user=var-
nish-mgt,workuser=varnishwrk

It is even possible to define a group to which the varnishd process and subprocesses
belong. This is done using the ccgroup configuration option that is also part of the -j
runtime parameter.

Here’s an example:

varnishd -a :80 -f /etc/varnish/default.vcl \
-j unix,user=varnish-mgtccgroup=varnish-grp,workuser=varnish-wrk

7194 Making runtime parameters read-only

varnishd parameters that are set via the -p option can be overridden using the param.
set command in varnishadm.

Some of these parameters may result in privilege escalation. This can be especially dan-
gerous if remote CLI access is available, and the CLI client gets compromised.

The -r option for varnishd can make certain parameters read-only.

Here’s an example where some sensitive runtime parameters are made read-only:

varnishd -a :80 -f /etc/varnish/default.vcl -r "cc_command, vcc_al-
low_inline_c, vmod_path"

When we then try to change cc_command via varnishadm, we get the following mes-
sage:

$ varnishadm param.set cc_command "bla"
parameter "cc_command" is protected.
Command failed with error code 107

719.5 VCL security

When you perform tasks in V’CL that are restricted to authorized hosts or users, you
should write security logic in your VCL file.

598

CHAPTER 7: VARNISH FOR OPERATIONS

We’ve already covered this in chapter 6 when we talked about purging and banning.

Here’s the very first example we used in that chapter, and it contains an ACL to prohibit
unauthorized access:

~
vcl 4.1;
acl purge {
"localhost”;
"192.168.55.0"/24;
}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
}
return (purge);
}
}
_ J

There might even be other parts of your web platform that should only be accessible for
specific IP addresses, ranges, or hostnames.

Another way to secure your VCL, or maybe even an additional way, is to add an authen-
tication layer. In this case Varnish would serve as an authentication gateway.

We won’t go into much detail about this because it will be covered in the next chapter.
Let’s just throw in a simple example where basic authentication is used on top of the
ACL to protect purges:

vcl 4.1;

acl purge {
"localhost";
"192.168.55.0"/24;

}
sub vcl_recv {
if (req.method == "PURGE") {
if (!client.ip ~ purge) {
return(synth(405));
¥

if (! req.http.Authorization ~ "Basic Zm9vOmJhcg==") {
return(synth(401, "Authentication required"));

}

unset req.http.Authorization;

599

CHAPTER 7: VARNISH FOR OPERATIONS

return (purge);

}

sub vcl_synth {
if (resp.status == 401) {
set resp.status = 401;
set resp.http.WWW-Authenticate = "Basic";
return(deliver);
}
}
_ J

So not only does the client need to execute the purge from localhost or the
192.168.55.0/24 IP range, the client also needs to log in with username foo and pass-
word bar.

[But again: more about authentication in the next chapter.]

19.6 TLS

Remember the Heartbleed security vulnerability? The bug in the OpenSSL library al-
lowed memory to be leaked and exposed sensitive data.

Although this vulnerability should no longer affect software that uses the updated
OpenSSL version, it should serve as a warning. Varnish Enterprise uses OpenSSL for its
native-TLS feature. Hitch also uses OpenSSL.

Although we really have no reason to suspect similar vulnerabilities to be present, we
can put mitigating measures in place by splitting up caching and cryptography into
separate services.

It sounds quite mysterious, but the truth is that it just involves using Htch because
Hitch is a separate service that runs under a different user.

Here’s an example where the socket is placed under /var/run/varnish.sock, owned
by the varnish user and the varnish group. The file has 660 permissions, which only
grants read and write access to the varnish user and users that are in the varnish

group:

varnishd -a uds=/var/run/varnish.sock,PROXY,user=varnish,group=var-
nish,mode=660 \
-a http=:80 -f /etc/varnish/default.vcl

600

CHAPTER 7: VARNISH FOR OPERATIONS

Just make sure the following Hitch configuration directives are set:

backend = "/var/run/varnish.sock"
user = "hitch"
group = "varnish"

write-proxy-v2 = on

The fact that the hitch process is owned by the varnish group is what allows it to ac-
cess /var/run/varnish.sock.

In the unlikely event that your Hitch setup is hacked, only this part of the memory
would leak. Varnish itself, which is a separate process, running under a separate user,
would remain secure.

19.7 Cache busting

Cache busting is a type of attack that involves deliberately causing cache misses to bring
down the origin server.

It either happens by calling random UR Ls or by attaching random query strings to an
otherwise cached object.

Regardless of the attack specifics, the goal is to send as much traffic to the origin as pos-
sible in an attempt to bring it down.

There are measures we can take to prevent certain types of cache busting as well as mea-
sures to mitigate the impact of cache busting.

Let’s have a look at the various options:

Query string filtering

Quite often, cache busting attacks use random query string parameters to cause cache
misses. While we cannot completely prevent this from happening, we can at least make
sure that we only allow the query string parameters we need.

To enforce this, we are using vmod_urlplus, an enterprise-only VAOD that has the
capability of throwing out unwanted query string parameters.

Imagine that the attacker calls tens of thousands of UR Ls that look like this:

601

CHAPTER 7: VARNISH FOR OPERATIONS

http://example.com/?DA8OF1C6-2244-4F48-82FF-807445621783
http://example.com/?59FEF405-3292-4326-A214-53A5681D3E24
http://example.com/?BFD51681-CFE@-4C4B-A276-FB638F5FCB82
http://example.com/?DE5B3B6D-AF08-435D-B361-C5235460418E
http://example.com/?FEGB8B92-E163-4276-B12B-AF9A2B355ED6
http://example.com/?B4D05958-DOA9-4554-A64D-63D6FDAF16C5
http://example.com/?3F3915C5-97B5-4C03-ACB8-BF4FCA63D783
http://example.com/?AF86F196-26D6-4FFC-8A2D-7B5040F6B903
http://example.com/?EA72A80C-DDDB-45AF-BCE1-19357C8484DA
- J

The urlplus.keep() and urlplus.keep_regex() functions will help us get rid of this
garbage while still keeping important query string parameters. Here’s the VCL code:

~
vcl 4.1;
import urlplus;
sub vcl _recv {
urlplus.query_keep("id");
urlplus.query_keep("sort");
urlplus.query_keep_regex("product_*");
urlplus.write();
}
_ J

This example will only keep the following query string parameters while removing all

others:
o id
e sort

e All query string parameters that start with product_

Once the filtering is complete, urlplus.write() will not only write back the value to
req.url, it will also sort the query string alphabetically.

The sorting feature is great because it prevents cache busting when the attacker reorders
the query string parameters.

With this V’CL code in place for query string filtering, we could call /?id=1&-
foo=bar&sort=asc&product_category=shoes&xyz=123 and end up with the fol-
lowing output:

602

CHAPTER 7: VARNISH FOR OPERATIONS

()
varnishlog -g request -i ReqUrl
o << Request >> 3964951
- ReqURL /?id=1&foo=bar&sort=asc&product_catego-
ry=shoes&xyz=123
- ReqURL /?foo=bar&id=1&product_category=shoes&sort=as-
c&xyz=123
- ReqURL /?1d=1&product_category=shoes&sort=asc
¥ << BeReq >> 3964952

- J

e The first ReqURL tag displays the input URL.
* The second ReqURL tag shows the filtered version.
* The third ReqURL tag returns the sorted version.

If you're not using Varnish Enterprise, you can achieve the same result with the reg-
suball() function, but it will require writing potentially complex regular expressions.

You may also remember the std.querystring() function. This function is readily
available in Varnish Cache and will at least take care of the query string sorting.

Don’t forget that query string filtering only works for names, not for values. You can
still add random values to the id and cause cache busting.

If you want to protect the values of your query string parameters, you can check their
values, as illustrated here:

if(urlplus.query_get("id") !~ "~[6-9]{1,9}$") {
return(synth(400));
}

So at least you narrow the values of id down to numeric ones. But this still leaves us
with nine digits to abuse, which might be enough to take down the origin.

Max connections

It’s safe to say that query string filtering doesn’t ofter a foolproof solution to prevent
cache busting.

If we can’t fully prevent this from happening, we can focus on reducing the impact.

By setting the .max_connections backend setting, we can control the maximum num-
ber of open connections to the origin server.

Here’s an example where we allow a maximum of 100 connections to the origin server:

603

CHAPTER 7: VARNISH FOR OPERATIONS

~N
vcl 4.1;
backend default {
.host = "origin.example.com";
.port = "80";
.max_connections = 100;
}
- J

Setting .max_connections is always a good idea, not just to prevent attacks. But it is
important to know that once the limit is reached, requests will return an HT7TP 503
error because the backend is currently not available to those requests.

Unfortunately this is not an elegant solution because you also punish regular visitors.
One could even say that the H7TP 503 is just as bad as an outage.

Backend throttling

A better mitigation strategy is to punish the culprit. We can use the vmod_vsthrottle
to make this happen.

Previous vmod_vsthrottle examples featured rate limiting at the request level. This
prevents users from sending too many requests within a given timeframe.

In this case, we’re moving the rate-limiting logic to the backend side of Varnish: we’ll
temporarily block access to Varnish for users that have caused too many backend re-
quests within a given timeframe.

Here’s an example:

~
vcl 4.1;
import vsthrottle;
sub vcl_backend_fetch {
if (vsthrottle.is_denied(client.ip, 100, 1s, 1m)) {
return(error(429, "Too Many Requests"));
}
}
g J

If the client, identified by its client IP address makes more than 100 requests per second
that result in a cache miss, access is prohibited for one minute.

604

CHAPTER 7: VARNISH FOR OPERATIONS

Although vmod_vsthrottle is packaged with Varnish Enterprise, it is an open
source module that is part of the Varnish Software VMOD collection. We talked
about it in chapter 5 in case you forgot.

79.8 Slowloris attacks

Slowloris attacks are denial of service attacks that hold the connection open as long as
possible. The goal is to exhaust all available connections and cause new, valid connec-
tions to be refused.

Keeping the connection open is not good enough. Varnish has a timeout_idle run-
time parameter with a default value of five seconds, which closes the client connection if
it has been idle for five seconds.

Slowloris attacks are much smarter than that: they actually send partial requests, adding
data as slowly as possible, to prevent the timeout_idle from being triggered.

By tuning the idle_send_timeout, you can control how long Varnish waits in be-
tween individual pieces of received data. The default value is 60 seconds, which means
Varnish is willing to wait up to one minute in between every line of data being sent.

Luckily, there’s also the send_timeout runtime parameter with a standard value of 600
seconds. This parameter represents the total timeout. Basically a last byte timeout for the
request.

If you're suffering from slowloris attacks, you can tune these settings to mitigate the
impact.

799 Web application firewall

One can say that with the power of 'CL, and the way this allows you to intelligently
block unwanted requests, Varnish is really also a web application firewall (WAF).

However, writing the V'CL, doing the request inspection, and making sure you're pre-
pared for the next zero-day exploit, can be a lot of work.

To make things easier, and to transform Varnish into an actual WAFE, Varnish Enter-
prise offers a WAF add-on that leverages the ModSecurity library.

605

CHAPTER 7: VARNISH FOR OPERATIONS

Installing the Varnish WAF

If you have the right Varnish Enterprise subscription, you’ll have access to the package
repository that contains the varnish-plus-waf package.

The example below installs that package along with Varnish Enterprise itself. This ex-
ample is targeted at Red Hat, CentOS, and Fedora systems:

[sudo yum install varnish-plus varnish-plus-waf]

If you’re on a Debian or Ubuntu system, you’ll use the following command:

[sudo apt install varnish-plus varnish-plus-waf]

The ModSecurity library has ruleset definitions that are stored in separate files. You can
define your own rules, but you can also download the OWASP Core Rule Set (OWASP
CRS).

Here’s how you download these rules to your Varnish server:

[sudo get_owasp_crs]

The result is that a collection of files is placed in /etc/varnish/modsec/owasp-crs-
{VERSION_NUMBER}, which you can then load into vmod_waf.

In this case, this leads to the following result:

OWASP CRS VERSION v3.1.1 installed to /etc/varnish/modsec/owasp-
crs-v3.1.1

The vmod_waf API, and the complexity of the 174 Fis nicely abstracted by the in-
clude "waf.vcl" include.

Here’s how you can easily enable the IWAF:

vcl 4.1;
include "waf.vcl";

sub vcl_init {
varnish_waf.add_files("/etc/varnish/modsec/modsecurity.conf");
varnish_waf.add_files("/etc/varnish/modsec/owasp-crs-v3.1.1/
crs-setup.conf");
varnish_waf.add_files("/etc/varnish/modsec/owasp-crs-v3.1.1/
rules/*.conf");

}

606

CHAPTER 7: VARNISH FOR OPERATIONS

The varnish_waf.add_files() methods will load the various rulesets for the IWAF to
use.

Here’s an extract of the files inside the rules directory:

()
REQUEST-900-EXCLUSION-RULES-BEFORE-CRS. conf.example

REQUEST-901-INITIALIZATION.conf
REQUEST-903.9001-DRUPAL -EXCLUSION-RULES. conf
REQUEST-903.9002-WORDPRESS -EXCLUSION-RULES. conf
REQUEST-903.9003-NEXTCLOUD-EXCLUSION-RULES. conf
REQUEST-903.9004-DOKUWIKI-EXCLUSION-RULES. conf
REQUEST-903.9005-CPANEL -EXCLUSION-RULES. conf
REQUEST-905-COMMON-EXCEPTIONS. conf
REQUEST-910-IP-REPUTATION. conf
REQUEST-911-METHOD-ENFORCEMENT . conf
REQUEST-912-DOS-PROTECTION. conf
REQUEST-913-SCANNER-DETECTION. conf
REQUEST-920-PROTOCOL - ENFORCEMENT . conf
REQUEST-921-PROTOCOL -ATTACK. conf
REQUEST-930-APPLICATION-ATTACK-LFI.conf
REQUEST-931-APPLICATION-ATTACK-RFI.conf
REQUEST-932-APPLICATION-ATTACK-RCE.conf
REQUEST-933-APPLICATION-ATTACK-PHP.conf
REQUEST-941-APPLICATION-ATTACK-XSS.conf
REQUEST-942-APPLICATION-ATTACK-SQLI.conf
REQUEST-943-APPLICATION-ATTACK-SESSION-FIXATION.conf
REQUEST-944-APPLICATION-ATTACK-JAVA. conf
REQUEST-949-BLOCKING-EVALUATION. conf
RESPONSE-950-DATA-LEAKAGES. conf
RESPONSE-951-DATA-LEAKAGES-SQL . conf
RESPONSE-952-DATA-LEAKAGES-JAVA. conf
RESPONSE-953-DATA-LEAKAGES-PHP. conf
RESPONSE-954-DATA-LEAKAGES-IIS. conf
RESPONSE-959-BLOCKING-EVALUATION. conf
RESPONSE-980-CORRELATION. conf
RESPONSE-999-EXCLUSION-RULES-AFTER-CRS. conf.example
- J

SQL injections are a common way to take advantage of an application that uses a SQL
database. When input parameters are parsed in the SQL statement, and the input is
poorly secured, an attacker can inject malicious input in an attempt to retrieve data or
to modify the database.

Inside REQUEST-942-APPLICATION-ATTACK-SQLI.conf there are a variety of SQL-relat-
ed rules; here’s a specific one that detects attempts to run sleep() statements:

607

CHAPTER 7: VARNISH FOR OPERATIONS

~
SecRule REQUEST_COOKIES|!REQUEST_COOKIES:/_ _utm/|REQUEST_ COOKIES_
NAMES | ARGS_NAMES | ARGS | XML:/* "@rx (?i:sleep\(\s*?\d*?\s*?\)|bench-
mark\ (.*?\,.*?\))" \
"id:942160, \
phase:2,\
block,\
capture,\
t:none,t:urlDecodeUni,\
msg:’Detects blind sqli tests using sleep() or benchmark().’,\
logdata:’Matched Data: %{TX.0} found within %{MATCHED_VAR_NAME}:
%{MATCHED_VAR}’,\
tag:’application-multi’,\
tag:’language-multi’,\
tag:’platform-multi’,\
tag:’attack-sqli’,\
tag:’OWASP_CRS/WEB_ATTACK/SQL_INJECTION’,\
ver:’OWASP_CRS/3.1.1°,\
severity:’CRITICAL’,\
setvar:’tx.msg=%{rule.msg}’,\
setvar:’tx.sql_injection_score=+%{tx.critical_anomaly_score}’,\
setvar:’tx.anomaly score_pll=+%{tx.critical_anomaly_ score}’,\
setvar:’tx.%{rule.id}-OWASP_CRS/WEB_ATTACK/SQLI-%{MATCHED_VAR_
NAME }=%{tx.0}’"
_/
However, by default the WA F won’t block these kinds of requests because the SecRu-
leEngine DetectionOnly setting doesn’t allow this.
By setting SecRuleEngine onin /etc/varnish/modsec/modsecurity.conf, re-
quests matching any of the ModSecurity rules will be blocked.
Here’s the malicious request that injects sleep(10) into the request body of a POST
request:
curl -XPOST -d "sleep(10)" http://example.com
The VSL WAF tag reports the following:
(N

varnishlog -g request -i WAF
* << Request >> 5

¥ << BeReq >> 6

-- WAF proto: / POST HTTP/1.1

-- WAF RegHeaders: 8

-- WAF RegBody: 9

-- WAF LOG: [client 127.0.0.1] ModSecurity: Access de-

nied with code 403 (phase 2). Matched "Operator “Ge’ with parameter
*5° against variable *TX:ANOMALY_SCORE’ (Value: “1@°) [file "/etc/
varnish/modsec/owasp-crs-v3.1.1/rules/REQUEST-949-BLOCKING-EVALUA-

608

CHAPTER 7: VARNISH FOR OPERATIONS

TION.conf"] [line "8@"] [id "949110"] [rev ""] [msg "Inbound Anomaly
Score Exceeded (Total Score: 10)"] [data ""] [severity "2"] [ver ""]
[maturity "@"] [accuracy "@"] [tag "application-multi"] [tag "lan-
guage-multi"] [tag "platform-multi"] [tag "attack-generic"] [hostname
"127.0.0.1"] [uri "/"] [unique_id "161070346090.720057"] [ref ""]

Because we matched the security rule, the anomaly score increased and exceeded the
threshold. That’s why we get the Inbound Anomaly Score Exceeded message in the
output.

In the end, we received an HTTP/1.1 403 Forbidden response, preventing us from
impacting a potentially vulnerable origin server.

When using the Varnish WAF it is advisable to set the thread_pool_stack
runtime parameter to 96 KB. This can be done by adding -p thread_pool_
stack=96k to varnishd.

609

CHAPTER 7: VARNISH FOR OPERATIONS

7.10 Tuning Varnish

Out-of-the-box Varnish performs exceptionally well. But based on the available server
resources, based on your traffic patterns, and other criteria, you might not get the most
out of Varnish.

It’s also entirely possible that the default settings are too taxing on your system.

Either way, there are dozens of parameters you can tune. The goal is to strike a balance
between making efficient use of the available resources and protecting your server from
excessive load.

7.10.1 Threading settings

When we talk about getting the most out of Varnish, this usually means increasing the
amount of simultaneous requests.

The threading settings are the best way to tune the concurrency of Varnish. As men-
tioned in the Under The Hood section in chapter I: thread_pool_minand thread_
pool_max are the settings that control how many threads are in the thread pool.

As a quick reminder: instead of creating threads on demand, a couple of thread pools
are initialized that contain a certain number of threads that are ready to use. Creating
and destroying threads can create overhead and cause a slight delay.

By default there are two thread pools, which can be changed by modifying the
thread_pools parameter. But benchmarks have shown no significant improvement by
changing the value.

When varnishd starts, 200 threads are created in advance: 100 threads per thread pool.
The thread_pool_min parameter can be used to tune this number.

Growing the thread pools

When the thread pools are running out of available threads, Varnish will grow the
pools until thread_pool_max is reached. Growing the pools is also somewhat resource
intensive.

By increasing thread_pool_min, it’s easier to cope with an onslaught of incoming
traffic upon restart. This is common when Varnish sits behind a load balancer and is
suddenly added to the rotation.

610

CHAPTER 7: VARNISH FOR OPERATIONS

On the other hand, starting varnishd with too many threads will have an impact on
the resource consumption of your server.

A good indicator is the MAIN.threads counter in varnishstat. It lets you know how
many threads are currently active. You can correlate this number to your resource us-
age, and it helps you establish a baseline.

The thread_pool_min parameter should at least be the number of threads in use for
an average traffic pattern.

When the MAIN.threads_limited counter increases, it means the thread pools ran out
of available threads. If there is room to grow the pools, Varnish will add threads. If not,
tasks will be queued until a thread is available.

The MAIN.threads_limited counter might increase early on when the MAIN.threads
counter reaches the thread_pool_min threshold. As the pools are grown, it won’t
occur that much. But when MAIN.threads reaches the thread_pool_max value, the
change rate of the MAIN.threads_limited counter can indicate problematic behavior.

The thread queue doesn’t have an infinite size: each thread pool has a queue limit of 20
tasks. This is configurable via the thread_queue_limit parameter. When the queue is
full, any new task or request will be dropped.

So when the MAIN.threads_limited counter increases, and the MAIN.sess_dropped
or MAIN.req_dropped counters are increasing as well, know that the queue is full and
sessions/streams are being dropped.

The MAIN.sess_dropped counter refers to HTTP/1.1 sessions being dropped,
whereas MAIN.req_dropped refers to HTTP/2 streams being dropped.

You can choose to increase the thread_queue_limit, which will allow more tasks to
be queued. Unless resources are too tight, you really want to increase thread_pool_
min because it will make your system more responsive.

Shrinking the thread pools

When a thread has been idle for 300 seconds, Varnish will clean it up. This is controlled
by the thread_pool_timeout parameter. The MAIN.threads counter will reflect this.

This means Varnish will automatically shrink the thread pools based on demand, but
with a delay. But if increased server load, caused by varnishd worker threads, is too
much for your system, you should decrease thread_pool_max to an acceptable level.

611

CHAPTER 7: VARNISH FOR OPERATIONS

If you believe Varnish needs to clean up idle threads quicker, you can reduce the
thread_pool_timeout. But remember: destroying threads also consumes resources.

Another factor that will impact server load is the worker stack size. This is stack space
that is consumed by every worker thread. By limiting the stack size, we manage to re-
duce the memory footprint of Varnish on the system. The size is configurable via the
thread_pool_stack parameter. The default stack size in Varnish is * 48 KB. The
default process stack size on Linux is typically multiple orders of magnitude larger than
the stack sizes we use in Varnish.

Stack space is typically consumed by third-party libraries that are used by Varnish. 1ib-
pcre, the library to run Perl Compatible Regular Expressions, can consume quite a bit of
stack space. If you write very complicated regular expressions in V'CL, you might even
cause a stack overflow.

When a stack overflow happens, you should increase the value of thread_pool_stack.
But this, in its turn, will have a direct impact on resource consumption because the
worker stack size is per thread.

If you set your worker stack size to 100 KB and you have 5000 threads in two thread
pools, this will consume almost 7 GB of memory. So be careful, and consider reducing
thread_pool_max when this would be too taxing on your system.

710.2 Client-side timeouts

Varnish has some client-side timeouts that can be configured, which can improve the
overall experience.

Most of these settings have already been discussed in the security section of this chapter,
as they can be used to mitigate denzal of service (DoS) attacks.

The timeout_idle parameter is one of these. It’s a sort of keep-alive timeout that de-
fines how long a connection remains open after a request. If no new pipelined request is
received on the connection within five seconds, the connection is closed.

The idle_send_timeout parameter defines how long Varnish is willing to wait for the
next bytes, after having already received data. This is a typical between-bytes timeont.

And then there’s also the send_timeout parameter, which acts as a last-byte timeont.

From a Do perspective these settings can help you prevent slowloris attacks, as men-
tioned earlier.

From a performance point of view, these settings can also be used to improve the
end-user experience. If your Varnish servers sit behind a set of load balancers, it makes

612

CHAPTER 7: VARNISH FOR OPERATIONS

sense to increase timeout_idle because you know they are the only devices that are
directly connecting to Varnish, and they are most probably going to reuse their connec-
tions with Varnish.

If you’re handling large volumes of data that are processed by potentially slow clients,
you can also increase the send_timeout value.

710.3 Backend fimeouts

For requests that cannot be served from cache, a backend connection is made to the
origin server, which acts as the source of truth.

If your backend is slow, or the connection is unreliable, backend connections might be
left open for too long. It is also possible that the connection is closed while data is still
being sent.

In order to strike the right balance, Varnish ofters a set of backend timeouts. You should
already be familiar with the settings, as they are configurable in your VCL backend defi-
nition.

The backend timeouts you can tune are the following ones:

e connect_timeout: the amount of time Varnish is willing to wait for the backend
to accept the connection

e first_byte_timeout: the timeout for receiving the first byte from the origin

* between_bytes_timeout: the amount of time we are willing to wait in between
receiving bytes from the backend

Here’s a quick reminder on how to configure this in V'CL:

vcl 4.1;

backend default {
.host = "origin.example.com";
.port = "80";
.connect_timeout = "10s";
.first_byte timeout = "90s";
.between_bytes_timeout = "5s";

}
- J

These settings are of course also available as varnishd runtime parameters, but it is im-
portant to know that the values in VCL are on a per-backend basis, and take precedence
over the runtime parameters.

613

CHAPTER 7: VARNISH FOR OPERATIONS

These parameters can also be specified on a per-request basis, using bereq.con-
nect_timeout or bereq.first_byte timeout from VCL_backend_fetchin
VCL.

The backend_idle_timeout parameter is not configurable in V'CL, defaults to 60
seconds, and defines how long a backend connection can be idle before Varnish closes it.

7104 Workspace settings

You might remember the concept of workspaces from the Under The Hood section in
chapter 1. Workspaces is a concept that is used to lessen the strain on the memory alloca-
tor where a chunk of memory is allocated for a specific task in Varnish.

Whereas the stack space is an operating system concept, the workspace is a Varnish-spe-
cific concept. The workspace memory is used for request and response parsing, for V'CL
storage, and also for any VMM OD requiring memory space to store data.

There are different kinds of workspaces, and each of them can be tuned. When a work-
space overflow occurs, this means the transactions couldn’t allocate enough memory to
perform their tasks.

¢ Theworkspace_client parameter, with a default value of 64 KB, is used to limit
memory allocation for HTTP request handling.

¢ Theworkspace_backend parameter, which also has a default value of 64 KB, sets
the amount of memory that can be used during backend processing.

¢ Theworkspace_session parameter limits the size of workspace memory used to
establish the TCP connection to Varnish. The default value is 0.5 KB.

When a task consumes more memory than allowed in one of the specific workspace
contexts, the transaction is aborted, and an HTTP 503 response is returned. When a
workspace_session overflow occurs, the connection will be closed.

It is always possible to increase the size of the various workspaces. Memory consump-
tion depends on what happens in VCL, but also depends on the input Varnish receives
from clients and backends.

A better solution is to optimize your V'CL, or reduce the size and the amount of headers
that are sent by the backend. But sometimes, you have no control over this, or no way to
significantly reduce memory consumption. In that case, increasing workspace_client
or workspace_backend is your best move.

Luckily there are ways to monitor workspace overflow. These workspaces have a var-
nishstat overflow counter:

614

VARNISH

* MAIN.ws_client_overflow
* MAIN.ws_backend_overflow
* MAIN.ws_session_overflow

When these counters start increasing, don’t blindly increase the workspace size. Instead,
have a look at your logs, see which transactions cause the overflow, and try to figure out
if you can optimize that part of your VCL to avoid the overflows in the future.

As always, varnishstat and varnishlog will be the tools you need to figure out what
is going on before deciding to increase the size of the workspaces.

7.10.5 HTTP limits

HTTP requests and responses are parsed by Varnish. As mentioned earlier, parsing
them requires a bit of workspace memory.

Incoming requests and cached responses are parsed in the client context, and use clzent
workspace memory. When a cache miss takes place, and the response needs to be parsed
from the origin server, we operate in the backend context. This will consume backend

workspace memory.

There are certain limits in place that prevent Varnish from having to waste too much
memory on request and response parsing and to avoid DoS attacks.

Here’s an overview of runtime parameters that limit the length and size of requests and
responses:

* http_max_hdr: the maximum number of headers an HTTP request or response
may contain. The default value is 64.

* http_req_hdr_len: the maximum size of an individual request header. By default
this is 8§ KB.

* http_req_size: the maximum total size of the HTTP request headers. This de-
faults to 32 KB.

* http_resp_hdr_len: the maximum size of an individual response header. By
default this is § KB.

* http_resp_size: the maximum total size of the HTTP response headers. This
defaults to 32 KB.

When requests or responses exceed these limits, the transaction will fail.

615

CHAPTER 7: VARNISH FOR OPERATIONS

HTTP request limit examples

Here’s some example logging output when the http_max_hdr threshold is exceeded:

()
* << Request >> 5
- Begin req 4 rxreq
- Timestamp Start: 1611051232.286266 0.000000 0.000000
- Timestamp Req: 1611051232.286266 0.000000 0.000000
- BogoHeader Too many headers: foo:bar
- HttpGarbage "GET%00"
- RespProtocol HTTP/1.1
= RespStatus 400
- RespReason Bad Request
- RegAcct 519 © 519 28 0 28
= End
- J

As you can see, an HTTP 400 status code is returned when this happens.

Here’s an example where an individual request header exceeds the http_req_hdr_len

limit:
()
o << Request >> 98314
= Begin req 98313 rxreq
- Timestamp Start: 1611051653.320914 0.000000 ©.000000
= Timestamp Req: 1611051653.320914 0.000000 0.000000
- BogoHeader Header too long: test:YnEJyVgxTMgn7aX
- HttpGarbage "HEAD%00"
- RespProtocol HTTP/1.1
= RespStatus 400
= RespReason Bad Request
= RegAcct 10081 © 10081 28 © 28
- End
- J

When the total request size exceeds http_req_size, the following output can be

found in your VSL:

*

<< Session
Begin
SessOpen

>> 32793
sess © HTTP/1
172.21.0.1 60576 http 172.21.0.3 80

1611052643.429084 30

SessClose
End

RX_OVERFLOW ©.001

616

CHAPTER 7: VARNISH FOR OPERATIONS

HTTP response limit examples

When the origin server returns too many headers and exceeds the http_max_hdr limit,
this doesn’t result in an AT TP 400 status, but in an actual HTTP 503.

You might see the following output appear in your VSL:

-- BogoHeader Too many headers:foo: bar
-- HttpGarbage "HTTP/1.1%00"

-- BerespStatus 503

-- BerespReason Service Unavailable

-- FetchError http format error

And when this happens, the MAIN.losthdr counter will also increase.

When the http_resp_hdr_len limit is exceeded, you will see the following output
end up in VSL:

-- BogoHeader Header too long: Last-Modified: Tue,
-- HttpGarbage "HTTP/1.1%00"

-- BerespStatus 503

-- BerespReason Service Unavailable

-- FetchError http format error

And finally, when the http_resp_size limit is exceeded, the following V'SL line may
serve as an indicator:

[-- FetchError overflow]

Make sure you have enough workspace memory

Remember, HTTP header processing, both for requests and responses, is done using
workspace memory. If you decide to increase some of the HTTP header limits in
varnishd, there’s no guarantee that Varnish will work flawlessly.

The HTTP limits are there for a reason, and the defaults have been chosen pragmatical-
ly. When for example a client workspace overflow occurs, you’ll see the following occur in
your VSL:

- Error workspace_client overflow
- RespProtocol HTTP/1.1

= RespStatus 500

= RespReason Internal Server Error

617

CHAPTER 7: VARNISH FOR OPERATIONS

Interestingly, the status code is H7TP 500 and not HTTP 503. This makes sense be-
cause the backend didn’t fail; it’s actually Varnish that failed.

In the backend context, Varnish is more likely to drop response headers that would cause
a backend workspace overflow rather than fail the transaction.

When this happens, you’ll see LostHeader tags appear in your VSL output:

~
-- LostHeader foo:
-- LostHeader bar:
If you really need to increase some of the HT'TP limits, please ensure the work-
space size is updated accordingly.
- J

Limiting 1/0 with tmpfs

Varnish uses the /var/lib/varnish folder quite extensively. It’s the place where the
VSL circular buffer is located. It’s also the place where the compiled VCL files are stored
as .so files.

To avoid that VSL causes too many I/O operations, we can mount /var/lib/varnish
as a tmpfs volume. This means /var/lib/varnish is actually stored in memory on a

RAM disk.

These are the commands you need to make it happen:

echo "tmpfs /var/lib/varnish tmpfs defaults,noatime @ @" | sudo tee
-a /etc/fstab
sudo mount /var/lib/varnish

You’ll agree that this is a no-brainer.

7.10.6 Other settings

There are some other random settings that aren’t deserving of their own subsection but
can be useful nonetheless.

618

CHAPTER 7: VARNISH FOR OPERATIONS

Listen depth

listen_depth is one of those settings. It refers to the number of unacknowledged
pending TCP connections that are allowed in Varnish. On really busy systems, setting
the queue high enough will yield better results.

But there is a fine line between better results and increased server load. The default val-
ue for listen_depth is set to 1024 connections.

However, this value is ignored if the operating system’s somaxconn value is lower. Please
verify the contents of /proc/sys/net/core/somaxconn to be sure.

If your operating system’s value is too low, you can tune it via sysctl -w net.core.
somaxconn=1024.

Nuke limit

This section doesn’t apply to MSE, which will still use LRU eviction but relies on
different mechanisms to keep things in check.

When you have a lot of inserts and your cache is full, the nuking mechanism will re-
move the Jeast recently used objects to free the required space.

The MAIN.n_lru_nuked counter indicates that LRU nuking is taking place.

When a lot of small objects are stored in the cache, and a large objects needs to be insert-
ed, the nuking mechanism may need to remove multiple objects before having enough
space to store the new object.

There is an upper limit as to how many objects can be removed before the eviction is
aborted. This is defined by the nuke_limit parameter. The standard value is set to 50.

If more than S0 object removals are required to free up space, Varnish will abort the
transaction and return an HTTP 503 error. The MAIN.n_1ru_limited counter will
count the number of times the nuke limit was reached.

Unfortunately, Varnish Cache has a limitation where a task can request LRU nuking,
but where another competing task will steal its space. This might also be a reason why
the nuke_limit threshold is reached.

619

CHAPTER 7: VARNISH FOR OPERATIONS

Short-lived

The shortlived parameter will enforce the threshold for short-lived objects. This means
that objects with a 77 lower than the value of shortlived will not be stored in the
regular caching stevedore. Instead these objects will be stored in transient storage.

You may remember that transient storage is unbounded by default. This can result in
your server going out of memory when the transient objects rapidly increase. By default
the shortlived threshold is set to ten seconds.

Objects where the full TTL, which also implies the grace and keep values, is lower than
ten seconds will go into the transient storage.

Logging CLI traffic in syslog

By default CLI commands are logged to syslog via syslog(LOG_INFO). On systems that
rely a lot on the CLI, this may result in a lot of noise in the logs, but also in degraded
performance.

If you don’t care that CLI commands are not logged, just set syslog_cli_traffic to
off. It’s always a tradeoff unfortunately.

620

CHAPTER 7: VARNISH FOR OPERATIONS

/11 The Varnish CLI

The Varnish CLI is a command-line interface offered by varnishd to perform a series

of management tasks. The Varnish CLI has its own protocol that is accessible via TCP/
1P,

Varnish also ships with a varnishadm program that facilitates CLI access.

Tasks that can be performed via the CLI are:

Listing backends

Administratively setting the backend health
Ban objects from the cache

Display the ban list

Show and clear panics

Show, set, and reset runtime parameters
Display process id information

Perform liveliness checks to varnishd
Return status information

Starting and stopping the Varnish child process
Manage VCL configurations

This is what the Varnish CLIlooks like when called using the varnishadm program:

~N
$ varnishadm
200
Varnish Cache CLI 1.0
Linux,5.4.39-1inuxkit,x86_64,-junix, -sdefault, -sdefault, -hcritbit
varnish-6.0.7 revision 525d371e3ea@e@c38edd7bafof80dc226560f26e
Type ‘help’ for command list.
Type ‘quit’ to close CLI session.

J

621

CHAPTER 7: VARNISH FOR OPERATIONS

CLI commands can be run inside the varnishadm shell, but they can also be ap-
pended as arguments to the varnishadm program.

711.1 Backend commands

The backend.1ist command lists all available backends, and also provides health in-
formation, as you can see in the example below:

-

varnish> backend.list
200
Backend name Admin Probe Last
updated
boot.default probe Healthy 7/8
Tue, 05 Jan 2021 12:34:08 GMT
boot.static-eu probe Healthy (no probe) Tue,
05 Jan 2021 12:34:08 GMT
boot.static-us probe Healthy 7/8
Tue, 05 Jan 2021 12:34:08 GMT

_

J

If you add a -p option to the command, you’ll start seeing more detailed information

on the health probe:

-

varnish> backend.list -p
200
Backend name Admin Probe Last
updated
boot.default probe Healthy 8/8
Current states good: 8 threshold: 3 window: 8
Average response time of good probes: 0.004571

Oldest == Newest

--- 44444444444
Good IPv4

--- XXXXXXXXXXX
Good Xmit

--- RRRRRRRRRRR
Good Recv

--- HHHHHHHHHHHHH
Happy

Tue, 05 Jan 2021 12:34:08 GMT
boot.static-eu probe Healthy (no probe) Tue,
05 Jan 2021 12:34:08 GMT
boot.static-us probe Healthy 8/8

Current states good: 8 threshold: 3 window: 8
Average response time of good probes: 0.004552
Oldest S ECE S SEEEECSEEEEEEEEEEEEEEEEEEEEEEEEEEE=EEEE=E Newest

CHAPTER 7: VARNISH FOR OPERATIONS

--- 44444444444
Good IPv4
--- XXXXXXXXXXX
Good Xmit
--- RRRRRRRRRRR
Good Recv
--- HHHHHHHHHHHHH
Happy
Tue, 05 Jan 2021 12:34:08 GMT
\§ J

If you have a large number of backends, listing detailed information for all of them can
become unmanageable. You can narrow down the scope by supplying a backend pat-
tern to the backend.1ist command.

The following example only lists backends that start with static. Evidently, the boot.
static-euand the boot.static-us backends will appear:

(N
varnish> backend.list -p static*
200
Backend name Admin Probe Last
updated
boot.static-eu probe Healthy (no probe) Tue,
05 Jan 2021 12:34:08 GMT
boot.static-us probe Healthy 8/8

Current states good: 8 threshold: 3 window: 8
Average response time of good probes: 0.004164
oldest S ECE S SEEEECSEEEEEEEEEEEEEEEEEEEEEEEEEEE=EEEE=E NeWeSt

Good IPv4
———————————————————————),9.0.0.0.9.0.9.0,0.0.0.0.0.0.9.0.0.0.0.0.9.0.9.0.90.90.900909000000004

Good Xmit
----------------------- RRR

Good Recv
————————————————————— HHH

Happy

Tue, 05 Jan 2021 12:34:08 GMT
_ J

We can use the backend.set_health command to override the health of one or more
backends, based on a backend pattern.

For example, when downtime is expected for a group of backends, it makes sense to
explicitly set them to unhealthy beforehand. If the backends are governed by a director,
they will automatically be taken out of the directors rotation, which is a more graceful
approach to a planned outage.

Here’s an example where we set both static-euand static-us to an unhealthy state:

623

CHAPTER 7: VARNISH FOR OPERATIONS

varnish> backend.set_health static-* sick
200

When we list the backends, we can see that the Admin field no longer contains the
probe value, but the sick value:

4)

varnish> backend.list
200
Backend name Admin Probe Last
updated
boot.default probe Healthy 8/8
Tue, 05 Jan 2021 12:34:08 GMT
boot.static-eu sick Healthy (no probe) Tue,
05 Jan 2021 12:42:36 GMT
boot.static-us sick Healthy 8/8
Tue, 05 Jan 2021 12:42:36 GMT

_ J

Let’s go ahead and set the health of the two backends to auto. This will undo our pre-
vious backends.set_health command, setting their health back to the value as listed
under the Probe field.

varnish> backend.set_health static-* auto
200

You can also force a backend to be considered healthy, as illustrated in the example be-
low:

varnish> backend.set_health static-* healthy
200

/11.2 Banning

We already talked about banning via the CLIL in chapter 6. We’d like to refer to that part
of the book for more details.

As a quick reminder, here’s an example of a ban issued via the CLI:

varnish> ban "obj.http.Content-Type ~ ~image/"
200

624

CHAPTER 7: VARNISH FOR OPERATIONS

And here’s a ban list example:

varnish> ban.list

200

Present bans:
1609850980.159475 (%]

obj.http.Content-Type ~ ~image/

/11.3 Parameter management

The CLI has various commands to set the value of a parameter, list its value, and reset it

to the default value.

Displaying parameters

The param.show command lists the value of the configurable runtime parameters in-

side Varnish.

When running this command without additional options or arguments, you get a list

of parameters with their value.

Here’s an extract because the full list is a bit too long:

-

varnish> param.show
200

accept_filter
acceptor_sleep_decay
acceptor_sleep_incr
acceptor_sleep_max
auto_restart
backend_idle_timeout

ban_cutoff

ban_dups
ban_lurker_age
ban_lurker_batch
ban_lurker_holdoff
ban_lurker_sleep
between_bytes_timeout

L

backend_local_error_holddown
backend_remote_error_holddown

.9 (default)

.000 [seconds] (default)
.050 [seconds] (default)
on [bool] (default)

60.000 [seconds] (default)
10.000 [seconds] (default)
0.250 [seconds] (default)
0 [bans] (default)

on [bool] (default)

60.000 [seconds] (default)
1000 (default)

0.010 [seconds] (default)
0.010 [seconds] (default)
60.000 [seconds] (default)

[OINOI R

J

You can also get this output with a lot more context and meaning. Just add the -1 op-

tion, as you can see in the extract below:

625

CHAPTER 7: VARNISH FOR OPERATIONS

(N
varnish> param.show -1
200
acceptor_sleep_decay
Value is: 0.9 (default)
Minimum is: @
Maximum is: 1
If we run out of resources, such as file descriptors or work-
er
threads, the acceptor will sleep between accepts.
This parameter (multiplicatively) reduce the sleep duration
for
each successful accept. (ie: 0.9 = reduce by 10%)
NB: We do not know yet if it is a good idea to change this
parameter, or if the default value is even sensible. Caution
is
advised, and feedback is most welcome.
acceptor_sleep_incr
Value is: 0.000 [seconds] (default)
Minimum is: ©.000
Maximum is: 1.000
If we run out of resources, such as file descriptors or work-
er
threads, the acceptor will sleep between accepts.
This parameter control how much longer we sleep, each time we
fail to accept a new connection.
NB: We do not know yet if it is a good idea to change this
parameter, or if the default value is even sensible. Caution
is
advised, and feedback is most welcome.
_ J

It is also possible to only list the parameters where the value was changed. To achieve
this, just use the param.show changed command.

Here’s some example output:

varnish> param.show changed

200

feature +http2
shortlived 5.000 [seconds]
thread_pool_max 7500 [threads]

626

CHAPTER 7: VARNISH FOR OPERATIONS

In this case, we added the http2 feature flag, modified the timing for short-lived ob-
jects to five seconds, and set the maximum number of threads in a thread pool to 7500
threads.

You can also get the value of an individual parameter, as shown in the example below:

()
varnish> param.show shortlived
200
shortlived
Value is: 5.000 [seconds]
Default is: 10.000
Minimum is: ©.000

Objects created with (ttl+grace+keep) shorter than this are
always put in transient storage.

- J

It is even possible to list the output in JSON format by adding a -j option. Here’s an
example where we display information about the default_ttl parameter in JSSON
format:

()
varnish> param.show -j default_ttl
200
[2, ["param.show", "-j", "default_ttl"], 1609857571.607,
{
"name": "default_ttl",
"implemented": true,
"value": 120.000,

"units": "seconds",
"default": "120.000",
"minimum": "©.000",

"description"”: "The TTL assigned to objects if neither the back-
end nor the VCL code assigns one.",

"flags": [
"obj_sticky"
1
¥
1
_ J

Setting parameter values

The param.set command assigns a new value to a parameter, which is quite convenient
because it doesn’t require restarting the varnishd process.

The downside of setting parameters via the CLI is that the changes are not persisted. As
soon as varnishd gets restarted, the values that were assigned by -p are used, and other
values are reset to their default value.

627

CHAPTER 7: VARNISH FOR OPERATIONS

The param.set command is great for temporary changes, or for changes where a var-
nishd restart is not desirable. If you want a parameter change to be persisted, just add
the appropriate -p option to your varnishd startup script.

Here’s an example of a parameter change where we set the default_ttl parameter to
one minute:

varnish> param.set default_ttl 60
200

But if you need to undo the change and want to reset the parameter to its default value,
just run param.reset:

varnish> param.reset default_ttl
200

/114 V(L management

Another important feature of the Varnish CLI is the VCL management capability. This
is especially useful from a VCL deployment point of view.

You can load multiple VCL configurations, set an active one, and even assign labels so
that inactive VCL code can be conditionally loaded into your main VCL file.

V(L inspection

Commands like vcl.list and vcl.show can be used to list the available VCL configu-
rations and to show the corresponding VCL code.

When you start Varnish, this is probably the output you’ll get:

varnish> vcl.list
200
active auto/warm 0 boot

We have a single active VCL configuration, which is called boot. If we want to see the
VCL code for this configuration, we run vcl.show boot, as illustrated below:

628

CHAPTER 7: VARNISH FOR OPERATIONS

varnish> vcl.show boot
200
vcl 4.1;

backend default {
.host="1localhost";
.port="8080";

}
- J

Loading VCL

If you want multiple VCL configurations to be loaded, you can add one or more configu-

rations by running the vcl.load command.

As you can see, the command requires a configuration name and a path to the VCL file:

varnish> vcl.load serverl /etc/varnish/serveril.vcl
200
VCL compiled.

The vcl.load command will compile the code and bail out if an error was encoun-
tered. This is also an interesting way to check whether your VCL is syntactically correct.

If you don’t want to depend on a VCL file, you can directly inject a quoted VCL string
via vcl.inline. The quoting sometimes gets a bit tricky, but here’s a very simple exam-

ple:

()
varnish> vcl.inline default << EOF

varnish> vcl 4.1;

varnish>

varnish> backend be {

varnish> .host="1localhost";
varnish> .port="8080";

varnish> }
varnish> EOF
200
VCL compiled.
_ J

It we want the previously loaded VCL configuration to be active, just run the following
command:

629

CHAPTER 7: VARNISH FOR OPERATIONS

varnish> vcl.use serverl
200
VCL ‘serverl’ now active

Don’t forget that inactive VCL configurations still consume resources. If you no longer
need older VCL configurations, it is advisable to remove them using the vcl.discard
command, as the next example shows:

varnish> vcl.discard boot
200

VCL labels
VCL labels have two purposes.

They behave like symbolic links to actual VCL configurations and can be used to switch
from one VCL configuration to another.

Here’s an example where we assign the my_label label to the my_configuration VCL
configuration:

varnish> vcl.label my label my configuration
200

At this point my_label will be listed as such and can be used with other VCL com-
mands:

()
varnish> vcl.list
200
active auto/warm @ my_configuration
available 1label/warm 0 my_label -> my_configuration
varnish> vcl.use my_label
200

VCL ‘my_label’ now active
varnish> vcl.list

200
available auto/warm @ my_configuration
active label/warm 0 my_label -> my_configuration
_ J

Multiple labels can point to the same VCL configuration, but a label cannot point to
another label. This can be useful to maintain abstract VCL configurations. You could
imagine having one label called production and another called maintenance to eas-

630

CHAPTER 7: VARNISH FOR OPERATIONS

ily switch from one to the other during an outage, without needing to know in detail
which exact VCL configuration should be used for either scenario. You can update and
roll back the underlying V’'CLs independently and separate VCL management from
VCL selection.

But the second purpose of VCL labels is probably the most useful. The active VCL is
allowed to switch to a different VCL in the vcl_recv subroutine. This allows you to
maintain multiple concurrent VCL configurations independently, which can greatly
help virtual hosting when multiple applications need very different cache policies.

Imagine a situation where multiple VCL configurations are loaded, one for each web
application it is caching:

varnish> vcl.load www_1 www.vcl
200

VCL compiled.

varnish> vcl.load api_1 api.vcl
200

VCL compiled.

As you can see, on top of the default configuration, we also have the www_1 and api_1
configurations.

We can label these configurations, as illustrated below:

4)

varnish> vcl.label www www_1

200

varnish> vcl.label api api_1

200

varnish> vcl.label www_example_com www_1
200

varnish> vcl.label api_example_com api_1
200

¢ Thewww_1 config has labels www and www_example_com
e Theapi_1 confighaslabels api and api_example_com

From within our main VCL file, we’ll load various labeled VCL configurations based on
the host header of the request.

Here’s the main VCL file that loads the labels:

631

CHAPTER 7: VARNISH FOR OPERATIONS

vcl 4.1;
import std;

backend default none;

sub vcl recv {

if (reg.http.Host == "www.example.com") {
return(vcl(www));

} elseif (req.http.Host == "api.example.com") {
return(vcl(api));

} else {
return(synth(404));

}

}
_ J

e Ifarequestis received containing the Host: www.example.com request header,
the www label is used

e Ifarequestis received containing the Host: api.example.com request header, the
api label is used

Each labeled VCL configuration has its own logic, and its own backends. This allows for
multi-tenancy to some extent.

The vcl.1list command then shows the labels, and how they are used:

()
varnish> vcl.list
200
available auto/warm 0 www_1 (2 labels)
available auto/warm 0 api_1 (2 labels)
available 1label/warm 0 www -> www_1 (1 return(vcl))
available 1label/warm 0 api -> api_1 (1 return(vcl))
active auto/warm 0 default
available label/warm 0 www_example com -> www_1
available label/warm 0 api_example_com -> api_1
_ J

The configurations themselves have a reference counter that keeps track of how many
times they were used by a label. The labels point to the configuration they are associated
with. And if any of these labels are used within a return(vcl()) statement, this is also
mentioned. In this example the regular web application lives alongside an HTTP API,
and they both have different cache policies and can be updated independently:

632

CHAPTER 7: VARNISH FOR OPERATIONS

varnish> vcl.load www_2 www.vcl
200

VCL compiled.

varnish> vcl.label www www_2

200
varnish> vcl.label www_example_com www2
200
varnish> vcl.list
200
available auto/cold 0 www_1
available auto/warm 0 api_1 (2 labels)
available 1label/warm 0 www -> www_2 (1 return(vcl))
available 1label/warm 0@ api -> api_1 (1 return(vcl))
active auto/warm 0 default
available 1label/warm 0 www_example_com -> www_2
available 1label/warm 0@ api_example com -> api_1
available auto/warm 0 www_2 (2 labels)

_ J

Rolling back is only a matter of labeling www_1 again if the www_2 update wasn’t cor-
rect, without disturbing the API.

V(L temperature

VCL configurations consume resources, even when they are not active. If you deploy
a new version of your VCL and keep the previous versions, the allocated resources for
these VCL files will not be released immediately.

Varnish has a built-in system to cool down VCL configurations when they are no longer
in use. Resources that were reserved by these V'CLs are eventually released.

When a new VCL configuration is deployed, it becomes warm. This is done automatical-
ly, but the vcl.state command allows you to override the VCL temperature.

The VCL temperature can be set to one of the following values:

. auto
. warm
. cold

The vcl.list command lists the various configurations, but also includes the tempera-
ture, and how it was set:

633

CHAPTER 7: VARNISH FOR OPERATIONS

varnish> vcl.list

200
active auto/warm 0 default
available auto/cold 0 test

In this case, the default configuration, which is the active one, is in the auto/warm
state. The test configuration is available, but no longer in use. It has become cold.

If we want to force the temperature, we can use the vcl.state command to warm up
or cool down the configuration:

varnish> vcl.state test warm
200

In this example we explicitly set the state to warm, which is also reflected in the VCL list:

varnish> vcl.list

200
active auto/warm 0 default
available warm/warm 0 test

We can also set it back to auto:

()
varnish> vcl.state test auto
200
varnish> vcl.list
200
active auto/warm 0 default
available auto/warm 0 test
N\ J

711.5 Configuring remote CLI access

If you're planning on connecting to the Varnish CLI remotely, it makes sense to tune
the remote CLI access runtime parameters.

The -T runtime parameter sets the listening address and port for the CLI. The -S run-
time parameter is used to define the location of the secret file.

634

CHAPTER 7: VARNISH FOR OPERATIONS

This secret file contains the secret key that is required to gain access to the CLI

You probably want to see these two parameters in action, so here’s an example:

varnishd -a :80 -T localhost:6082 -S /etc/varnish/secret -f /etc/var-
nish/default.vcl

This is a pretty basic varnishd configuration where the CLI is only accessible locally
using port 6082. The authentication protocol uses the contents of the /etc/varnish/
secret file.

The varnishadm command is capable of connecting to a remote CLI. The -T and -S
options are also available for varnishadm.

Here’s an example of a remote ban using varnishadm:

varnishadm -S /etc/varnish/secret -T varnish.example.com:6082 ban
"obj.http.x-url == /info"

7.11.6 The CLI protocol

The Varnish CLI has its own CLI protocol, which is largely abstracted away when using
varnishadm. But if you want to integrate the Varnish CLI into your own application,
you need to understand the protocol.

From your application, you’ll connect to the host and port that were configured using
the -T parameter. In the example below this is localhost:6082 because the application
happens to run on the same machine as Varnish.

For security reasons, access will be restricted based on the secret key that was set using
the -S parameter.

Here’s an example where we connect to the CLI via telnet. The assumption is that /
etc/varnish/secret contains my-big-secret as its value.

Here’s the output:

635

CHAPTER 7: VARNISH FOR OPERATIONS

$ telnet localhost 6082

Trying 127.0.0.1...

Connected to localhost.

Escape character is ‘7).

107 59
lgsefmatosfviyytnnrbwrvwngdkhkrn

Authentication required.

* 107 is the status code that means authentication is required.

* The next line contains 1gsefmatosfviyytnnrbwrvwngdkhkrn, which is the chal-
lenge.

Based on this challenge and the secret from /etc/varnish/secret, the authentication
string is composed.

You start by creating a string that contains the following parts:
* The challenge

* A newline (\@x@a)

e Thesecret

* The challenge again

* A newline (\@x9a)

If we use my-big-secret\n as the secret key, this would be our string:

lgsefmatosfviyytnnrbwrvwngdkhkrn
my-big-secret
lgsefmatosfviyytnnrbwrvwngdkhkrn

This string then needs be hashed via the SHA4256 hashing algorithm, and the resulting
digest should be returned in lowercase bex.

The end result would be the following authentication string:

[b931c0995b200b83645a4e4e9bbb9061b2c80c2aaa878920d8b2da8612756f5c¢]

The response to the challenge in the Varnish CLI would be auth <authentication
string>. In our case, this is what happens:

636

CHAPTER 7: VARNISH FOR OPERATIONS

auth b931c0995b200b83645a4e4e9bbb9061b2c80c2aaa878920d8b2da8612756F5¢
200 277

Linux,5.4.39-1inuxkit,x86_64,-junix, -sdefault, -sdefault, -hcritbit
varnish-6.0.7 revision 525d371e3ea@e@c38edd7bafof80dc226560f26e

Type ‘help’ for command list.
Type ‘quit’ to close CLI session.

& J

Because status code 200 was returned, we know the authentication procedure was
successful. We get the banner from the Varnish CLI and we can start executing CLI
commands.

For your convenience we have created a small bash script that will create the authentica-
tion string for you:

()
#!/bin/sh

set -e
exec </etc/varnish/secret

if [$# = 0]; then
echo "Challenge not set, exiting" >&2

exit 1
fi
(
printf ‘%s\n’ "$1"
cat
printf “%s\n’ "$1"
) |
sha256sum |

awk ‘{print $1}’
J

The script checks whether or not /etc/varnish/secret exists and whether or not the
challenge was passed as a command line argument.

The authentication string is created and sent to sha256sum to create the SHA256 digest.
Finally we send the output to the awk program to fetch the first part, which is the final
authentication strin g.

Here’s how you would invoke the script: /auth.sh <challenge>. And here’s the script
in action:

637

CHAPTER 7: VARNISH FOR OPERATIONS

$./auth.sh lgsefmatosfviyytnnrbwrvwngdkhkrn
b931c0995b200b83645a4e4e9bbb9061b2c80c2aaa878920d8b2da8612756f5¢

And as expected, b931c0995b200b83645a4e4e9bbb9061b2c80c2aaa878920d8b-
2da8612756f5c¢ is the output you can use to respond to the authentication challenge
that was imposed by the Varnish CLL

J11.7 The CLI command file

We already mentioned the fact that changes through the Varnish CLI are not persisted.
This means that a varnishd restart will undo your changes.

One of the solutions we suggested, especially for param.set commands, was to also
add the customizations in your varnishd startup script via -p runtime parameters.

This can work for parameter tuning, but for other commands it doesn’t. Take for ex-
ample the vcl.label command: if you depend on VCL labels, a varnishd restart can
result in effective downtime.

To avoid any drama, varnishd has a -I option that points to a CLI command file. This
contains CLI commands that are executed when varnishd is launched.

This way, you can ensure your VCL labels are correctly set, and the corresponding VCL
files are loaded when you start or restart Varnish.

vcl.load sl /etc/varnish/serverl.vcl
vcl.load s2 /etc/varnish/server2.vcl
vcl.label serverl sl
vcl.label server2 s2

If these commands are stored inside /etc/varnish/clifile, the following example

loads this file:

[var‘nishd -a :80 -f /etc/varnish/default.vcl -I /etc/varnish/clifile]

If any of the commands fail, varnishd will not properly start. Commands that are pre-
fixed with - will not abort varnishd startup upon failure.

638

CHAPTER 7: VARNISH FOR OPERATIONS

7.11.8 Quoting pitfalls

Using quoted or multi-line strings in the CLI can lead to unexpected behavior.

Expansion

CLI commands take a set number of arguments. If one of the arguments happens to
be a multi-word string, you’ll need to use quotes. However, if you run these commands
outside of the CLI shell and inside the shell of your operating system, double expansion
takes place.

The quoting examples hinge on the fact that we want to override the cc_command run-
time parameter. In reality you’ll rarely change the value of this parameter. We selected
this example because it’s one of the few parameters that takes a string argument.

Imagine that we want to set the value of cc_command tomy alternate cc command.

You might set the parameter as follows:

varnish> param.set cc_command my alternate cc command
105
Too many parameters

But as you can see, only my is used as the value. The other parts of the string are consid-
ered extra arguments. This is a problem, and the solution is to add quotes, as illustrated
in the following example:

varnish> param.set cc_command "my alternate cc command"
200

Change will take effect when VCL script is reloaded

If we make this example into a one-liner outside of the varnishadm CLI scope and exe-
cute it in the operating system’s shell, you’ll get the following result:

$ varnishadm param.set cc_command "my alternate cc command"
Too many parameters

Command failed with error code 105

The string is expanded twice, resulting in the error we saw previously. To work around
this, we can add extra quotes.

639

CHAPTER 7: VARNISH FOR OPERATIONS

$ varnishadm param.set cc_command ‘"my alternate cc command"’

Change will take effect when VCL script is reloaded

If you want to parse an environment variable into a varnishadm CLI command, more

quoting magic takes place:

$ TEST="Varnish"

$ varnishadm param.set cc_command "’$TEST’™’

Change will take effect when VCL script is reloaded

The extra pair of single quotes is required, otherwise $TEST will be passed as an un-

parsed string.

Heredoc

If you want to pass multi-line content using the CLI, you may use Heredoc notation.

Here’s an example where we use the cat program to output a string. This string hap-
pens to be a multi-line one, that is defined using Heredoc syntax:

$ cat <<EOF
Thijs

Feryn

EOF

Thijs

Feryn

Within the Varnish CLI, you cannot use <<EOF as the start of a multi-line string. Here’s

what you get when you do:

-

varnish> vcl.inline test <<EOF
106

Message from VCC-compiler:

VCL version declaration missing

Update your VCL to Version 4 syntax, and add

vcl 4.1;

on the first line of the VCL files.

(f<vcl.inline>’ Line 1 Pos 1)
<<EOF
H#it- - -

640

~

CHAPTER 7: VARNISH FOR OPERATIONS

Running VCC-compiler failed, exited with 2
VCL compilation failed

To make Heredoc-style input work, you need to add a space between << and EOF, as illus-
trated below:

()

varnish> vcl.inline test << EOF

varnish> vcl 4.1;

varnish> backend default none;

varnish> sub vcl_recv {

varnish> return(synth(200));

varnish> }

varnish> EOF

200

VCL compiled.

g J

Remember: the Varnish CLI format for Heredoc text requires an extra space, but outside
of the CLI scope this no longer applies. If you want this to work using a varnishadm
one-liner, you need to quote the Heredoc.

Here’s the previous example again, but inserted from outside of the CL/ scope:

$ varnishadm vcl.inline test ‘<< EOF
vcl 4.1;
backend default none;
sub vcl_recv {
return(synth(200));
¥
EOF’
VCL compiled.

641

CHAPTER 7: VARNISH FOR OPERATIONS

712 The Varnish Controller

Managing a cluster of Varnish servers, deploying Varnish Configuration Language

(VCL), tuning the right parameters, monitoring availability, and assigning roles to
groups of servers. These are all operational responsibilities that can become quite a has-
sle when a lot of nodes are being managed.

There are plenty of tools out there that can be used for some of these tasks. However,
the Varnish Controller is a specialized solution that integrates all these responsibilities.

The Varnish Controller is developed by Varnish Software and was the logical successor
of the now deprecated Varnish Administration Console (VAC).

At the time of writing, the Varnish Controller is a brand-new product. The current
features are primarily focused on VCL deployment. By the time you read this, the
project may have gone through several iterations, be more feature-rich, and may

look and behave a bit differently.

The Varnish Controller is a commercial product provided by Varnish Software and is not
available in an open source incarnation.

712.1 Architecture

The Varnish Controller was designed to be extremely flexible: the different services of
the project can be run separately and can be scaled horizontally.

Communication with the controller is done via a RESTful API These API calls are
received by the AP/ gateway. And all the way at the end, there are agents running on the
Varnish instances that leverage the varnish management interface port to perform man-
agement tasks.

For the services in between the AP gateway and the agents, there is a lot of inter-process
communication going on. Communication between the various services is done using
the Neural Autonomic Transport System (NATS) messaging service.

NATS is a lightweight, high-performance messaging service. The agents receive messag-
es over NATS, which contain instructions, but the message queue is also used to report
information.

The central service that manages all information and keeps track of the state is called
the Brainz. The Brainz service reads from and writes to NATS, stores state in a Post-

642

CHAPTER 7: VARNISH FOR OPERATIONS

greSQL database, and also communicates with the 4 PI gateway over NATS. Any de-

cision-making in the system is handled by the Brainz, or one of the Brainz, if running
more than one.

And in the end, the 4P/ can be consumed directly or via clients like the command line
interface (CLI) or the graphical user interface (GUI).

Here’s an architecture diagram containing the various services and how they are inter-
connected:

Varnish Varnish Varnish

NATS

Postgre SQL AF| gateway

Varnish Controller architecture

In this diagram, the core of the Varnish Controller doesn’t provide any redundan-
cy. This was done for the sake of simplicity. In real life, you’ll have at least a cluster
of NATS servers, a cluster of PostgreSQL databases, and multiple instances of
Brainzg and the API gateway.

111.1 Core concepts

Within the Varnish Controller, there are a couple of core concepts present. The concepts
dictate how VCL code is going to end up on Varnish servers.

643

CHAPTER 7: VARNISH FOR OPERATIONS

You can see these concepts, and how they are connected, in the following diagram:

VCL group
Depiovme)

Varnish Controller core concepts

Let’s talk about the individual concepts. You’ll notice that they are nearly all related to

VCL in some way.

Domain

When we talk about multi-tenancy, it’s not only about managing multiple organiza-
tions in one central place. It’s also about deploying VCL for multiple domains.

The controller is designed in such a way that a single Varnish server can host VCL con-
figurations for multiple domains without interference.

Behind the scenes, the Varnish Controller generates a routing VCL using VCL labels to
load the right VCL configuration for the right domain. The Varnish Controller needs ex-
clusive access to the Varnish instance so any existing V'CL code is unloaded from servers

that are registered with the Varnish Controller.

It is also possible not to use domains, in which case the deployment is considered rooz
deployment where you deploy one VCL per server, or one V'CL to many servers. Each
server in the Varnish Controller can either be a multi-tenant or a 700t deploy node.

644

CHAPTER 7: VARNISH FOR OPERATIONS

V(L

At this point, V’CL shouldn’t be a hard to concept to grasp. The controller manages a
collection of VCL files that can be deployed to Varnish servers via the agents that run on
them.

The VCL code could either be loaded for a specific domain or for the entire server it runs
on.

VCL configurations can either be the main VCL file of the configuration, or one or more
include files that can be included in the main configuration. The main VCL file is the
file that gets used in Varnish, and any include statement will then load the accompany-

ing files as the VCL is parsed by Varnish.

Deployment

A deployment is an entity that links VCL configurations to eligible agents. This is done
using zags: agents can have one or more tags and can be linked with multiple tags as
well.

But a deployment will not deploy the selected VCL configurations to all matching
agents. The deployment can be limited with a mznimum and a maximum parameter.

If for example the minimum is set to fwo agents and the maximum to three agents, the
deployment will at least try to find fwo available agents o consider the deployment suc-
cessful. If three agents are available, the VCL will be deployed to all three agents.

Creating this range facilitates autoscaling. As the capacity of the cluster grows, more
agents can register themselves with the controller, which results in automatic deploy-
ment if more agents register with the same tags. These can be both static tags or as-
signed tags.

VCL group

The VCL configurations can be grouped into VCL groups. The VCL group is what ties
it all together. As you may have noticed, VCL groups is at the top of the diagram of core
concepts.

When defining a VCL group, a VCL configuration needs to be selected and one or more
deployments as well.

If the VCL group is to be used only for requests matching specific domains, the domains
will also be linked in the group. If not, the group considers this a dedicated server where
the VCL acts as the oot VCL.

645

CHAPTER 7: VARNISH FOR OPERATIONS

Agent

The agent is a small service that runs on the Varnish servers that are managed by the
Varnish Controller.

As mentioned, the agent leverages the Varnish management interface to perform man-
agement tasks. If the agent is configured in read-only mode, it will only use the manage-
ment interface to retrieve information.

Otherwise, the agent will also use the management interface to deploy VCL to the Var-
nish server.

L1111 Setup

If you have a Varnish Enterprise subscription, you can use packages to install the various
components. The individual components can be installed on the same machine, on
separate servers, or in any combination.

Whether you're using Debian, Ubuntu, Red Hat, or CentOS, the packages can be in-
stalled using the package manager of your choice.

The following packages are to be installed for the controller to work:
* varnish-controller-nats

* varnish-controller-brainz

* varnish-controller-api-gw

Of course, you’ll need a PostgreSQL installation as well.

On the individual Varnish servers that are to be managed by the controller, the var-
nish-controller-agent package needs to be installed.

If you want to interact with the Varnish Controller using the CLI, the varnish-con-
troller-cli package can be installed.

If you want to manage your Varnish cluster using a graphical user interface, you can
install the varnish-controller-ui package.

Both the CLI and the GUI leverage the Varnish Controller API, whereas the other com-
ponents interact via the NATS message queue.

711.1 Authentication & authorization

To keep access to the Varnish Controller as secure as possible, you can configure autho-
rized access.

646

CHAPTER 7: VARNISH FOR OPERATIONS

Either basic authentication can be used to gain access to the controller, but we also pro-
vide KeyCloak integration. KeyCloak is an open source identity and access management
solution that supports multiple identity providers. You can use it to facilitate single sign-
on, user federation and social login using OAuth2 and OpenlD Connect.

You can create separate organizations, each with its own users. Users can be organiza-
tion administrators or regular users. For each user, fine-grained permissions can be set.
Even organizations can have difterent KeyCloak integrations or basic authentication.

7111 The API

The primary interface of the Varnish Controller is the RESTful API. Any other type of
client will also use the A P! to get things done.

The first thing you need to do when you want to access or change resources via the 4P/
is to log in.

The /api/v1/auth/login endpoint does exactly that. Here’s an example:

$ curl -X POST -utest:test http://localhost:8080/api/v1/auth/login
{"accessExpire":1611232848,"accessToken":"eyJhbG...",
"refreshExpire":1611235848, "refreshToken":"eyJhbG..."}

Via the username test and password test we manage to create an access token and a
refresh token. The access token can be used in subsequent 4 PI calls in the form of a Bear-
er Authentication Token.

This example uses http://localhost:8080 and the AP gateway endpoint. It also
uses very simplistic credentials that are presented using basic authentication. This is
fine for testing, but in production, it will look quite different.

Here’s an easy way to extract the accessToken from the J[SON output via the jq pro-
gram. The extracted value is stored on disk in the access.token file.

$ curl -s -X POST -utest:test http://localhost:8080/api/vl/auth/login
| g -r ".accessToken" > access.token

Instead of having to paste the lengthy token in your curl command, you can directly
load it from the file, as illustrated in this example:

647

CHAPTER 7: VARNISH FOR OPERATIONS

$ curl -v -H "Authorization: Bearer $(cat accesstoken)" http://local-
host:8080/api/vl/agents | jq
[

{
"agentVersion": "1.0.1 - b9d5f3a892b8d8faef5e2986b8bel18822f-

4d6def",
"created": "2021-01-21T11:50:34.838827Z",
"id": 1,
"lastHeartbeat": "2021-01-21T12:38:22.555717Z2",
"lastStateChange": "2021-01-21T11:50:34.841335Z",
"name": "agentl",
"state": 1,
"tags": [
{
"created": "2021-01-21T11:50:34.8550427",
"id": 1,
"name": "prod",
"static": true,
"updated": "2021-01-21T12:38:15.563396Z"
}

1,
"updated": "2021-01-21T12:38:22.556023Z",

"varnishHost": "192.168.99.102",
"varnishPort": 6081,

"varnishState": "running",
"varnishVersion": "plus-6.0.6rl0 revision 048baeea9cfe2cdl33e-
5115da7elefa26d7901leb"
}
]
g
s

we’ll keep using jq, because it makes the JSSON output a lot more readable.

-

Here’s a final example where we’ll upload a VCL file to the controller:

$ curl -X POST -H "Authorization: Bearer $(cat accesstoken)" "http://
localhost:8002/api/v1/vcls" -d “{ "id": 2, "name": "synthok",
"source": "vcl 4.1;\n \n backend default none;\n \n sub vcl _recv {\n
return(synth(200,\"ok\"));\n }"}’ | Jq
{

"contentType": "text/plain; charset=utf-8",

"created": "2021-01-21T13:17:50.3050258Z",

"encoded": false,

"fileType": 1,

"id": 5,

"name": "synthok",

648

CHAPTER 7: VARNISH FOR OPERATIONS

"sha": "\"1736e032c6dd3d45d8aa81782b6c7131b481437ae86c90a-
c909260176a524cb3\"",

"source": "vcl 4.1;\n \n backend default none;\n \n sub vcl_recv
{\n return(synth(200,\"ok\"));\n }",

"updated": "2021-01-21T13:17:50.3050258Z"
}

Full Swagger API-based documentation is available via http://localhost:8080/
docs/index.html. Please change the hostname and the port of this URL to the
endpoint of your Varnish Controller API gateway.

7111 The CLI

The APl is nice, it works great, it is clean, but it’s still an 4Pl and not that user-friendly.

For people who are comfortable working on the command line, using the Varnish Con-
troller CLI is a significant improvement in terms of user experience.

If you have the varnish-controller-cli package installed, you can easily interact
using the vcli program.

Logging in is done via vcli login. You can pass the APl endpoint, your username,
password and organization:

$ vcli login http://localhost:8002 -u test -p test -o myorg
Configuration saved to: ~/.vcli.yml
Login successful.
-
Please note that the login UR L shouldn’t have an ending /.
. _J

vcli keeps track of the state and stores the access and refresh tokens in ~/.vcli.yml.
The next time you login, you can use the vcli login command and the refresh token
will ensure you have access again.

If you're logging in using admin credentials, there’s no need to mention the orga-
nization during the login procedure.

Listing agents is as simple as running vcli agent list

649

CHAPTER 7: VARNISH FOR OPERATIONS

$ vcli agent list

frocoodioocooons fosoccosos roscocosooscocoons fhocosoccoscacasoos ococoosos
+
| ID | Name | State | Varnish Host | Varnish Version | Tags
|
Focoodoscanooo Pococoosoo PFoscocoooasoasoos Pooococooooacosoas Fococoosoo
+
| 1 | agentl | Running | 192.168.99.102 | plus-6.0.6r1@ | (1)prod
|
fFocoodoscosooo fococcosoo foccococoosoosaos Pocosoccosoacosoas fococoasoo
+

N\

Here are the available vcli commands:
* account

° agent

* apilog

* deployment

o domains

e file

* help

e idp

* login
e logout

* organization
* permission

o session

* tags
° util
o vcl

e vclgroup
N version

When you use the help subcommand, you’ll get a lot more information about other
subcommands and their capabilities. Here’s an example of what vcli vclgroups is

capable of:
650

CHAPTER 7: VARNISH FOR OPERATIONS

$ vcli vclgroup help
Handle VCLGroup such as listing, add, delete or update.

Examples:
vcli vclgroups inspect 1
vcli vclgroups list
vcli vclgroups list -f name="*MyVCL*"
vcli vclgroups add MyVCLGroupName --vcl 1 --dep 1 --root
vcli vclgroups update 1 --name newName --root=false --dep 1,2
vcli vclgroups delete 1
vcli vclgroups stage 1
vcli vclgroups promote 1
vcli vclgroups delstage 1
vcli vclgroups stats 1

Usage:
vcli vclgroup [command]

Aliases:
vclgroup, vg, vgs, vclgroups

Available Commands:
add Add new VCLGroup
delete Remove a VCLGroup
delstage Delete a staging for a VCLGroup
deploy Deploy a VCLGroup
inspect Inspect a VCLGroup’s details
list List VCLGroups
promote Promote a staged VCLGroup from staging to production
reload Reload a VCLGroup on servers
stage Stage a VCLGroup
stats Show varnish statistics for VCLGroups
undeploy Undeploy a VCLGroup

update Update a vclGroup
- J

7111 The GUI

In terms of speed of execution for simple tasks, it’s tough to beat the efficiency of the

CLI However, a graphical user interface makes the controller a lot more user-friendly.

Whereas the CLI and API present the core concepts as individual resources, the GUI
will group these concepts into an intuitive interface. Some of the complexities are nicely

hidden.

Here are a couple of screenshots:

651

CHAPTER 7: VARNISH FOR OPERATIONS

56757 89637 196687 "
Aoy oy

Hit, miss and others stacked to requests [sec

NIE00 M550 112840 Harw N Hamin 12000
Top 5 agents by requests Top & agents by hits Top § agents by misses
serverd [a07a0] serverd serverd CIED
serverd ios0s] server? [17071] serverd [:]
server €D serverd @ serverz [2]
server] an serverl serverl o

Varnish Controller dashboard

The first screenshot features the dashboard. It contains an overview of various count-
ers, graphs, and lists. As this project evolves, more useful metrics will be integrated into
the dashboard.

652

CHAPTER 7: VARNISH FOR OPERATIONS

test.vcl

vel 4.0;

b4 productionvel x backend.vel x staging.vel x errormessage

sub vcl_recv {

rd
regsub(STRING, REGEX, SUB) inbuilt function
regsubal1(STRING, REGEX, SUB) 1inbuilt function
remote,ip wariables
req_top.http variables
req_top.method wvariables
req_top.proto variables
reg_top.url wvariables
req.backend_hint wvariables
return (synth(400));

od '= "GET" &%
'= "HEAD" &&

l= "PUT" &&

l= "POST" &&

l= "TRACE" &%

d 1= "OPTIONS" &&
1 != "DELETE" &&
I= "PATCH") {

return (pipe);

}

if (reqg.method = "GET" && req.method !'= "HEAD") {

return (pass);
}
if (reg.http. Aut

ratiurn fnnee’ -

ID: 7 Created: 2 minutes ago Updated: 2 minutes ago Lines: 161

Varnish Controller VCL editor

The next screenshot features the built-in VCL edstor. Not only can you upload VCL
files, but you can also create new ones. The editor has syntax bighlighting and code com-

pletion, which offers an excellent experience for composing VCL code.

653

CHAPTER 7: VARNISH FOR OPERATIONS

& Deployed in 3 agents ¥ Stage VCL change

VCLGroup name ‘eauss

vamish

Domaing reasied
vamish.com
docs varmish,com

@ Al new doman(s) Select from exdsting domains =

Deployment canfigurations 3

PA—— Mame resed
vamish_dc_prod vamish_dz_dev
Tags rewired Tags reauie: o

Deploy range "auine Deploy range mrasired
Min Max Min Max
2 2 1

VL maquies

[vamishvel Octions =

s Deployed in 3 agents

Varnish Controller VCL group creation

The following screenshots show how various configuration concepts are nicely integrat-
ed into a single workflow. This clearly shows how VCL groups, deployments, VCL files,
and domains are connected.

The end result is a deployable VCL group, and the last screenshot shows the overview of
available configurations:

WVCLGROUPS
* HAME ¢ DEDICATED DEPLOY STATE & MAIN VEL ¢ CREATED ¢ UPDATED
warmish Na - B vanishael less than a minute g0 lessthan % secorddsag o View & edt
1 Duglcate
vannish_dedcated Yes ® ror DrELaY B ceccmedycl less than § seconds ago Iess than 5 secords ag
& Doploy
8. Undoploy
w Oolots

Varnish Controller VCL group creation

654

CHAPTER 7: VARNISH FOR OPERATIONS

Please note that by the time you read this book, or by the time you're considering
using the Varnish Controller, the GUI might look a bit different. Despite stable
releases, this product is still in development. There will still be a lot of feature
updates, but also cosmetic updates that will impact the look and feel of the GUIL
Follow https://docs.varnish-software.com/varnish-controller/changelog/ for Var-
nish Controller changelogs.

~

655

CHAPTER 7: VARNISH FOR OPERATIONS

/.13 Summary

Thanks for sticking around because that was quite the trip. This chapter is by far the
longest one, but in our opinion also the most exciting one.

It goes to show that there’s a lot more to Varnish than writing some VCL and putting
Varnish in front of your web server.

Deploying Varnish at scale and using it to build a content delivery platform results in ex-
tra concerns and requirements that go beyond a single varnishd instance with 256 B
of object caching.

Hopefully this chapter inspired you to use the various tools that the Varnish project
offers.

There’s no denying that Varnish’s logging and monitoring tools offer unprecedented
levels of insight compared to regular web servers.

And although Varnish Cache is used by millions of websites at incredible scale, this
chapter has shown where Varnish Enterprise really shines. In terms of security, high
availability, custom statistics, large-scale persistent storage and cluster management,
Varnish Enterprise provides the goods.

Don’t get me wrong, although I work at Varnish Software, and although I use Varnish
Enterprise on a daily basis, this is not a commercial pitch. This book is all about features
and capabilities, and hopefully you are convinced about the technical capabilities of

both the project and the product.

In my experience, Varnish usually ends up being the responsibility of the ops ream.
That’s why this Varnish for operations chapter deserves the amount of effort, the level of
detail, the diverse topics, and the page count that we’ve put into it.

Get ready for chapter 8 where we will take VCL to the next level. Varnish is more than a
take-it-or-leave-it cache, and even in situations where application state prevents us from
caching, there are ways to implement stateful logic o the edge and still cache the con-
tent.

656

CHAPTER 8: DECISION-MAKING ON THE EDGE

Chapter 8: Decision-making
on the edge

Welcome to chapter 8 where we will focus on decision-making on the edge.

Varnish is more than a take-it-or-leave-it cache. Most Varnish implementations focus on
caching as much as possible, using 'CL to explicitly include content, and exclude con-
tent that is not cacheable. The zake-it part refers to cacheable content, the leave-it part
to non-cacheable content.

Despite good hit rates and acceptable performance at a large scale, the non-cacheable
content can still be a weak spot.

The reasons why certain content cannot be cached can sometimes be quite trivial:
* Authentication gets in the way
* Simple logic based on the value of a cookie

By leveraging VA ODs and bypassing buzlt-in VCL logic, it is entirely possible to cache
otherwise uncacheable content.

Varnish can act as an authentication gateway; Varnish can serve personalized content
without creating too many cache variations; Varnish can even interact with third-party
systems to feed the cache with external data.

Let’s write some VCL to do more on the edge and to increase our hit rate.

657

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.1 Dealing with state

Caching stateful content is very challenging, and out-of-the-box Varnish will not cache
this kind of content.

Here’s the built-in VCL extract that proves this:

if (req.http.Authorization || req.http.Cookie) {
/* Not cacheable by default */
return (pass);

If the client presents an Authorization header or a Cookie header, the request is state-
ful, and the corresponding response can therefore not be served from cache.

Even if the client request doesn’t introduce state, it is possible that a backend response
can force a state change. Here’s a modified and simplified version of how Varnish deals
with this at the backend level in its built-in VCL:

sub vcl_backend_response { A
if(beresp.http.Set-Cookie) {
set beresp.ttl = 120s;
set beresp.uncacheable = true;
}
return(deliver);
¥
\§ J

You will probably remember this from chapters 3 and 4, where we talked about the
built-in VCL in alot of detail: if the origin introduces a Set-Cookie header, it implies a
state change. Therefore Varnish will deem the response uncacheable.

The reality is that most websites use cookies and that the buzlt-in VCL is not sufficiently
equipped for real-world applications, as its caching policy is overly cautious. In chapter
4 there is a section called Making changes where we showed you how to write VCL that
gets values from cookies, and how you can create cache validations using cookies.

Let’s crank it up a notch, and use Cookie and Authorization header values to deliver
cacheable personalized content. These headers are mainly used as identifiers. The actual
content comes from an external service: either an API or a database.

658

CHAPTER 8: DECISION-MAKING ON THE EDGE

The idea is that the origin server no longer serves stateful output for select content. In-
stead the origin will serve a template where the placeholder is replaced by personalized
data coming from an external system. All of this happens on the edge, which means
we’re really caching the uncacheable.

The rest of this chapter features concepts and examples that relate to this idea.

659

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.2 Body access

Before we can start personalizing the caching experience, we need to cover some funda-
mentals.

An important one is understanding how to access the body of an HT'TP request or re-
sponse.

A request body may contain a field or a parameter that we will use to identify the user.
This request body information can also be used to create a cache variation.

We can also inspect and rewrite the response body. This means we can modify the out-
put o the edge without having to access the origin application.

8.2.1 Request body access

Let’s start with the request body. The request body doesn’t usually occur in a GET meth-
od. Although it is theoretically possible, Varnish just strips it off before sending the
request to the origin.

This means the request body is used for requests that use a POST, PUT, PATCH, or maybe
even a DELETE method.

Unfortunately there is no req.body variable in V’CL, and bereq.body can only be un-
set.

Accessing the request body starts by calling std.cache_req_body(). This function
call is required to ensure that the request body is read from the client and stored in
memory. Otherwise, the request body could only be read once and could not be ac-
cessed in other parts of the VCL.

The function takes an argument that defines the size of a cacheable request body.

The function argument is a by te type, as illustrated below:

vcl 4.1;
import std;

sub vcl_recv {
if(std.cache_req_body(1KB)) {
std.log("Request body accessible");
} else {
std.log("Request body not accessible");

}

660

CHAPTER 8: DECISION-MAKING ON THE EDGE

This means the request body is only accessible if the size is smaller than 7 KB.

Once std.cache_req_body() has been called, there is a variety of VA/ODs we can use
to leverage this information.

Storing the request body in memory by calling std.cache_req_body also makes sense
when you restart or retry a transaction. Because the request body needs to be sent to the
origin multiple times, we cannot afford losing this information. That’s why we cache it.

vmod__bodyaccess

The easiest way to access the request body is by using vmod_bodyaccess. Itis an open
source VMOD that is part of the Varnish Software VMOD collection. See chapter 5 to
refresh your memory.

vmod_bodyaccess has a pretty limited 4Pl and is able to hash the request body, cal-

culate the length of the request body, search for strings in the body, and log the request
body to the VSL.

Let’s store the request body in the hash first. Here’s how you do this:

vcl 4.1;

import std;
import bodyaccess;

sub vcl_recv {
std.cache_req_body(10KB);
set req.http.x-method = req.method;
return(hash);

}

sub vcl_hash {
bodyaccess.hash_req_body();

}

sub vcl_backend_fetch {
set bereq.method = bereq.http.x-method;

}
& J

Because built-in VCL doesn’t allow POST calls to be served from cache, we must over-
ride this behavior in vcl_recv. It starts with explicitly calling return(hash) to bypass
standard behavior.

661

CHAPTER 8: DECISION-MAKING ON THE EDGE

Another trick we must do is store the original request method in a custom request head-
er. If we try to cache a POST call, Varnish strips the request body and turns the request
into a GET request.

That’s why we reset the request method inside vcl_backend_fetch.

It’s also pretty obvious that we’re only caching request bodies that are at most 10 KB
in size. The actual caching happens by adding bodyaccess.hash_req_body() to
vcl_hash.

When you run the following command, you’ll get the output specifically for the
key=value post data:

[cur‘l -XPOST -d "key=value" localhost]

And when you change the post data to key=otherValue, the output will be different:

[cur‘l -XPOST -d "key=otherValue" localhost]

Justlook at the Age header. It will tell how long it has been in cache. Changes in
post data will result in cache variations, which will result in different values for the
Age header.

The bodyaccess.rematch_req_body() function allows us to inspect the request
body, making it possible to reject unwanted requests and make request body caching
conditional. Here’s an example:

vcl 4.1;

import std;
import bodyaccess;

sub vcl_recv {
std.cache_req_body(10KB);
if(bodyaccess.rematch_req_body("key=[*=]+") == 1) {
set req.http.x-method = req.method;
return(hash);

}

sub vcl_backend_fetch {
if(bereq.http.x-method) {

662

CHAPTER 8: DECISION-MAKING ON THE EDGE

set bereq.method = bereq.http.x-method;

}

sub vcl_hash {
bodyaccess.hash_req_body();

}
g J

In this example, we only cache requests where the request body contains a field named

key. If it is set to key=value, then the request body is cached.

The following curl call is cacheable:

[cur‘l -XPOST -d "key=value" localhost]

And because the following curl call doesn’t match the key=[*=]+ regular expression, it
is not cacheable:

[cur‘l -XPOST -d "key" localhost]

If you're interested in what the actual length of the request body was, you can use the
bodyaccess.len_req_body() function.

And if you want the request body to be visible in varnishlog, you can leverage body-
access.log_req_body(STRING prefix = "", INT length = 200), which takes

a prefix and a max line length argument, so the body could be split up across multiple
lines.

xbody

A more feature-rich alternative to vmod_bodyaccess is xbody. It’s part of Varnish En-
terprise, and it’s a very useful tool in your edge-computing toolbox.

vmod_xbody is capable of caching the reguest body, just like vmod_bodyaccess, but it
can also access the response body. And more importantly, the module is also capable of
modifying request and response bodies.

Here’s the vmod_xbody equivalent of request body caching:

663

CHAPTER 8: DECISION-MAKING ON THE EDGE

vcl 4.1;

import xbody;
import std;
import blob;

sub vcl_recv {
std.cache_req_body(10KB);
if(xbody.get_req_body() ~ "key=["=]+") {
set req.http.x-method = req.method;
set req.http.x-hash = blob.encode(encoding=BASE64,blob=xbody.
get_req_body_hash(md5));
return(hash);
}
}

sub vcl backend fetch {
if(bereq.http.x-method) {
set bereq.method = bereq.http.x-method;
}
}

sub vcl hash {
hash_data(req.http.x-hash);

}
- J

You may have noticed that we execute the xbody.get_req_body_hash() function
from within vcl_recv. That’s because this function is only accessible from that sub-
routine. The return type of this function is a BLOB, so we need vmod_blob to turn it
into a string.

In the end, we can use the x-hash request header to transport the request body hash to
the vcl_hash subroutine.

Because xbody.get_req_body() returns a string, we can make our cache variations
more efficient. The vmod_bodyaccess example used the entire request body as a cache
variation. But if we use regsub() we can choose the exact part of the request body we
want to vary on.

Here’s an example where we only create variations on the value of the key field:

vcl 4.1;

import xbody;
import std;

664

CHAPTER 8: DECISION-MAKING ON THE EDGE

sub vcl _recv {
std.cache_req_body(10KB);
if(xbody.get_req_body() ~ "(*|.+&)key=([*"\=\&]+)(&.+|$)") {
set req.http.x-method = req.method;
set req.http.x-hash = regsub(xbody.get_req_body(),"(*]|.+&)
key=(["\=\&]+) (&.+|$)","\2");
return(hash);
}
}

sub vcl_backend_fetch {
if(bereq.http.x-method) {
set bereq.method = bereq.http.x-method;
}
}

sub vcl_hash {
hash_data(req.http.x-hash);

}
- J

You've probably spotted that the regular expression we use to match the key is more
complicated. That’s true, but because it’s also more intelligent: key=value is a typical
pattern we try to match. But without the extra regex logic, mykey=value would also
match.

The following curl call would create a variation for the term value:

[cur‘l -XPOST -d "key=value" localhost]

The following curl call, which has a different request body, would also hit that same
variation:

[cur‘l -XPOST -d "foo=bar&key=value" localhost]

By being more deliberate about the way we create request body variations, we can signifi-
cantly increase our hit rate.

And because our regular expression is more secure, the following curl call would miss
that variation and result in a cache miss:

[cur‘l -XPOST -d "mykey=value" localhost]

665

CHAPTER 8: DECISION-MAKING ON THE EDGE

json.parse_req_body()

vmod_json is a Varnish Enterprise module that can parse [SON data and can return in-
dividual /SON frelds. From a request body point of view, the json.parse_req_body/()
function is of particular interest to us.

Let’s revisit the earlier examples, and try to cache POST requests using the function.

(N
vcl 4.1;

import json;
import std;

sub vcl_recv {
std.cache_req_body(10KB);
json.parse_req_body();
if (json.is_valid() && json.is_object() && json.get("key")) {
set req.http.x-method = req.method;
return(hash);

}

sub vcl_backend_fetch {
if(bereq.http.x-method) {
set bereq.method = bereq.http.x-method;
}
}

sub vcl_hash {
hash_data(json.get("key"));

}
& J

The json.parse_req_body() function in this example will parse the request body as
JSON and store the result in a new JSON context. Via json.get() we can fetch individ-
ual values at a later stage.

However, via json.is_valid() we can check whether or not the valid /SON was
parsed. Via json.is_object() we can check whether or not the /SON data is an object.
And finally, we check whether or not the key property is found inside the J[SON object
by using json.get("key").

If all of these conditions apply, we can look the object up in cache, even if the request is
a POST request. If not, the built-in VCL will handle it from there.

And just like in the previous example, we only create variations on specific fields. In this
case the value of the key property.

666

CHAPTER 8: DECISION-MAKING ON THE EDGE

Here’s a curl call where the payload matches the criteria, which results in this POST call
being cached:

[cur‘l -XPOST -d "{ \"key\": \"value\"}" localhost]

Even though the following example has a different J[SON request payload, it will also
match the initial variation because the key property exists:

[cur‘l -XPOST -d "{ \"key\": \"value\", \"foo\": \"bar\" }" localhost]

8.2.2 Response body access

Analyzing and changing the response body is where it gets really exciting.

In very basic terms, you can change the response body by setting the beresp.body and
resp.body variables.

Unfortunately their usage is very restricted. resp.body can only be setin vcl_synth,
as illustrated below:

~N
vcl 4.1;

sub vcl_recv {
return(synth(200));

}

sub vcl_synth {
set resp.body = "Welcome";
return(deliver);

}
g J

And beresp.body can only be setin vcl_backend_error:

vcl 4.1;
backend default none;
sub vcl_backend_error {

set beresp.body = "Welcome";
return(deliver);

667

CHAPTER 8: DECISION-MAKING ON THE EDGE

Alternatively, the synthetic() function can be used to achieve the same, and depend-
ing on the subroutine it is used in, either beresp.body or resp.body will be set.
xbody revisited

Remember xbody? As mentioned this MOD can also inspect and modify the response
body.

We promise to present really good examples where vmod_xbody and vmod_edgestash
are combined. But that’s for later; first let us show you some really basic examples:

Imagine the following obnoxiously hypothetical response body:

[Hello world]

The following VCL example will replace world with the 7P address of the client:

vcl 4.1;
import xbody;

sub vcl_backend_response {
xbody.regsub("Hello \w+","Hello " + client.ip);

}

The end result on our local computer would be:

[Hello 192.168.16.1]

We can also use the xbody.capture() function to capture values that we can retrieve
using xbody.get() and xbody.get_all() afterwards:

vcl 4.1;

import xbody;
import std;

sub vcl _backend_response {
xbody.capture("name","Hello (\w+)","\1");
¥

sub vcl_deliver {
std.log("Name:

+ xbody.get("name"));

}
g J

668

CHAPTER 8: DECISION-MAKING ON THE EDGE

Although the response body remains untouched when we use xbody.capture, the cap-
tured value will be logged in VSL:

$ varnishlog -g raw -I VCL_Log:Name
32770 VCL_Log ¢ Name: world

Trust us: we’ll show you a more exciting example once we’ve introduced you to vmod_
edgestash.

Edgestash

Speaking of which, Edgestash is one of our favorite Varnish Enterprise features, which is
available through vmod_edgestash.

You’ve probably heard of Mustache, a simple handlebars-based templating language that
originated in the JavaScript world. It has tons of implementations on other languages
and is somewhat of an industry standard in terms of templating.

Edgestash is a module that processes Mustache handlebars. Basically, you have Mustache
on the edge, or Edgestash, if you will.

The idea is that placeholders like {{variable}} are put into your templates. The busi-
ness logic of your application is responsible for parsing the values into those placehold-
ers.

An origin application can emit a placeholder for potentially zon-cacheable, personalized
content, and have Varnish cache the otherwise uncacheable page and populate it with
its required value.

This value may be identified by a session cookie or authentication credentials. The basic
business logic that identifies the user and collects the stateful information can be off-
loaded to Varnish. Edgestash will be responsible for assembling the bits and pieces and
parsing it into a single HTTP response body.

Imagine that your origin application returns the following output:

[Hello {{name}}]

The {{name}} placeholder could then be replaced by the client IP address using the fol-
lowing VCL code:

669

CHAPTER 8: DECISION-MAKING ON THE EDGE

~
vcl 4.1;
import edgestash;
sub vcl_backend_response {
if(beresp.http.edgestash) {
edgestash.parse_response();
}
}
sub vcl_deliver {
if (edgestash.is_edgestash()) {
edgestash.add_json({"
{
"name":""} + client.ip + {""
}
"1
edgestash.execute();
}
}
_ J

At first, it doesn’t seem more interesting than the xbody.regsub() example. Howev-
er, not only does Edgestash support the full Mustache syntax, the parsing happens at
delivery time in vcl_deliver instead of at cache-insertion time in vcl_backend_re-
sponse.

This means values could be injected on-the-fly. It’s also important to note that JSSON is
the basis of the parsing.

It’s also important to note that the previous V'CL example only processes Mustache han-
dlebars when the response contains an edgestash response header. This avoids wasting
CPU cycles on non-Mustache content.

This is the parsed JSON that is processed by Edgestash:

"name":"192.168.16.1"

And this is the final output:

(: Hello 192.168.16.1 :)

670

CHAPTER 8: DECISION-MAKING ON THE EDGE

JSON endpoint

Manually composing a J[SON string in edgestash.add_json() can be clunky at times.
A very elegant way to inject J[SON is by using the edgestash.add_json_url().

This function takes an HTTP endpoint as its first argument and expects the response to
be JSON output. RESTful APIs are excellent candidates for these endpoints.

This allows you to split cacheable responses and stateful content into separate end-
points.

Here’s an example:

~
vcl 4.1;
import edgestash;
sub vcl _backend_response {
if(bereq.url == "/api") {
edgestash.index_json();
} elseif(beresp.http.edgestash) {
edgestash.parse_response();
}
}
sub vcl_deliver {
if (edgestash.is_edgestash()) {
edgestash.add_json_url("/api");
edgestash.execute();
}
}
_ _J

Aslong as the /api endpoint produces a JSON object that has a name property, the val-
ue can be parsed into the placeholder.

If the /SON endpoint is located on another domain, you can use the second argument
to specify the hostname. This could end up being edgestash.add_json_url("/

api","api.example.com").

The edgestash.index_json() function inside vcl_backend_response will index
the JSON for faster processing when edgestash.execute() is called.

Advanced Mustache templafing

The Mustache templating language does more than replace placeholders with actual
values.

671

CHAPTER 8: DECISION-MAKING ON THE EDGE

It can perform loops; it has conditionals; there are variables and expression, and basic
arithmetic.

Imagine the following JSON output, which represents a shopping cart:

()
[
{
"id": 1,
"name": "Watch",
"price": 25,
"amount": 2

bs

{
"id": 2,
"name": "Shoes",
"price": 890,
"amount": 1

)

1
_ _J

This is stateful data that depends on a session cookze. The curl call that is required to
retrieve the /SON could be the following:

curl -s -H"Cookie: PHPSESSID=9755a8b773f76bffeda28f746ac3957e" local-
host/session

As you can see the Cookie: PHPSESSID=9755a8b773f76bffeda28f746ac3957e head-
er is set to identify the user.

4)
[
{
"id": 1,
"name": "Watch",
"price": 25,
"amount": 2

"id": 2,

"name": "Shoes",
"price": 890,
"amount": 1

672

CHAPTER 8: DECISION-MAKING ON THE EDGE

The goal is to turn this JSON data into the following HTML code:

Watch: 2 x 25 EUR
<1li>Shoes: 1 x 80 EUR

50 EUR</1i>
80 EUR</1li>

This means we have to find a way to list the product name for each item in the cart, but
also the price and the product quantity.

The following Mustache syntax would be required to do the job:

{{#.}}

{{name}}: {{amount}} x {{price}} EUR = {{amount * price}}
EUR</11i>

{{/}}

The {{#.}}...{{/.}} expression can be used to iterate over a [SON array. The {{amount
* price}} expression does a multiplication.

Whereas {{#.}}{{/.}} was used in the previous example to iterate through an array,
{{#tname}}{{/name}} could be used to check whether or not the name property exists.

Here’s some example JSON:

"name": "Thijs"

And here’s the conditional:

{{#name}}Welcome {{name}}{{/name}}
{{~name}}Welcome guest{{/name}}

Under normal circumstances Welcome Thijs would be returned. If for some reason
the name property is not in the /[SON output, or the JSON endpoint is not accessible,
Welcome guest would be returned.

673

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.2.3 An e-commerce example

In this subsection, we’ll show you an example where we can combine xbody and
Edgestash to cache personalized data.

The use case is an e-commerce platform. In this case it’s written in PHP and uses the
Symfony framework. There is a shopping cart that shows the number of items in the
cart.

Sessions

The shopping cart is stored by the framework’s session handler in the /session folder
on disk. The session id could, for example, be 9755a8b773f76bffeda28f746ac3957e.

The corresponding session file would be /sessions/sess_9755a8b773f76bffeda-
28f746ac3957e, and the cookie that tracks this session would be Cookie: PHPSES-
SID=9755a8b773f76bffeda28f746ac3957e.

Inside sess_9755a8b773f76bffeda28f746ac3957e you could find the following ses-
sion data:

_sf2_attributes|a:2:{s:4:"cart";a:1:{i:1;i:9;}s:11:"itemsInCar-
t";i:9;} sf2 metala:3:{s:1:"u";i:1611851104;s:1:"c";1:1611759335;s:1:
“1";5:1:“0";}

The session file is serialized using PHP’s built-in serializer. It’s not exactly JSSON, but
you can spot certain data structures. The number of items that this user has in the
shopping cart is represented by s:11:"itemsInCart";i:9;. This means this user has
nine items in the cart.

Cacheability

When you visit the e-commerce platform, this value is visible in the HTML source code:

[9]

When you don’t have any items in the shopping cart, the HTAML element remains
empty, no session is initialized, and no cookie is set. This means the page is perfectly
cacheable.

However, as soon as an element is stored in cache, the cookie is set:

674

CHAPTER 8: DECISION-MAKING ON THE EDGE

Set-Cookie: PHPSESSID=4fde6819330b5d7d2166ae8fcab71a52; path=/; Http-
Only; SameSite=lax

The Set-Cookie will trigger a hit-for-miss, and subsequent requests that have the
Cookie header will trigger a pass. This makes the platform uncacheable.

But even if we decide to cache despite the cookie, the shopping cart value will also be
cached. This is not acceptable.

An alternative solution would be to create a cache variation per session id. Unfortunate-
ly, this will impact the hit rate.

The caching solution

The solution we’re going to apply is a non-intrusive one that doesn’t require any code
changes.

First we’re going to match 9 with xbody.regsub
and inject Edgestash handlebars. This makes the page cacheable.

We’re going to use vmod_kvstore to store the items in the cart inside Varnish. The
key-value store has a value per session id. At delivery time vmod_edgestash will parse
the value into the placeholder and display the right value per session. This happens
without accessing the origin application.

The key-value store will be populated from the session file. Using vmod_file we can read
the right session file, extract the itemsInCart value, and store it in the key-value store.

To avoid excessive file system access, we’ll only read the session file when an item is
added to or removed from the cart. This requires intercepting requests for /add/to/
cart/$id and /remove/from/cart/$id.

The VCL code

Let’s go over the VCL code for our non-intrusive caching solution:

(N
vcl 4.1;

import edgestash;
import xbody;
import cookieplus;
import kvstore;
import file;

675

CHAPTER 8: DECISION-MAKING ON THE EDGE

sub vcl init {
new cart = kvstore.init();
new sessions = file.init("/sessions/");

As you can see, we need a number of VMODs to get the job done. In vcl_init we're
initializing the key-value store as the cart object.

We’re also configuring file system access by creating a sessions object that has access
to the /sessions folder.

The next step involves checking for incoming requests:

sub vcl_recv {
cookieplus.keep("PHPSESSID");
cookieplus.write();
if(req.url ~ "~/add/to/cart/[0-9]+$" || req.url ~ "~/remove/from/
cart/[0-9]+") {
return(pass);

}
if(req.url == "/") {
return(hash);
. }

- J

We’re making sure that only the PHPSESSID cookie is kept. Any other cookie is re-
moved.

The next step involves intercepting requests to /add/to/cart/$id and /remove/from/
cart/$id. When either of these is received we perform a return(pass) to make sure
these pages aren’t cached.

Time to see how xbody facilitates the use of Edgestash in vcl_backend_response:

~
sub vcl_backend_response {
if(bereq.url == "/") {
unset beresp.http.Cache-Control;
set beresp.ttl = 3600s;
xbody.regsub({"(]+>)(\w*)(</
span>)"},
{"\1{{items-in-cart}}\3"});
edgestash.parse_response();
if(bereq.url ~ "~/add/to/cart/[@-9]+$" || bereq.url ~ "~/remove/
from/cart/[0-9]+") {
call refresh_cart;
}
}
_ J

676

CHAPTER 8: DECISION-MAKING ON THE EDGE

When we first receive the backend response from the origin server, we look for the
HTML element that contains the items in cache.

xbody.regsub() will turn 9 into {{items-in-cache}}. This placeholder will be cached,
and edgestash.parse_response() will ensure it gets recognized as an Edgestash
placeholder.

vcl_backend_response also contains logic to refresh the shopping cart information
when we receive the backend response for requests that add or delete shopping cart
items.

The refresh happens by calling the custom refresh_cart_memcached subroutine.
Let’s have a look at this mysterious refresh_cart subroutine:

sub refresh_cart {
if(sessions.exists("sess_" + cookieplus.get("PHPSESSID"))) {
set beresp.http.session = sessions.read("sess_" + cookieplus.
get ("PHPSESSID"));
set beresp.http.items = regsub(beresp.http.ses-
sion,{".+s:11:"itemsInCart";i:([@-9]+);.+"},"\1");
cart.set(cookieplus.get("PHPSESSID"),beresp.http.items);
} else {
cart.set(cookieplus.get("PHPSESSID"),"0");
}
unset beresp.http.session;
unset beresp.http.items;
}
_ J

This subroutine will attach the value of the PHPSESSID to sess_ and check whether
the corresponding file exists on disk. If that is the case, it reads contents from the file. In
our case this will be sess_9755a8b773f76bffeda28f746ac3957e.

And again, this is the what the session file looks like:

_sf2_attributes|a:2:{s:4:"cart";a:1:{i:1;i:9;}s:11:"itemsInCar-
t";i:9;} sf2_metala:3:{s:1:"u";1:1611851104;s:1:"c";i:1611759335;s:1:
"1";5:1:"0";}

Using regsub() we’re going to extract the value of the itemsInCart key. The

A4s:11:"itemsInCart";i:([0-9]+);.+ regular expression takes care of that, and the
first regex capturing group contains this value. This value gets temporarily stored inside
the beresp.http.items header, before finding its way to the cart key-value store.

677

CHAPTER 8: DECISION-MAKING ON THE EDGE

Via cart.set(cookieplus.get("PHPSESSID"),beresp.http.items), a key is stored
per session, containing the number of items inside the shopping cart. This value will
be used later by Edgestash. If the session file doesn’t exist, we set the value to an empty
string.

And finally, it’s a matter of parsing the right ztems-in-cart value into the Edgestash place-
holder:

~
sub vcl_deliver {
if(edgestash.is_edgestash()) {
edgestash.add_json({"{ "items-in-cart": ""}
+ cart.get(cookieplus.get("PHPSESSID"),0)
£ " 1;
edgestash.execute();
}
}
_ J

The end result

In the end we can store a template in cache that we can populate on-the-fly based on a
placeholder. In this case, the HTAML code of the application didn’t even have the place-
holder.

Thanks to xbody, the response body was modified, a placeholder was created, and
Edgestash managed to parse in a value per user without having to create a cache varia-
tion per user.

We believe that this is a very powerful example of how to combine both modules, along
with some other Varnish Enterprise VAMODs.

()
A hard requirement for this example to work was having access to the session files

of the application. When Varnish is hosted on the same machine as the origin
application, that’s an easy task. Otherwise shared storage would be required. But
there are other, more creative ways of tackling this issue, as you will see later in this

chapter.
- J

678

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.3 HTTP calls

Varnish is all about HTTP:

* Itacceptsincoming HTTP requests.

* Itreturns HTTP responses.

e Itconnects to the origin and sends backend HT TP requests.
e Itstores backend HTTP responses in cache.

The entire flow of Varnish is centered around HT TP, and yet this section is about mak-
ing HT'TP calls using vmod_http.

vmod_http is a Varnish Enterprise module, but there is probably an open source
equivalent out there in the community.

Sometimes your use case requires making H7TTP calls to endpoints that are not related
to the incoming HTTP request that Varnish is currently processing. This could be an
API call to fetch stateful data. This could be an internal subrequest to another resource.

Let’s look at some practical use cases.

8.3.1 Prefetching

A very common use case is using vmod_http for prefetching. This means retrieving
content before it is actually requested by the client. The assumption is that the client
will soon request that content, and having it in cache ahead of time will improve the
user experience.

Link prefetching

Link prefetching is where the origin application requests prefetching of certain resourc-
es via a Link response header or a <link> HTML tag.

This mechanism is mostly used to load CSS, JavaScript, images, favicons and web fonts
that are required by the website theme.

Here’s a VCL example where link prefetching is done by inspecting the Link response
header:

679

CHAPTER 8: DECISION-MAKING ON THE EDGE

vcl 4.1;
import http;

sub vcl_recv {
set req.http.X-prefetch = http.varnish_url("/");
}

sub vcl_backend_response {
if(beresp.http.Link ~ "<([*>]+)>; rel=(prefetch|next)") {
set bereq.http.X-1link = regsub(beresp.http.Link,
AR TF)> K, ML)
set bereq.http.X-prefetch = regsub(bereq.http.X-prefetch,
"/$", bereq.http.X-1link);
http.init(0);
http.req_copy_headers(0);
http.req_set_url(@, bereq.http.X-prefetch);
http.req_send_and_finish(0);

}
- J

Imagine that an HTTP response contains the following response header:

[Link: </style.css>; rel="prefetch"]

The VCL example above would extract the URL from this header, and then use it to
make an asynchronous H71TP request via vmod_http.

This means that we don’t wait for the response to be returned because frankly we don’t
really care about the response. We just want to trigger a subrequest that fetches the
required resource. Eventually the client will request /style.css, and we assume that it
will be in cache thanks to our prefetching logic.

The same can be done by parsinga <link rel="prefetch" href="/style.css" />
HTML tag in the response body. These tags are designed to trigger prefetching at the
browser level, but we might as well benefit from them in Varnish too.

Video prefetching
Varnish can also be used to accelerate video platforms, as you’ll see in the next chapter.

OTT video streaming chops up encoded video files into various segments, each segment
representing a couple of seconds of video playback.

680

CHAPTER 8: DECISION-MAKING ON THE EDGE

A playlist file contains the endpoints of the various video segments. It may look like
this:

/vod/videol 1.ts
/vod/videol 2.ts
/vod/videol 3.ts
/vod/videol 4.ts
/vod/videol 5.ts

Because of the sequential naming format, it’s quite easy to guess what the URL of the
next segment will be. And that’s exactly what the http.prefetch_next_url() does.

The following VCL example will use this function to preload the next video segment:

~
vcl 4.1;
import http;
sub vcl_recv {
if (req.url ~ "~/vod/video[0-9]+ [0-9+]\.ts") {
http.init(0);
http.req_copy_headers(0);
http.req_set_method(@, "HEAD");
http.req_set_url(e, http.prefetch_next_url());
http.req_send_and_finish(0);
}
}
_ J

http.prefetch_next_url() looks for numeric sequences and does a standard incre-
ment of one. This can be altered through the count argument.

The prefix argument defines a pattern that should be matched in the URL before con-
sidering the increment.

The url argument can be used to set the input URL that should be examined, whereas
url_prefix allows you to prefix the URL with a scheme or port. If url or url_prefix are
not set, http:// is used as the scheme, std.port(server.ip) is used to determine the
port, and req.url is used to determine the URL.

There’s also a base argument, which defaults to DECIMAL, which sets the number sys-
tem that is to be used. This is DECIMAL, HEX or HEX_UPPER.

The function can be run standalone, and here’s an example that contains some argu-
ments:

681

CHAPTER 8: DECISION-MAKING ON THE EDGE

http.prefetch_next_url(prefix="test",
url="/testl.txt",
url_prefix="https://test.com:1234",
count=4

)s

Unsurprisingly, the output goes as follows:

[https://test.com:1234/test5.txt

The http.prefetch_next_url() can also be used outside of the video-stream-
ing scope. Paginated web content is also a good use case.

8.3.2 APl calls

It is also possible to perform HTTP requests to remote hosts that are not directly relat-
ed to the origin platform. 4P/ calls could be made, and the output could be parsed in
VCL.

Here’s an example where we query a RESTful API to get the current weather in Lon-
don:

vcl 4.1;
import http;

sub vcl_backend_response {
http.init(e@);
http.req_set_header(@, "Host", "www.metaweather.com");
http.req_set_url(@, "https://www.metaweather.com/api/loca-
tion/44418/");
http.req_send(0);
http.resp_wait(0);
if (http.resp_get_status(@) != 200) {
return (error(500,""));
}
json.parse(http.resp_get_body(0));
xbody.regsub({"(<hl class="fw-1light">The weather in London:)
([*<1+)(</h1>)"},
"\1"+json.get(".consolidated_weather[@].weather_state_
name")+"\3");

}

682

CHAPTER 8: DECISION-MAKING ON THE EDGE

Before the object is stored in cache, a request to https://www.metaweather.com/api/
location/44418/ is made, which returns /SSON data containing the weather in Lon-
don.

json.parse(http.resp_get_body(0)) will parse the resulting J[SON output, which
we can filter using json.get(). In this case we care about the consolidated_weath-
er property. This is an array, and we grab the first item from that array and return the
weather_state_name property to get the current weather.

In the end we use xbody.regsub() to inject the actual weather.

Imagine receiving the following HTML tag from the origin:

[<h1 class="fw-1light">The weather in London: Sunny</h1l>]

Our vmod_http, vmod_json and vmod_xbody logic will cause the following string to
be stored in cache:

[<h1 class="fw-1light">The weather in London: Light Rain</h1>]

8.3.3 Authentication

This chapter has a section dedicated to authentication, so we won’t go into great detail
here. We will just throw in one basic example where Varnish can act as an authentication
gm‘ewﬂy.

Imagine that you want to protect your web application with basic authentication. But if
you remember the built-in VCL, a return(pass) will take place when an Authoriza-
tion header is found in the request.

The idea is to terminate the authentication oz the edge and forward the authentication
request to an endpoint via vmod_http.

Here’s an example where we offload the authentication to https://auth.example.
com/auth:

683

CHAPTER 8: DECISION-MAKING ON THE EDGE

vcl 4.1;

import kvstore;
import http;

sub vcl init {
new auth = kvstore.init();

}

sub vcl_recv {
if (auth.get(client.ip,"0") == "0" {
http.init(0);
http.req_copy_headers(0);
http.req_set_url(@, "https://auth.example.com/auth");
http.reg_send(0);
http.resp_wait(0);
if (http.resp_get_status(@) != 200) {
return(synth(401, "Authentication required"));
}
auth.set(client.ip,"1",3h);
unset req.http.Authorization;

}

sub vcl_synth {
if (resp.status == 401) {
set resp.http.www-authenticate = "Basic";
}
}
_ J

The http.req_copy_headers(@) function ensures that client request headers are
forwarded to the authentication endpoint. If the Authorization header is missing, or
does not match the expected credentials, an HTTP 401 is triggered, which we return to
the client.

If the authentication is successful, we store the authentication state inside a vmod_kv-
store instance. We also strip off the Authorization header to ensure that the built-in
VCL serves the request from cache.

As you can see, vmod_http offers a lot of options and will be featured again in this
chapter. You’ll also see a dedicated authentication section later on in this chapter.

684

CHAPTER 8: DECISION-MAKING ON THE EDGE

84 Database access

In terms of interacting with stateful data that can be used to offer a personalized cach-
ing experience, we already used the file system and API calls.

Although they are valid candidates as the source of truth, there are limiting factors:
e Therequired files aren’t always available to Varnish.

* Reading files may not always provide the right data-querying facilities.

¢ The source data may not be accessible via an APL.

* The API containing the data may not be equipped to scale along with Varnish,
causing a potential outage on the 4P/ due to excessive load.

Unless data is readily available in files, or unless data APIs can keep up with Varnish, we
need to find another solution.

Having direct access to a database may be the better solution. The term database can
refer to many implementations. Some databases may be accessible via a RESTful API,
which can be leveraged using vmod_http.

In this section, we’re going to cover four types of databases:
* SQLite

* Key-value storage (kvstore)

* Memcached

* Redis

84.1 SQLite

For the record: SQLite is a library that implements a serverless, self-contained relational
database system. Varnish Enterprise contains a VAOD that interacts with SQLite. We
already featured this VAMOD in chapters S and 2.

In chapter 51 showed you an example where sessions were stored in the database, and
that a cookie value was used to retrieve the username of a logged in user.

This time, we’ll use SQLzte to store caching policies about specific pages.

Here are the commands you need to create and populate the database:

685

CHAPTER 8: DECISION-MAKING ON THE EDGE

sqlite3 sqlite.db <<EOF
CREATE TABLE pages (
cache BOOLEAN NOT NULL,
url TEXT NOT NULL,
host TEXT NOT NULL,
PRIMARY KEY (url, host)

);

INSERT INTO pages (cache,url,host) VALUES

(0,’/checkout’,’example.com’),

(1,’/’,’example.com’),

(1,’/products’,’example.com’),

(0, /cart’,’example.com’);

EOF

_ J

Once the database has been put in place, we can match the URL and hostname of a page
to determine its caching behavior. When the page is not found, the buzlt-in VCL behav-
for is used.

Here’s the VCL:

()
vcl 4.1;

import sqlite3;

sub vcl_init {
sqlite3.open("/etc/varnish/sqlite.db", "|;");
}

sub vcl_fini {
sqlite3.close();

}

sub vcl recv {
set reqg.http.cache = sqlite3.exec("SELECT “cache® FROM ~pages’
WHERE url=""
+ sqlite3.escape(req.url) + "’ AND host=""
+ sqlite3.escape(req.http.host) + "’");

if(req.http.cache == "1") {
return(hash);
} elseif (req.http.cache == "0") {
return(pass);
}
}
g J

The output from sqlite3.exec is used to determine the value of the cache database
field, based on the url and hostname values.

686

CHAPTER 8: DECISION-MAKING ON THE EDGE

If there’s a matching row in the database, and the cache field is 1, the page is cacheable
and return(hash) is called. If cache is @, return(pass) is called.

If there’s no matching row, we’re not returning anything, which means the built-in
VCL behavior applies.

SQLite is a very lightweight database system and performs quite well for read-only
access. As soon as you start writing to the database in V'CL, latency will occur
because write operations lock the database file.

8.4.2 Key-value storage (kvstore)

Can vmod_kvstore be considered a database? The examples we used throughout the
book would suggest otherwise: the key-value store is populated in VCL, and a restart
removes all content.

However, there is a very basic level of persistence available that can be triggered via the
.init_file() function.

Here’s the vmod_kvstore implementation of the SQL:te example, but backed by a file:

~N
vcl 4.1;
import kvstore;
sub vcl_init {
new pages = kvstore.init();
pages.init_file("/etc/varnish/pages.store",",");
}
sub vcl_recv {
set req.http.cache = pages.get(req.http.host+req.url,"");
if(req.http.cache == "1") {
return(hash);
} elseif (req.http.cache == "@") {
return(pass);
}
}
_ J

The following command can be used to populate the pages.store file that contains
the same rules as the SQLite database:

687

CHAPTER 8: DECISION-MAKING ON THE EDGE

cat <<EOF > /etc/varnish/pages.store
example.com/,1
example.com/products,1
example.com/cart,0
example.com/checkout,®

EOF

vV V V VvV VvV B

The pages.init_file("/etc/varnish/pages.store",",") function can be called in
other places in your VCL when a resynchronization is required.

This persisted kvstore example will perform better than SQLzte, but does not offer
the flexibility of the SQL language.

84.3 Memcached

Memcached is a distributed key-value store that has client implementations in many pro-
gramming languages. It is extremely fast and scalable, but offers no persistence layer.
Technically, Memcached can be viewed as simple a cache that is accessible over the net-
work.

vmod_memcached is an open source VAMOD that provides access to a Memcached setup.
Itis available via https://github.com/varnish/libvmod-memcached, but is also packaged
with Varnish Enterprise.

Let’s revisit the basic authentication example from earlier in this chapter. We featured
this example to show the power of vmod_http. Let’s strip out the A7 TP calls and re-
place them with Memcached calls.

Here’s the code:

vcl 4.1;

import crypto;
import memcached;

sub vcl_init {
memcached.servers("--SERVER=192.168.98.101");
memcached.error_string("error");

}

sub vcl_recv {
if (req.http.Authorization !~ "#Basic ([a-z-A-Z0-9=]+)$") {

688

https://github.com/varnish/libvmod-memcached

CHAPTER 8: DECISION-MAKING ON THE EDGE

return(synth(401, "Authentication required"));
}

set req.http.base64 = regsub(req.http.Authorization,"~Basic ([a-z-
A-70-9=]+)%","\1");

set req.http.usernamepassword = crypto.string(crypto.base64 de-
code(req.http.base64));

set req.http.username = regsub(req.http.usernamepass-
word, "A([~:]+) 1 ([*:]+)$","\1");

set req.http.password = regsub(req.http.usernamepass-
word, "A([~:]+) ([]1+)87","\2");

set req.http.memcached = memcached.get(req.http.username);

if (req.http.memcached == "error") {
return(synth(403));
}

if (req.http.password != req.http.memcached) {
return(synth(4e1, "Authentication required"));

}

unset req.http.Authorization;

unset req.http.baseb4;

unset req.http.usernamepassword;

unset req.http.username;

unset req.http.password;

unset req.http.memcached;

}
- J

The Memcached server is accessible via 192.168.98.101 on the standard 11211 port and
contains login credentials. Varnish uses these credentials to grant or deny access to the
platform.

Varnish decodes the Authorization header using the crypto.base64_decode()
function. Via regular expressions, the username and password are extracted.

The Memcached key is the username, and the corresponding value is the password. If a
Memcached lookup results in an error, this means the user was not found. In that case
we return an HTTP 403 response.

If the passwords don’t match, we return an H7 TP 401 response, which gives the client
the opportunity to try logging in again.

Once authentication is successful, the Authorization header is stripped off to ensure
the built-in VCL can consider the request cacheable.

689

CHAPTER 8: DECISION-MAKING ON THE EDGE

Memcached can also be used to store session information, or as a way to store pro-
jected results from relational databases.

844 Redis

Redis is also a distributed key-value store, like Memcached. It can be considered the suc-
cessor of Memcached and offers a lot more features. To some extent we can say that Re-
dis is steadily becoming the industry standard.

Unlike Memcached, Redis offers multiple data types and specific commands to interact
with them in an atomic way. Redis also offers persistence, replication, security, and
many more operational features.

The fun thing about Redss is that it has a LUA scripting language, which allows you to
script certain behavior.

There is an open source VMOD available for Redis, which you get via https://github.
com/carlosabalde/libvmod-redis. It has a very extensive 4 PL.

Let’s feature an example where Redzs can be used to provide a personalized caching expe-

rience.

A shopping cart example

Remember the shopping cart example from earlier in this chapter? We used the file
system to access the session file, and we extract the right key from the serialized session
data.

It’s easy to replicate this example and use Reds instead. However, this example will
store the product and session data in a more intuitive way:

e Products will be stored as Redis hashes and product properties will be stored as

fields for the hash.
¢ Shopping cart items will be stored in a Redis list per session.

So whenever someone adds a product to their shopping cart, an RPUSH $sessionId
$productId command is sent to Redss. And whenever the quantity of a product in
the cart is decreased, an LREM $sessionId 1 $productId isused. When a complete
product is removed from the shopping cart, an LREM $sessionId @ $productId
command is sent to Redis.

Computing the number of items in the shopping cart can be done using the following
Redis command:

690

https://github.com/carlosabalde/libvmod-redis
https://github.com/carlosabalde/libvmod-redis

CHAPTER 8: DECISION-MAKING ON THE EDGE

(: LLEN $sessionId :)

If we have access to Redis from VCL, there are many ways we can offload this stateful

logic from the origin, but in this example we’ll limit it to counting the shopping cart
items.

Here’s the VCL code:

()
vcl 4.1;

import redis;
import cookieplus;
import xbody;
import edgestash;

sub vcl_init {
new sessions = redis.db(
location="192.168.98.102:6379",
shared_connections=false,
max_connections=1);

}

sub vcl_recv {
cookieplus.keep("PHPSESSID");
cookieplus.write();
if(req.url ~ "~/add/to/cart/[0-9]+$" || req.url ~ "~/remove/from/
cart/[0-9]+") {
return(pass);
}
if(req.url == "/") {
return(hash);
}
}

sub vcl_backend_response {
if(bereq.url == "/") {
unset beresp.http.Cache-Control;
set beresp.ttl = 3600s;
xbody.regsub({"(]+>)(\w*)(</
span>)"},
{"\1{{items-in-cart}}\3"});
edgestash.parse_response();

}

sub vcl_deliver {
sessions.command("LLEN");

691

CHAPTER 8: DECISION-MAKING ON THE EDGE

sessions.push(cookieplus.get("PHPSESSID"));
sessions.execute();
if(edgestash.is_edgestash() && sessions.reply_is_integer()) {

edgestash.add_json({"{ "items-in-cart": ""}
+ sessions.get_integer_reply()
+ {llll }ll});
edgestash.execute();
}
}
_ J

Let’s talk through this one:

In vcl_init we initialize a Redis client object called sessions.
In vcl_recv we strip oft all cookies except PHPSESSID.

Invcl_recv we don’tallow /add/to/cart/$productIdand /remove/from/
cart/$productId to be served from cache.

In vcl_recv we explicitly cache the homepage, despite the PHPSESSID cookie be-
ing present.

In vcl_backend_response we use xbody.regsub() to replace the stems in cart
counter with a {{items-in-cart}} Edgestash placeholder.

In vcl_deliver we execute an LLEN Redis command to get the number of items in

the shopping cart.

Invcl_deliver we parse the LLEN Redis value in the items-in-cart placeholder.

Instead of temporarily storing the value via vmod_kvstore, we directly connect to Re-

dis at delivery time. Although Redis scales really well, there might be some operational

concerns. Please keep in mind that your Red:s server should be properly tuned if you

receive a lot of incoming requests.

692

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.5 Geo features

Another very powerful piece of information you can retrieve is the geographical location

of the client.

Although there are 4 PIs you can call using vmod_http, the overhead may slow us
down at scale. A superior solution is to use MaxMind’s geol P database. This propri-
etary database, which has a free version, maps 1P addresses to geographical locations.

There are both open source VAODs and proprietary VMM ODs available. They all rely
on libmaxminddb.

As a developer, you can go to https://dev.maxmind.com/ to obtain a free version of the
geolP database:

* GeoLite2-Country.mmdb: a database that only contains country and continent
information

* GeoLite2-City.mmdb: an extended version of the database that contains country,
continent, city and geolocation information

As an administrator, it is your responsibility to keep the database up-to-date.

Being able to geographically locate the user allows you to perform geotargeting, but even

geoblocking.

Geotargeting involves putting the user in a certain category based on their location. This
is important when you build your own CDN because you can send users to the closest
point of presence (PoP). Having content as close to your users as possible will decrease
latency and increase the quality of experience.

Another example of geotargeting is presenting localized content to the user. Many multi-
national corporations have separate websites per country. Being able to suggest the right
one based on the dient IP address contributes to a good user experience.

Geoblocking is used to refuse access to certain content. Websites or OTT video platforms
that are funded with taxpayer money will refuse access to their platforms for users out-
side of the country.

8.5.1 vmod_geoip2

vmod_geoip2 is an open source VAOD that is available on https://github.com/fgsch/
libvmod-geoip2.

693

https://dev.maxmind.com/
https://github.com/fgsch/libvmod-geoip2
https://github.com/fgsch/libvmod-geoip2

CHAPTER 8: DECISION-MAKING ON THE EDGE

The geoip2.geoip2() function loads the MaxMind GeoIP database and returns an
object. This object uses the .1ookup() method to retrieve geographical information.

Here’s a very simple geoblocking example:

~
vcl 4.1;
import geoip2;
sub vcl_init {
new country = geoip2.geoip2("/etc/varnish/GeolLite2-Country.
mmdb") ;
}
sub vcl _recv {
if(country.lookup("country/iso_code", client.ip) != "BE") {
return(403,"Access from " + country.lookup("country/names/
en", client.ip) + " not allowed");
}
}
_ J

8.5.2 vmod_mmdb

vmod_mmdb is a Varnish Enterprise module that uses the same database file provided by
MaxMind. Here’s the equivalent of the previous example:

~N
vcl 4.1;
import mmdb;
sub vcl_init {
new country = mmdb.init("/etc/varnish/GeolLite2-Country.mmdb");
}
sub vcl_recv {
// there is a convenience function to
// retrieve the country code directly, let’s use it!
if(country.country_code(client.ip) != "BE") {
return(403,"Access from " + country.lookup(client.ip, "coun-
try/names/en") + " not allowed");
}
}
_ J

694

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.5.3 Lookup filters

Both VMODs have a .1ookup() method that takes a lookup path. This path is used to
retrieve the information from the database.

The GeoLite2-Country.mmdb database only contains country and continent informa-
tion. Here are a couple of examples of various paths:

e continent/code: for example EU

e continent/names/en: for example Europe

e country/is_in_european_union: for example true
* country/names/iso_code: for example BE

e country/names/en: for example Belgium

There is a German, Spanish, French, Japanese, Portuguese, Russian and Chinese alter-
native for continent/names/en and country/names/en.

Here’s an overview of paths you can use to retrieve the country name in the various sup-
ported languages:

* country/names/de
* country/names/en
* country/names/es
* country/names/fr
* country/names/ja
* country/names/pt-BR
* country/names/ru

* country/names/zh-CN

[These language codes are also available for continent names.]

The GeoLite2-City.mmdb also contains all of the above but is supplemented with city
and geolocation information.

Here’s an overview of additional lookup filters for the city database:

695

CHAPTER 8: DECISION-MAKING ON THE EDGE

* city/names/de

* city/names/en

* city/names/es

* city/names/fr

* city/names/ja

. city/names/pt-BR

U city/names/ru

* city/names/zh-CN

* location/accuracy_radius
* location/latitude
* location/longitude
* location/time_zone

* postal/code

There is also a subdivision field that describes states, provinces, or communities
within a country, but we’re not going to cover this in the book.

8.54 Backend geotargeting example

The following example looks up the continent code for the client IP address based on the
Geolite2-Country.mmdb databases, and matches this with available backends stored
using vmod_kvstore.

If no corresponding backend is found, the default one is used.

vcl 4.1;

import kvstore;
import mmdb;
import std;

backend default {
.host="default.backend.example.com";

}

backend de {
.host="de.backend.example.com";

696

CHAPTER 8: DECISION-MAKING ON THE EDGE

&

}

backend us {

.host="us.backend.example.com";

}

backend br {

.host="br.backend.example.com";

}

backend jp {

.host="jp.backend.example.com";

}

backend sa {

.host="sa.backend.example.com";

}

backend au {

.host="au.backend.example.com";

}

sub vcl init {

new geo = mmdb.init("/etc/varnish/GeoLite2-Country.mmdb");

new backends

= kvstore.init();

backends.set_backend("EU",de);
backends.set_backend("NA",us);
backends.set_backend("SA",br);
backends.set_backend("AS",jp);
backends.set_backend("0C",au);
backends.set_backend("AF",sa);

}

sub vcl_recv {

set req.backend_hint = backends.get_backend(
geo. lookup(

client.ip,
"continent/code"
)s
default

s
}

The example above features backends in Germany, the United States, Brazil, Japan,

Australia and South Africa. Each of these endpoints is associated with the correspond-

ing continent code.

If you'’re in Antarctica, or there is an issue mapping the IP address to a location, the

default backend is used.

697

CHAPTER 8: DECISION-MAKING ON THE EDGE

This same example can easily be reproduced using the open source vmod_
geoip2.

698

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.6 Synthetic responses

Throughout the book, the primary focus has been caching content from the origin. For
non-cacheable content we provided ways to bypass the cache.

As you have already seen, this chapter is about caching otherwise uncacheable content,
and about offloading the uncacheable logic o the edge.

But instead of serving content from the origin, we can cut out the origin and produce
the content ourselves. We do this by serving synthetic HT'TP responses.

This is already a familiar concept by now, as return(synth()) and vcl_synth have
been covered a number of times.

If we have access to the stateful data, or we can compute the data ourselves, we can pro-
duce synthetic HT'TP responses without accessing the origin server. We can do this for all
content or for select endpoints.

We can produce HTML and basically act as a web server. We can also produce /SON or
XML and become a RESTful API application.

In previous sections of this chapter, we talked about fzle system access, about access to
HTTP services, and about access to Memcached and Redis. We can query these data
sources and use synthetic output to visualize the data.

8.6.1 Synthefic output and no backend

If you return synthetic output, you don’t really need to define a backend, and backend
default none; will ensure varnishd doesn’t complain when you load a V'CL that
doesn’t have a real backend.

You can use return(synth(200,"0K")) to return a synthetic response. Any request that
doesn’t return synthetic output will return an HTTP 503 Backend fetch failed
error.

The synth() function is very limited in its capabilities: only a status code and some
text can be used, which are parsed in a pretty horrible HTML template :

699

CHAPTER 8: DECISION-MAKING ON THE EDGE

<IDOCTYPE html>
<html>
<head>
<title>200 OK</title>
</head>
<body>
<h1>Error 200 OK</h1l>
<p>0K</p>
<h3>Guru Meditation:</h3>
<p>XID: 32770</p>
<hr>
<p>Varnish cache server</p>
</body>
</html>
_ _J

This is not really user-friendly unless we modify what vcl_synth returns.

Loading an HTML template

Using std.fileread() you can load an HTML file from disk, which serves as the tem-
plate. Via regsuball(), the <<REASON>> placeholder can be replaced with the value of
resp.status

Here’s an example:

~
vcl 4.1;
import std;
backend default none;
sub vcl_recv {
return(synth (200, "Something cool"));
}
sub vcl_synth {
if(req.url == "/") {
set resp.http.Content-Type = "text/html";
set resp.body = regsuball(
std.fileread("/etc/varnish/index.html"),
"<<REASON>>",
resp.reason);
} else {
set resp.status = 404;
set resp.http.Content-Type = "text/plain";
set resp.body = "Not found";
}
return(deliver);
}
_ J

700

CHAPTER 8: DECISION-MAKING ON THE EDGE

If you only have a couple of files to serve, this will do, and it will be very powerful.
Don’t forget that the output from std.readfile() is only processed at compile time.
This means that no file system access is done at runtime.

Creating a simple API

The previous example showed some of the possibilities of synthetic responses by over-
riding vcl_synth. Let’s spice it up a bit and return dynamic content.

The following example features a very small RESTful API that returns a JSON object
containing the username and the number of items in the shopping cart for a session that
was established.

The session is identified by a sessionId cookie, and the session information is stored in
Redis.

vmod_redis is an open source VAMOD by Carlos Abalde. It is not packaged with
Varnish Cache or Varnish Enterprise, but you can download the source code via
https://github.com/carlosabalde/libvmod-redis.

The session information is stored in a Redss hash, which has multiple fields. The follow-
ing Redis CLI command returns that hash for session ID 123:

127.0.0.1:6379> hgetall 123
1) "username"

2) "JohnSmith"

3) "items-in-cart"

4) "5"

You can see that the username for session 123 is JohnSmith. John has 5 items in his

shopping cart.

We can create a RESTful API that consumes this data and returns it in vcl_synth:

vcl 4.1;

import redis;
backend default none;
sub vcl_init {

new redis_client = redis.db(
location="redis:6379",

701

https://github.com/carlosabalde/libvmod-redis

CHAPTER 8: DECISION-MAKING ON THE EDGE

shared_connections=false,
max_connections=1);

}

sub vcl_recv {
return(synth(200));

}

sub vcl_synth {
if(req.url == "/api/session") {

set resp.http.sessionId = regsub(req.http.Cookie,"".*;?\s*-

sessionId\s*=\s*([0-9a-zA-z]+)\s*;?.*","\1");
redis_client.command("HMGET");
redis_client.push(resp.http.sessionId);
redis_client.push("username");
redis_client.push("items-in-cart");
redis_client.execute();
set resp.http.Content-Type = "application/json";
set resp.body = {"{

"username": } + redis_client.get_array_reply_value(®) +
o
"items-in-cart": ""} + redis_client.get_array_reply_val-
ue(1) + {""
Y
return(deliver);
}
}
_ J

Because the session information is stored in a Redis hash, a HMGET is required to retrieve
multiple fields. The parsed command would be HMGET 123 username items-in-
cart.

In VCL we can use redis_client.get_array_reply_value() to retrieve the value of
individual fields based on an index because Redis returns the output as an array.

When we call the /api/session endpoint using the right cookie value, the output will
be the following:

$ curl -H"Cookie: sessionId=123" localhost/api/session
{

"username": "JohnSmith",

"items-in-cart": "5"

702

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.6.2 Synthetic backends

The previous examples in this section all leveraged the vcl_synth subroutine to return
synthetic output. Although this works fine, the output is not cached, and ES7 or Gzip
compression aren’t supported either.

When edge logic depends on external services, large traffic spikes may overload these
services and result in latency.

Varnish Enterprise offers synthetic backends through vmod_synthbackend: synthetic
objects will be inserted at the beginning of the fetch pipeline, which gives them the same
behavior as regular objects.

The API for vmod_synthbackend has a couple of functions:

e synthbackend.mirror() will mirror the request information and will return the
request body into the response body.

¢ synthbackend.from_blob() will create a response body using BLOB data.
* synthbackend.from_string() will create a response body using string data.
* synthbackend.none() will return a null backend.

The function we’re mainly interested in is synthbackend.from_string(). The fol-

lowing example is based on the previous one where Redzs is used to return session infor-
mation in a RESTful API.

Instead of sending a command to Redss for every request, the following example will
cache the output and will create a cache variation per session.

Here’s the code:

vcl 4.1;

import redis;
import synthbackend;
import ykey;

backend default {
.host = "backend.example.com";

}

sub vcl _init {
new redis_client = redis.db(
location="redis:6379",
shared_connections=false,
max_connections=1);

703

CHAPTER 8: DECISION-MAKING ON THE EDGE

sub vcl_recv {
if(req.url == "/api/session") {
set req.http.sessionId = regsub(req.http.Cookie,"".*;?\s*ses-
sionId\s*=\s*([0-9a-zA-z]+)\s*;?.*","\1");
if(req.method == "PURGE") {
ykey.purge(req.http.sessionId);
}

return(hash);

}

sub vcl _hash {
hash_data(req.http.sessionId);

}

sub vcl_backend_fetch {

if(bereq.url == "/api/session") {
redis_client.command("HMGET");
redis_client.push(bereq.http.sessionld);
redis_client.push("username");
redis_client.push("items-in-cart");
redis_client.execute();
set bereq.backend = synthbackend.from_string({"{

"username": ""} + redis_client.get_array_reply value(0) +

"

nn

"items-in-cart": } + redis_client.get_array_reply_val-
ue(1) + {""
1)
} else {
set bereq.backend = default;
}

}

sub vcl backend_response {
if(bereq.url == "/api/session") {
set beresp.http.Content-Type = "application/json";
set beresp.ttl = 3h;
ykey.add_key(bereq.http.sessionId);

}
& J

Let’s break this example down, and explain what is going on:

Requests for /api/session are cacheable, even cookzes are used. The sessionId cookie
is extracted and stored in req.http.sessionId for later use.

If PURGE requests are received for /api/session, vmod_ykey will evict objects from
cache that match the session ID.

704

CHAPTER 8: DECISION-MAKING ON THE EDGE

When we look up requests for /api/session, we ensure the session ID is used as a cache
variation.

And when requests for /api/session cause a cache miss, a synthetic object is inserted
into the cache via synthbackend.from_string(). The string contains a J[SON object
that is composed by fetching the session information from Redis.

Backend requests for other endpoints are sent to the default backend, which is not a syn-
thetic one.

When synthetic responses are received for /api/session, the Content-Type: applica-
tion/json response header is set and the 77L for the object is set to three hours.

When such a response is received, the session ID is registered as a key in vmod_ykey.

The following curl request will still output the personalized JSON response:

$ curl -H"Cookie: sessionId=123" localhost/api/session

{

"username": "JohnSmith",
"items-in-cart": "5"

The only difference is that the value is cached per session for three hours. If at any point
the object needs to be updated, a PURGE call can be done, as illustrated below:

$ curl -XPURGE -H"Cookie: sessionId=123" localhost/api/session
{

"username": "JohnSmith",
"items-in-cart": "5"

705

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.7 Authentication

State often gets in the way when it comes to cacheability. In H7TP we usually pass in-
formation about state via a Cookie header or an Authorization header.

The built-in VCL is very explicit about this:

if (req.http.Authorization || req.http.Cookie) {
/* Not cacheable by default */
return (pass);

When the Authorization or Cookie request header are present, Varnish will not
cache by default.

In earlier chapters we already explained how you can maintain cacheability without

getting rid of all your cookies. In this section we’ll do the same for the Authorization
header.

This section is all about offloading authentication and how to turn Varnish into an au-
thentication gateway.

8.7.1 Basic authentication

Basic anthentication is pretty basic, as the name indicates: the username and password
are sent as a base64 encoded string. Within that string, the username and password are
separated by a colon.

The example below will force basic authentication before the page is displayed:

vcl 4.1;
sub vcl _recv {
if(reqg.http.Authorization != "Basic YWRtaW46c2VjcmVve") {
return (synth(401, "Restricted"));
}
}
sub vcl_synth {
if (resp.status == 401) {
set resp.http.WWW-Authenticate = {"Basic realm="Restricted
area""};
}
}
g J

706

CHAPTER 8: DECISION-MAKING ON THE EDGE

In this case the username is admin and the password is secret; this corresponds to the
following Authorization header:

[Author‘ization: Basic YWRtaW46c2VjcmVve]

If the credentials don’t match, an HTTP 401 error is returned. To trigger web browsers
to present a login screen when invalid credentials are received, the following response
header is returned:

[www-Authenticate: Basic realm="Restricted area"]

This is a very static authentication mechanism that doesn’t offer lots of flexibility, and
where passwords are stored in the VCL file. We can do better.

Ensuring cacheability

It is important to know that even though we offload the authentication from the or-
gin, the built-in VCL will still not allow the corresponding response to be served from
cache.

We tackle this issue by stripping off the Authorization header when we’re done off-
loading the authentication layer.

This is the VCL code you add at the end of your authentication logic:

[unset req.http.Authorization;]

vmod_basicauth

As mentioned in chapter 5, there’s vmod_basicauth, which loads a typical .htpass-
wd file from disk. The value of the Authorization header can be matched against the
loaded values.

The following example has already been featured but illustrates nicely how the logic is
abstracted into a VAMOD:

vcl 4.1;

import basicauth;

707

CHAPTER 8: DECISION-MAKING ON THE EDGE

sub vcl recv {
if (!basicauth.match("/var/www/.htpasswd",req.http.Authoriza-
tion)) {
return (synth(401, "Restricted"));
}
}

sub vcl_synth {
if (resp.status == 401) {
set resp.http.WWW-Authenticate = {"Basic realm="Restricted
area""};
}
}
_ J

Not only does this VA1OD make offloading authentication a lot cleaner, it also supports
hashed passwords.

The easiest way to generate the .htpasswd file is by using the htpasswd program,
which is part of a typical Apache setup.

The example below shows how to generate a new .htpasswd file with credentials for
the admin user:

$ htpasswd -c -s .htpasswd admin
New password:

Re-type new password:

Adding password for user admin

The -c flag will make sure the file is created, and the -s flag ensures SHA hashing.

We can then add more users to the file:

$ htpasswd .htpasswd thijs
New password:

Re-type new password:

Adding password for user thijs

This command will add the user thijs to the existing .htpasswd file using MDS5 hash-
ing.

Although not advised, it is also possible to add clear text passwords using the -p flag, as
illustrated below:

708

CHAPTER 8: DECISION-MAKING ON THE EDGE

$ htpasswd -p .htpasswd varnish
New password:

Re-type new password:

Adding password for user varnish

If we look inside the .htpasswd file, we can see the various users and corresponding
password hashes:

admin:{SHA}W6ph5Mm5Pz8GgiULbPgzG37mjog=
thijs:$apri$7vbVkafq$rx9KxPEMy4bOkb61HNeY4 .
varnish:cache

Unless the password is in clear text, the hashing algorithm is attached to the password.
All these hash formats are supported by vmod_basicauth, which makes this a safe way
to interact with passwords.

See http://man.gnu.org.ua/manpage/?3+vmod-basicauth for more information about
this VAMOD.

Hashed passwords inside vmod_kvstore

Instead of relying on vmod_basicauth, we can write our own logic, and we can choose
our own password storage. However, we also need a way to hash passwords.

vmod_digest is an open source VMOD that can be used to create hashes in V'CL. You
can download the source from https://github.com/varnish/libvmod-digest.

This VMOD is also packaged in Varnish Enterprise. vmod_crypto is a competing
VMOD that is only available in Varnish Enterprise. However, in this section, I'll only
focus on vmod_digest.

By storing these hashed passwords inside vmod_kvstore, we have quick access to the
credentials. Because vmod_kvstore stores data in memory, one would think that the
hashed passwords cannot be persisted on disk. Luckily the .init_file() method allows
us to preload the key-value store with that coming from a file.

Here’s the VCL code:

709

http://man.gnu.org.ua/manpage/?3+vmod-basicauth
https://github.com/varnish/libvmod-digest

CHAPTER 8: DECISION-MAKING ON THE EDGE

vcl 4.1;

import kvstore;
import digest;

sub vcl_init {
new auth = kvstore.init();
auth.init_file("/etc/varnish/auth”,":");
}

sub vcl_recv {
if(req.http.Authorization !~ "7~Basic .+$") {
return(synth(401, "Authentication required"));
}
set req.http.userpassword = digest.base64url_decode(
regsub(req.http.Authorization,"~Basic (.+)$","\1")
)
set reqg.http.user = regsub(req.http.userpass-
word, "A([~:]1+) 1 ([~ :]1+)$","\1");
set req.http.password = regsub(req.http.userpass-
word, "A([N:]1+) 1 ([~]+)$7,"\2");

if(digest.hash_sha256(req.http.password) != auth.get(req.http.
user,"0")) {
return(synth(401, "Authentication required"));
¥

unset req.http.user;
unset req.http.password;

}

sub vcl_synth {
if (resp.status == 401) {
set resp.http.WWW-Authenticate = {"Basic realm="Restricted
area""};
}
}
_ J

When the configuration is loaded, vmod_kvstore will load its contents from /etc/
varnish/auth. Here is what this file could look like:

admin:5e884898da28047151d0e5618dc6292773603d0d6aabbdd62allef721d1542d8
thijs:4e5d73505c74a4d6c80d7fe4c7b53ddb9563488ee9f2e91200a78413186€2597

The usernames, which are the keys, appear first on each line. The passwords are hashed
using the SHA256 hashing algorithm and are delimited from the key via a colon.

710

CHAPTER 8: DECISION-MAKING ON THE EDGE

The regsub() function helps us extract the username and password from the Autho-
rization header, and the digest.hash_sha256() function will create the right hash.

The username is temporarily stored in req.http.user, and the password in req.http.
password. In the end the value of auth.get(reqg.http.user,"8") is compared to the
hashed password. If the values match, access is granted.

In this example we use vmod_kvstore, but vmod_redis, or vmod_memcached, or
even vmod_sqglite3 could also be viable candidates.

8.7.2 Digest authentication

Although basic authentication is one of the most common forms of authentication,
there are some concerns: even if the stored passwords are hashed, the user does send the
username and password over the wire unencrypted.

Base64 encoding is not human-readable, but it is very easy to decode. This concern is
usually mitigated by 7/LS because the request is encrypted.

Digest authentication does not send clear-text passwords, but instead hashes the re-
sponse. There are even more security mechanisms in place to avoid replay attacks.

Digest authentication exchange

It all starts when a server requests authentication by sending the following response:

HTTP/1.1 401 Authentication required

WWW-Authenticate: Digest realm="varnish",
qgop="auth",
nonce="5f9e162f49a7811049b2d4bdf2d30196",
opaque="c23bd2a0047189e89aa9beab7adbclfo"

The HTTP 401 indicates that authentication is required before access is allowed to the
resource. The HTTP response provides more context by issuing a WWW-Authenticate
header containing the digest information.

It’s not as simple as requesting that the client sends a username and a password. The
following information is presented by the WWW-Authenticate header:

71

CHAPTER 8: DECISION-MAKING ON THE EDGE

Digest indicates that digest authentication is required.

realm="varnish" indicates that varnish is the realm for which valid access cre-

dentials should be provided.
qop="auth" is the quality of protection and is set to auth.

nonce is a unique value that changes for every request. It is used to avoid replay
attacks.

opaque is a unique value that is static.

These fields are used by the client to compose the right Authorization header.

Here’s an example of the corresponding Authorization header:

&

Authorization: Digest username="admin",
realm="varnish",
nonce="f378c7d8al0a8ade3213fd5877boc47d", uri="/",
response="5bb85448beebdc6ec83c2e5712b5fdde",
opaque="c23bd2a0047189e89aa9beab7adbclfo",
gop=auth,
nc=00000002,
cnonce="1dd97488004e64a7"

As you can see, the password is not sent in clear text, but instead is part of the re-
sponse hash.

Let’s break down the entire header:

We start with Digest to confirm that the authentication type is indeed digest
authentication.

The first field is the username field, which is sent in clear text. The same applies to
the realm field.

The nonce and the opaque fields are sent back to the server unchanged.
The qop field is still set to auth, which confirms the guality of protection.

The response field contains a hashed version of the password, along with some
other data.

The nc field is a counter that is incremented for every authentication attempt.

The cnonce field is a client nonce

The password that is stored on the server is an M D5 hash of the username, the realm,

and the password. This is how it is composed:

712

CHAPTER 8: DECISION-MAKING ON THE EDGE

[md5 (username:realm:password)]

The response that is received from the client should be matched to a server-generated
response that is composed as follows:

hashl = md5(username:realm:password)
hash2 = md5(request method:uri)
response = md5(hashl:nonce:nc:cnonce:qop:hash2)

If the response field sent by the client as a part of the Authorization header matches
the response generated on the server, the user is allowed to access the content.

Offloading digest authentication in Varnish

The following example features digest anthentication offloading in Varnish. The hashed
passwords are stored in Redis.

Admittedly, it’s quite a lengthy example, but there are a lot things to check when per-
forming digest authentication!

()
vcl 4.1;

import redis;
import digest;
import std;

sub vcl_init {
new redis _client = redis.db(
location="redis:6379",
shared_connections=false,
max_connections=1);

}

sub vcl _recv {

set req.http.auth-user = regsub(req.http.Authorization,{"~Digest
username="(\w+)", . *$"},"\1");

set req.http.auth-realm = regsub(req.http.Authorization,{".*,
realm="(varnish)",.*$"},"\1");

set req.http.auth-opaque = regsub(req.http.Authorization,{".*,
opaque="(c23bd2a@04718%e89aa9beab67adbclfo)", . *$"},"\1");

set req.http.auth-nonce = regsub(req.http.Authorization,{".*,
nonce="(\w+)", . *$"},"\1");

set req.http.auth-nc = regsub(req.http.Authorization,{".*,
nc=([0-9]+),.*¥$"},"\1");

713

CHAPTER 8: DECISION-MAKING ON THE EDGE

set req.http.auth-qop = regsub(req.http.Authorization,{".*,
qop=(auth), .*$"},"\1");

set req.http.auth-response = regsub(req.http.Authorization,{".*,
response="(\w+)", . *$"},"\1");

set req.http.auth-cnonce = regsub(req.http.Authorization,{".*,
cnonce="(\w+)"$"3},"\1");

if(req.http.Authorization !~ "~Digest .+$" ||

req.http.auth-realm != "varnish" ||
req.http.auth-opaque != "c23bd2a@047189e89aa%beab7adbclfo™)
{
return(synth(401, "Authentication required"));
}
redis_client.command("GET");
redis_client.push("user:" + req.http.auth-user);
redis_client.execute();
if(redis_client.reply_is nil()){
return(synth(401, "Authentication required"));
¥
set req.http.auth-password = redis_client.get_string reply();
set req.http.response = digest.hash_md5(
req.http.auth-password + ":" +
req.http.auth-nonce + ":" +
req.http.auth-nc + ":" +
req.http.auth-cnonce + ":" +
req.http.auth-qop + ":" +
digest.hash_md5(req.method + ":" + req.url)
)
if(req.http.auth-response != req.http.response) {
return(synth(401, "Authentication required"));
}
}

sub vcl_synth {
if (resp.status == 401) {
set resp.http.WWW-Authenticate = {"Digest realm="varnish",
qop="auth",
nonce=""} + digest.hash_md5(std.random(1, 90000000)) + {"",
opaque="c23bd2a0047189e89aa9beab7adbclfo""};

}
- J

Whenever access is not granted, we return return(synth(401,"Authentication re-
quired"));, which triggers vcl_synth. Inside vcl_synth, we return the WWW-Authen-
ticate header containing the necessary fields.

714

CHAPTER 8: DECISION-MAKING ON THE EDGE

The nonce is different for every request. A uuid would be suitable for this, but only
Varnish Enterprise has a uuid generator. Since this is an example that also works in
Varnish Cache, we generated a random number and hashed it via MD5. digest.hash_
md5(std.random(1, 90000000)) is what we use to get that done.

Invcl_recv we use regsub() to extract the value of every field in the Authorization
header. In the first if-statement we check whether the Authorization header starts
with Digest. If not, we request reauthentication by returning the H7TP 401 status
that includes the WWW-Authenticate header.

The same HTTP 401 is returned when the realm or opaque field doesn’t match the
expected values.

The next step involves checking if the supplied username exists in the database. In the
case of the admin user, we perform a GET user:admin command in Redss. If Redis re-
sponds with a nil value, we can conclude that the user doesn’t exist.

If Redis returns a string value, the value corresponds to the hashed password. This value
is stored in V'CL for later use.

Despite all these earlier checks, we still need to match the response field to the re-
sponse that was generated. As explained earlier, we need to create a series of MDS5 hash-
es:

* The password hash that comes from Redss. This hash is generated using the user-
name, the realm and the password.

* Ahash that contains the reguest method and request URL

¢ Aresponse hash that uses the previous two hashes and some of the fields that were

supplied by the client

In the authentication exchange subsection, we illustrated this using the following formu-
la:

hashl = md5(username:realm:password)
hash2 = md5(request method:uri)
response = md5(hashl:nonce:nc:cnonce:qop:hash2)

In the VCL example, the following code is responsible for creating the response hash:

715

CHAPTER 8: DECISION-MAKING ON THE EDGE

4)

set req.http.response = digest.hash_md5(
req.http.auth-password + ":" +
req.http.auth-nonce + ":" +
req.http.auth-nc + ":"
req.http.auth-cnonce +

req.http.auth-qop + ":" +
digest.hash_md5(req.method +

+

+

+ req.url)

)5
_ J

And eventually the value of req.http.response is matched with the response field
from the Authorization header. If these values match, we know the user supplied the
correct credentials.

8.7.3 JSON web tokens

We often associate authentication with usernames and passwords. While these sorts
of credentials are prevalent, there are also other means of authentication. Token-based
authentication is one of them.

JSON web tokens (JWT) is an implementation of token-based authentication where the
token contains a collection of public claims, and where security is guaranteed through a
cryptographic signature.

Here’s an example /IV'T:

eyJhbGciO0iJIUzIINiIsINR5cCI6IkpXVCI9.eyJzdWIi0iJ0aGlqcyIsImVac-
CI6GMTYXNDI2NDI3MSwiaWFOIjoxNjEOMjUIMDcxLCIuYmYi0jE2MTQYNTcwNzF9. vu-
JEQOQS3uTeKFihFehiqzLVOjT7F0]8ZpIleOVvEOgZc

It might look like gibberish, but it does make perfect sense: a /1# T is a group of base64
URL encoded JSON strings that are separated by dots.

This is the composition of a J/IW'T:
¢ The first group represents the header and contains contextual information.
* The second group is the payload: it contains a collection of public claims.

¢ The third group is the signature that guarantees the security and integrity of the
token.

JSON web tokens are mostly used for APl authentication and are transported as a bearer
authentication token via the Authorization request header:

716

CHAPTER 8: DECISION-MAKING ON THE EDGE

Authorization: Bearer eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJzd-
WIi0iJ0aGlqcyIsImVAcCI6MTYXNDI2NDI3MSwiaWFOIjoxNjEOMjU3MDcxLCIuYmYio-
JE2MTQYyNTcwNzF9.vuJEQOqS3uTeKFihFehiqzLVOjT7F0@JI8ZpIeOVvEOgZc

Not only does this token serve as an authentication mechanism, it also serves as cli-
ent-side session storage because the relevant client data is part of the token.

JWT header

Here’s the decoded version of the header:

{
"alg": "HS256",

"typ": "IWT"
}

The alg property refers to the algorithm that is used to sign the /1#7. In this case this
is a SHA256-encoded HMAC signature. The typ property refers to the token type. In
this case it’sa IV T.

HS256 involves symmetric encryption. This means that both the issuer of the token and
the validator of token use the same private key.

Asymmetric encryption is also supported: by using RS256 as the value of the alg field.
When using RS256, the /17T will be signed using a private key, and the /I T can later
be verified using the public key.

When the application that is processing the /77T is the same as the one issuing the

JWT, HS256 is a good option. When the /17 T'is issued by a third-party application,
RS256 makes more sense. The key information would in that case meet the JSSON Web
Key (JWK) specification, which is beyond the scope of this book.

JWT payload
This is the JSON representation of the decoded payload:
{
"sub": "thijs",
"exp": 1614264271,
"iat": 1614257071,
"nbf": 1614257071
}

717

CHAPTER 8: DECISION-MAKING ON THE EDGE

The payload’s properties deliberately have short names: the bigger the property names
and values, the bigger the size of the /1¥ 7T, and the bigger the data transfer. This pay-

load example features some reserved claims:

e sub: the subject of the JIWT. This claim contains the username.
e exp: the exprration time of the token. The 1614264271 value is a Unix timestamp.

e iat: the issued at time of the token. This token was issued at 1614257071, which is
also a Unix timestamp.

* nbf: the not before time of the token is a Unix timestamp that dictates when the
JWTbecomes valid. This is also 1614257071.

If you subtract the iat value from the exp value, you get 7200. This represents the 77
of the token, which is zwo hours. The iat and nbf values are identical. This means the
token is valid immediately after issuing.

You can also add your own claims to the payload. Just remember: the more content, the

bigger the token, the bigger the transfer.

Remember that the payload is not encrypted: it’s just base64 URL encoded JSON
that can easily be decoded by the client. This means that a /17T should not con-
tain sensitive data that the user is not privy to.

JWT signature

The third part of the /1#T'is the signature. This signature is based on the header and
payload, which means it ensures that the data is not tampered with.

When the HS256 algorithm is used, an HMAC signature is generated using the
SHAZ256-hashing algorithm. This signature is based on a secret key.

In the example below, the signature is generated for eyJhbGci0iJIUzIINIiISINR5cCI-
6IkpXVCI9.eylzdWIiOiJRaGlqcyIsImV4AcCI6GMTYXNDI2NDI3MSwialWFOIjoxNjEOM-
jU3MDcxLCIuYmYiOJE2MTQyNTcwNzF9 with supersecret as the secret key:

4)

#!/usr/bin/env bash
JWT_HEADER="eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCI9"
JWT_PAYLOAD="eyJzdWIi0iJ®aGlqcyIsImV4cCI6MTYXNDI2NDI3MSwialWFOI-
joxNFE@MjU3MDcxLCIuYmYiOjE2MTQyNTcwNzF9"
SECRET="supersecret”
echo -n "${JWT_HEADER}.${IWT_PAYLOAD}" \
| openssl dgst -sha256 -hmac $SECRET -binary \
| base64 | sed s/\+/-/g | sed ‘s/\//_/g’ | sed -E s/=+$//
_ J

718

CHAPTER 8: DECISION-MAKING ON THE EDGE

When you run this script, the output would be vuJEQOqS3uTeKFihFehiqzLVOjT-
7F@318ZpIe0OvEOgZc, which matches the /77T mentioned above. Don’t forget that this
signature is base64 URL encoded.

Issuing processing HS256 tokens is done using the same HAMAC signature, but when we
use RS256 tokens, things are slightly different.

For RS256 tokens, the token is issued with a signature that was signed using the private
key. When processing this token, the public key must be used for verification.

Here’s how to create and verify a RS256 /1T

The first step is to generate the key pair:

#!/usr/bin/env bash

ssh-keygen -q -t rsa -b 4096 -m PEM -f private.key -P
dev/null

openssl rsa -in private.key -pubout -outform PEM -out public.key

<<y 2>8&81 >/

The following script will use the private.key file to create the signature.
()
Although the JWW'T headerlooks the same as in the previous example, it differs.

Because the alg property was changed from HS256 to RS256 for this example, we

have a different header.
N\ J

4)

#!/usr/bin/env bash

JWT_HEADER="eyJhbGci0iJSUzI1NiIsInR5cCI6IkpXVCI9"
JWT_PAYLOAD="eyJzdWIi0iJ@aGlqcyIsImV4cCI6MTYXNDI2NDI3MSwiaWFOI-
JjoxNJjE@MjU3MDcXxLCIuYmYiOJE2MTQYNTcwNzF9™"

echo -n "${JIWT_HEADER}.${IJWT_PAYLOAD}" \

| openssl dgst -sha256 -sign private.key -binary \

| base64 | sed s/\+/-/g | sed ‘s/\//_/g’ | sed -E s/=+$//

_ J

The signature is a lot bigger for RS256 as you can see:

719

CHAPTER 8: DECISION-MAKING ON THE EDGE

OAVLTpK3BRny_kA40h8asQ1SNENvo-xrx6_6EooM6co812AUC_agTaVQb9KIjnlV1-
9jMXdGZGFfL6pNMI4tXmZvukMonZKoEcrT8XilNRgOLUutnymObmYWY3eiQTwuQ6D-
1QPy_ykLtw78e8ziglihLAcXp2QGwTOsc5ndMYiovCs-_zWDJoAyzy6RtbnGo7BA08fuU_
XTYKLHZAeB2ZPiVCr3mMn6H3PTIVW3PhwPyrpHQRAPX21zXP-hYDcrly-UnKIpR9gSt-
PIhPAUznrdDzZJIGvBeN_6BaShXXsze2XOE8J0-M8RUMUQ4A0S8ufNo8wDxYH-C9h-
Vs1V1AmVgcNpc23Dtu3-k4K30ZLmINrBVFcdOHE11z93msZVIcdNDIVLZZia-JsQL-
CeNEkouiHlwLHkZYmaJLuv-dvIqOBzjMPDGbti2plvfAjPIHAIZIRYZnfM461LO1IWbW-
Z7xr4hIHMQOX5xR7_jv5rsjl2kfR1Qa_JgKr9PgXPqiQlUTvzT000249hjbZ7N5006UE -
Pd-Bilw09PeEjIXg75ZLBsXdoSBmvgYkceMgxvKOLq1STw3I9HTbk26ygvaqgKDo-CG-
CviN95ebs13v9TTaSb4y6QLqgH7Sr3VvrdAa7NtcsSL5bVR230ISW1P7atWBINUCOHAX -
G5h-GffkNFSJOvml-ss

_ J

The end result is the following /1T

()
eyJhbGci0iJSUzIINiIsINR5cCI6IkpXVCI9.eyJzdWIi0iJ0aGlqcyIsImVac-

CIEGMTYXNDI2NDI3MSwiaWFOIjoxNjEOMjUIMDcxLCIuYmYi0jE2MTQYNTCcwNzF9.
OAVLTpK3BRny_kA40h8asQLlSNENvo-xrx6_6EooM6co812AUC_agTaVQb9KIjnlVl-
9jMXdGZGFfL6pnMI4tXmZvukMonZKoEcrT8XilNRqOLUutnymObmYWY3eiQTwuQ6D-
1QPy_ykLtw78e8ziglihLAcXp2QGwWTOsc5ndMYiovCs-_zWDJoAyzy6RtbnGo7BAOSFU_
XTYKLHZAeB2ZPiVCr3mMn6H3PTIVW3PhwPyrpHQRAPX21zXP-hYDcrly-UnKIpR9gSt-
PIhPAUznrdDzZJIGvBeN_6BaShXXsze2XOE8J0-M8RUMUQ40S8ufNo8wDxYH-C9h-
Vs1V1AmVgqcNpc23Dtu3-k4K30ZLmINrBVFcdOHE11z93msZVIcdNDIVLZZia-JsQL-
CeNEkouiH1wLHkZYmaJLuv-dvIqOBzjMPDGbti2plvfAjPIHAIZIRYZnfMA61LO1WbW-
Z7xr4hIHMQOX5xR7_jv5rsjl2kfR1Qa_JgqKr9PgXPqiQlUTvzT000249hjbZ7N5006UE -
Pd-Bilw09PeEjIXg75ZLBsXdoSBmvgYkceMgxvKOLq1STw3I9HTbk26ygvqgKDo-CG-
CviN95ebs13v9TTaSb4y6QLqgH7Sr3VvrdAa7NtcsSL5bVR230ISW1P7atWBINUCOHAX -
G5h-GffkNFSJOvml-ss

& J

Veritying the RS256 signature requires using the public.key file, as illustrated in the
script below:

4 N
#!/usr/bin/env bash

JWT_HEADER="eyJhbGci0iJSUzI1INiIsInR5cCI6IkpXVCI9"
JWT_PAYLOAD="eyJzdWIi0iJOaGlqcyIsImV4cCI6GMTYXNDI2NDI3MSwialWFOI-
joxNFEOMjU3MDcXLCIJuYmYiOjE2MTQYNTCcwNzF9"

JWT_SIGNATURE="0AVLTpK3BRny kA48h8asQ1SNENvo-xrx6_6E0oM6co812AUC_ag-
TaVQb9KIjnlV19jMXdGZGFfL6pnMI4tXmZvukMonZKoEcrT8Xi1NRqOLUutnymObmy-
WY3eiQTwuQ6D1QPy ykLtw78e8ziglihLAcXp2QGWTOsc5ndMYiovCs-_ zWDJoAyz-
y6RtbnGo7BA08fu_XTYKLHZAeB2ZPiVCr3mMn6H3PTIVIW3PhwPyrpHQRAPX21zXP-hY-
Dcrly-UnKIpR9qStPIhPAUznrdDzZJIGvBeN_6BaShXXsze2X0OE8J0-M8RUMUQ4O-
S8ufNo8wDxYH-C9hVs1V1AmVqcNpc23Dtu3-k4K30ZLmINrBVFcdOHE1iz93msZVIcd-
NDJIVLZZia-JsQLCeNEkouiHlwLHkZYmaJLuv-dvIqOBzjMPDGbti2plvfAjPIHAI-
ZIRyZnfM461LOIWbWZ7xr4hIHMQOX5XR7_jv5rsjl2kfR1Qa_JqKroPgXPqiQlUTvz-
T000249hjbZ7N5006UEPd-BilwO9PeEjIXg75ZLBsXdoSBmvgYkceMgxvKOLq1STw3I-
9HTbk26ygvqqKDo-CGCvIN95ebs13v9TTaSb4y6QLqgH7Sr3VvrdAa7NtcsSL5bVR230-
JSW1P7atWBINuCOHAXG5h-GffkNFSJOvml-ss™

MOD=$(($(echo -n "$IWT_SIGNATURE" | wc -c) % 4))

720

CHAPTER 8: DECISION-MAKING ON THE EDGE

PADDING=$(if [$MOD -eq 2]; then echo -n ‘==’; elif [$MOD -eq 3];
then echo -n ‘=’ ; fi)

echo -n "${JWT_SIGNATURE}${PADDING}" | sed s/\-/+/g | sed ‘s/_/\//g’
| base64 -d > signature.rsa

echo -n "${IJWT_HEADER}.${JWT_PAYLOAD}" | openssl dgst -sha256 -verify
public.key -signature signature.rsa

& J

If the script ran successfully, the output will be Verified OK. If not, you’ll get Verifi-
cation Failure.

This script will store the base64 URL decoded signature in the signature.rsa file, and
will be loaded along with the private.key file to perform the verification.

Long story short: the signature ensures the integrity of the payload and prevents users
from getting unauthorized access because of manipulated payload.

vmod_jwt

Enough about issuing and verifying /7T in Bash, time to bring Varnish back into the
picture.

Varnish Enterprise has a VMOD for reading and writing /IWT5. It’s called vmod_jwt,
and here’s an example of how it is used to verify the validity of a bearer authentication

token:
\
vcl 4.1;
import jwt;
sub vcl_init {
new jwt_reader = jwt.reader();
sub vcl_recv {
if (!jwt_reader.parse(regsub(req.http.Authorization, "~Bearer
(.+)$","\1")) ||
ljwt_reader.set_key("supersecret") ||
Ijwt_reader.verify("HS256")) {
return (synth(401, "Invalid token"));
}
}
g J

First we check if the Authorization header contains the Bearer type and the payload.
The next step involves setting the secret key, which is supersecret in this case. And
finally we verify the content of the token.

721

CHAPTER 8: DECISION-MAKING ON THE EDGE

The verification involves multiple steps:

* Does the /I T header have an alg property that is set to H5256?

* Does the HMAC signature using the secret key match the one we received in the
JWT?

* Does the value of the nbf claim allow us to already use the token?
¢ If'wecompare the iat and exp claims, can we conclude that the token has expired?

If any of these criteria doesn’t apply, the VCL example will return an HTTP 401 error.

This example assumes that the /17T was issued by the origin, which is a common use
case. The next example will completely offload authentication and will also issue J[SON
web tokens:

(N
vcl 4.1;

import jwt;
import json;
import xbody;
import kvstore;
import std;
import crypto;

sub vcl_init {
new jwt_reader = jwt.reader();
new jwt_writer = jwt.writer();
new auth = kvstore.init();
auth.init_file("/etc/varnish/auth",":");
new keys = kvstore.init();

}

sub vcl _recv {
if(req.url == "/auth" && req.method == "POST") {
std.cache_req_body(1KB);
set req.http.username = regsub(xbody.get_req_body(), "~user-
name=(["~&]+)&password=(.+)$","\1");
set req.http.password = regsub(xbody.get_req_body(), "~user-
name=(["&]+)&password=(.+)$","\2");
if(auth.get(req.http.username) != crypto.hex_encode(crypto.
hash(sha256,req.http.password))) {
return (synth(401, "Invalid username & password"));
}
return(synth(700));
}
if (!jwt_reader.parse(regsub(req.http.Authorization, "~Bearer
(-+)$","\1"))) {
return (synth(401, "Invalid token"));

722

CHAPTER 8: DECISION-MAKING ON THE EDGE

}

if(!jwt_reader.set_key(keys.get(jwt_reader.to_string())) || !jwt_
reader.verify("HS256")) {
return (synth(401, "Invalid token"));
}
¥

sub create_jwt {
jwt_writer.set_alg("HS256");
jwt_writer.set_typ("IWT");
jwt_writer.set_sub(req.http.username);
jwt_writer.set_iat(now);
jwt_writer.set_duration(2h);
set resp.http.key = crypto.uuid_v4();
set resp.http.jwt = jwt_writer.generate(resp.http.key);
keys.set(resp.http.jwt,resp.http.key);
unset resp.http.key;

}

sub vcl_synth {
set resp.http.Content-Type = "application/json";
if(resp.status == 700) {
set resp.status = 200;
set resp.reason = "OK";
call create_jwt;
set resp.body = "{" + {""token":

nn

} + resp.http.jwt + {"""}
+
} else {

set resp.body = json.stringify(resp.reason);
}
unset resp.http.jwt;
return(deliver);

}
-

Let’s break this one down because there’s a lot more information in this example.

The /auth endpoint that this example provides is used to authenticate users with a
username and a password. These credentials are loaded into a key-value store but are

backed by the /etc/varnish/auth file, as highlighted below:

new auth = kvstore.init();
auth.init_file("/etc/varnish/auth”,":");

This is what the file looks like:

723

CHAPTER 8: DECISION-MAKING ON THE EDGE

admin:5e884898da28047151d0e5618dc6292773603d0d6aabbdd62allef721d1542d8
thijs:4e5d73505c74a4d6c80d7fe4c7b53ddb9563488ee9f2e91200a78413186€2597

The passwords are SHA256 hashes.

Here’s the VCL code that performs the authentication:

if(req.url == "/auth" && req.method == "POST") { o

std.cache_req_body(1KB);

set req.http.username = regsub(xbody.get_req_body(), "~ user-
name=(["*&]+)&password=(.+)$","\1");

set req.http.password = regsub(xbody.get_req_body(), "~user-
name=(["~&]+)&password=(.+)$","\2");

if(auth.get(req.http.username) != crypto.hex_encode(crypto.
hash(sha256,req.http.password))) {

return (synth(401, "Invalid username & password"));

}

return(synth(700));
}

g J

Itacts upon HTTP POST calls to the /auth endpoint and extracts the username and
password fields from the POST data. Via auth.get() the username is matched to

the content of the key-value store. The password that was received is hashed using the
SHAZ256-hashing algorithm.

If the credentials don’t match, an HTTP 401 error is returned; if there is a match, some
custom logic is executed inside vcl_synth. Because of the custom 700 status code,
vcl_synth knows it needs to issue a token.

Here is the content of vcl_synth:

~
sub vcl_synth {
set resp.http.Content-Type = "application/json";
if(resp.status == 700) {
set resp.status = 200;
set resp.reason = "OK";
call create_jwt;
set resp.body = "{" + {""token": ""} + resp.http.jwt + {"""}
+)
} else {
set resp.body = json.stringify(resp.reason);
}
unset resp.http.jwt;
return(deliver);
}
_ J

724

CHAPTER 8: DECISION-MAKING ON THE EDGE

The output for synthetic responses has the application/json content type and is
formatted as a J[SON string. When the incoming status code is 700, we intercept the
request, change the status to 200, and return a [SON object that contains the /1T,

The custom create_jwt subroutine is in charge of the token creation and sends the
token to the resp.http.jwt header thatis used in vcl_synth.

Here’s the content of create_jwt:

()

sub create_jwt {
jwt_writer.set_alg("HS256");
jwt_writer.set_typ("IWT");
jwt_writer.set_sub(req.http.username);
jwt_writer.set_iat(now);
jwt_writer.set_duration(2h);
set resp.http.key = crypto.uuid_v4();
set resp.http.jwt = jwt_writer.generate(resp.http.key);
keys.set(resp.http.jwt,resp.http.key);
unset resp.http.key;

}
& J

As you can see, this subroutine creates a /I¥ T using the /¥ T writer object that was in-
stantiated in vcl_init.

Here’s what happens:

¢ The alg property of the header is set to HS256.

e The typ property of the header is set to JWT.

* The sub claim is set to the username of the logged-in user.

¢ Theiat claim is set to the current timestamp.

e The exp claim is set to a timestamp two hours in the future.

* A UUIDis generated and used as the secret key for the HMAC signature.

e This UUID is stored in the keys key-value store, which is used later for verification
purposes.

The following curl command can be used to generate the token:

$ curl -XPOST -d"username=thijs&password=feryn" https://localhost/
auth

{"token": "eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJzdWIiOiJ@aGlqcy-
IsImV4AcCI6MTYXNDMOM]jIXxMCwiaWFOIjoxNjEOMzMIMDEWLCIuYmYiOjE2MTQzMzUw-
MTB9.S5tqkGjUIID9sTW8NOZFOUAXIbPK_3-wCCGVP8wQSg4"}

725

VARNISH

A final piece of VCL we want to cover on /W T'is the key verification. Here’s the line of
code that sets the secret key and verifies it:

if(!jwt_reader.set_key(keys.get(jwt_reader.to_string())) || !jwt_
reader.verify("HS256")) {

return (synth(401, "Invalid token"));
}

Remember the UUID that was used as the secret key to sign the /17 T'in the create_
jwt subroutine? That UUID was stored in a key-value store keys.set(). This means
that every token has a unique secret key.

At the validation level in vcl_recv, we now need to fetch that secret key again via
keys.get(). The way that secret key is identified in the key-value store is through the
JW By putting jwt_reader.set_key(keys.get(jwt_reader.to_string())) in
the code, we fetch the entire /77T string, we use it as the key in the key-value store, and
whatever comes out is the secret key of the HMAC signature.

8.74 OAuth

OAuth is an authentication standard that delegates the processing of login credentials to
a trusted third party. A typical example is the login with Google button that you see on
many websites.

Delegating authentication to a third party results in not having to create a user account
with separate credentials on each website. It’s also a matter of trust: the application that
wants you to log in will never have your password. This is part of the delegation pro-

cess.
The concept uses a series of redirections and callbacks to exchange information:

* The first step involves redirecting the user to the login page, along with some meta-
data about the requesting application and requested data.

¢ When the login is successful, and depending on the OAuth request, the service will
return a code.

e This code is attached to a callback UR L, which brings the request back to the main
application.

* Using that code, the application will request a set of tokens from the Oduth service.

¢ The tokens that are returned by the OAuth service may contain the request user
information or allow access to other 4 P/s that are provided by this service.

726

VARNISH

In the case of Google’s OAuth service, you receive an access token and an ID token:
* The access token can grant you access to other Google APIs.

e The ID token is a JWWT that contains the request profile information in a collection
of claims.

Google OAuth in Varnish

If you look at what you need to offload OAuth in Varnish, it’s not that complicated:
* Youneed an HTTP client. vmod_http can take care of that.
* You need to store some settings. We use vmod_kvstore to store those values.

* You need to parse J[SON and handle /1#Ts. vmod_json and vmod_jwt are the ob-
vious candidates.

And of course there’s a CL example that showcases Varnish Enterprise’s OAuth capa-
bilities using a collection of VA ODs. However, this example has more than 200 lines of
code. This is not practical.

My colleague Andrew created the necessary logic, which is available via https://gist.
github.com/andrewwiik/3dcb9c028b15bf3592e1053b8e8f94b9.

In your VCL configuration, it’s just a matter of including that file, overriding the
necessary parameters, and calling gauth_check in vcl_recv. The rest happens auto-
matically.

Here’s the code that overrides the settings, includes the gauth.vcl file, and runs the
Google OAuth logic:

vcl 4.1;
include "gauth.vcl";

sub vcl_init {
gauth_config.set("client_id", "my-client-id");
gauth_config.set("client_secret”, "my-client-secret");
gauth_config.set("callback_path", "/api/auth/google/callback");
gauth_config.set("auth_cookie", "auth_cookie");
gauth_config.set("signing_secret", "supersecret");
gauth_config.set("scope", "email");
gauth_config.set("allowed_domain", "my-domain.com");

sub vcl_recv {

727

https://gist.github.com/andrewwiik/3dcb9c028b15bf359ae1053b8e8f94b9
https://gist.github.com/andrewwiik/3dcb9c028b15bf359ae1053b8e8f94b9

CHAPTER 8: DECISION-MAKING ON THE EDGE

L call gauth_check;
}

Let’s quickly go over the various configuration parameters:

e client_idis the client ID for the OAuth client you configured for your project in
the Google API console.

e client_secret is the corresponding client secret for the client ID.

e callback_path is the callback that is triggered when Google’s OAuth service re-
sponds back with a code.

* auth_cookie is the cookie that Varnish will use to store the JIW'T.
* signing_secret is the secret key that Varnish will use to sign the JIW1.

* scope is the scope of the OA4uth request. In this case only the email address is re-
quested.

* allowed_domain refers to the domain that the email address should have.

Don’t forget to configure the allowed callback UR Ls in the Google API console.
Otherwise the redirect to the callback URL will not be allowed. The hostname
for this callback URL is the hostname that was used for the initial HT TP request.
Also keep in mind that these are https:// URLs.

728

CHAPTER 8: DECISION-MAKING ON THE EDGE

8.6 Summary

In real-world scenarios in which cookies are omnipresent, and where authentication is
sometimes required, Varnish can take on a much bigger role than you might think.

VCL is not only there to decide what and what not to cache; this chapter has proven
that VCL is at the heart of decision-making on the edge.

Hole punching techniques such as £57 and 4/A4X are common practices these days.
They chop up a single HT'TP response into a main response and a number of frag-
ments, each with their own VCL behavior and T7L.

Although this is a great improvement in comparison to the return(pass) behavior
that would otherwise occur when cookies are present, the non-cacheable subrequests
still have to access the origin.

This chapter has proven that Varnish can perform some basic logic and interact with

third-party party systems.

VMOD:s like vmod_xbody, and vmod_edgestash have proven to be excellent utilities
for changing the response body. vmod_http is like a Swiss army knife that offers many
options to interact with external systems.

The VCL examples in this chapter also relied heavily on key-value stores. The local
key-value store that was powered by vmod_kvstore was featured a lot, but vmod_redis
was by far the most powerful key-value store. The fact that Redis is distributed makes it
an excellent tool for bridging the gap between the origin and Varnish in terms of state-

ful data.

This example also hinted at other use cases beyond basic web acceleration: there were
API examples, and examples in which Varnish served as an authentication gateway. The
next chapter is all about alternative domains of application for Varnish.

Chaprer 9 is the last real chapter of this book and focuses on Varnish as CDN software.
As the internet continues to evolve, and as the need for low latency and high through-
put at scale continues to become more important, Varnish will become the foundation
of your content delivery strategy.

We’ve come a long way. Let’s bring it all together in chapter 9.

729

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Chapter 9: Building your
own (DN with Varnish

Varnish is most often presented as a caching proxy that you put in front of your web
servers to protect them from excessive load.

In some cases Varnish is installed on the same machine as the web server. In other cases,
Varnish is installed on one or more separate machines.

In both situations Varnish is put as close as possible to the orzgin. While this works well
for many websites and other HT'TP-based platforms, it is not always the best course of
action.

When we talk about content delivery and web acceleration, our responsibilities are two-

fold:

e Platform stability
* Quality of experience for the user

Platform stability is quite straightforward: the caching capabilities of Varnish allow it to
serve as an origin shield.

The quality of experience we strive for, often measured through latency and throughput,
is not only achieved by caching: connectivity also plays a big part in this.

When network latency increases because of network limitations or the geographical
location of the user, it makes sense to put a cached version of the content as close to the
user as possible. The caching itself will ensure constant throughput at scale. This is
what content delivery networks (CDNs) are built for, and what this chapter is all about.

In this chapter, we will explain why Varnish is excellent CDN software, and how you
can build your own CDN using both Varnish Cache and Varnish Enterprise.

730

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.1 Whatis a CDN?

In its most basic form, a content delivery network (CDN) is nothing more than a bunch
of caching nodes.

The reason that it’s a bunch is related to:
* Storage capacity

* High availability

* Horizontal scalability

* Geographic distribution

CDN5 aren’t magic, and running them is an effort that combines caching and request
routing.

Here’s why people use a CDN:

* Protect the origin from client requests that cause excessive load
* Reduce infrastructure costs

* Reduce latency by putting cached content close to the user

¢ Caching large volumes of data

9.1.1 Network connectivity

CDN providers tend to have many points of presence (PoP): these are data center sites
where they host a number of caching nodes and where network connectivity is good.

These PoPs are typically spread across various geographical locations to ensure network
latency is low for as many key regions as possible. Even though fiber-optic cables are enor-
mously fast, accessing content that is thousands of miles away from the user can still
result in latency.

Having global coverage ensures that any user, regardless of their geographical location,
has minimal network latency. In the end, the combination of caching and networking
has to result in an acceptable time to last byte tor any HTTP resource that is requested.

Especially for latency-sensitive use cases like OTT video streaming, having a decent and
constant throughput is crucial. And for /ive video, for example in a sports context, any
latency seriously impacts the quality of experience.

These PoPs are mostly in key geographical areas or areas with significant demand.

731

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Here’s a simplified diagram that features four PoPs:

Request
router

Caching
ode

Caching || Caching Caching | | Caching Caching || Caching Caching | | Caching
node node node node node node node node
Caching Caching Caching
node node d node

CDN diagram

This CDN has four PoPs:

* A PoPin the United States

* A PoPin Latin America

* A PoPin the European Union

* A PoPin the Asia and Pacific region

For the sake of simplicity, each PoP only has a handful of caching nodes. In reality,
PoPs can consist of dozens or even hundreds of caching nodes.

732

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.1.2 Caching

As mentioned earlier, a CDN is nothing more than a bunch of caching nodes.

It is the caching that ensures the stability of the origin platform. But the fact thata
CDN has all objects cached globally is a myth: cache storage is precious, and CDNs
want to be selective about what they cache, in which nodes they want to cache, and for
how long.

[Quite often it’s not about the cache hits; it’s about how good your misses are.]

It is unrealistic to expect that a CDN has enough caching capacity in each PoP to cache
everything. There is just too much data out there: ranging from high-resolution images
to 4K-quality video-on-demand catalogs.

Aslong as the time it takes to fetch the content from the orgzn is acceptable, there’s
no real violation of the Quality Of Experience. And in the case of Varnish, teatures like
content streaming and request coalescing will have a positive impact on both platform

stability and Quality Of Experience.

CDNs also try to figure out how likely it is that anyone else will request the content that
is being fetched from the origin. If the content appears to be long-tail content, the cach-
ing node might decide not to insert the object in cache until it is requested again.

Many CDN architectures implement multiple caching tiers, in which each tier has its
own role. Some tiers are only there to cache hot data and are primarily there to route
cache misses to other tiers that have more storage.

Some tiers may operate on a memory-only basis, while other tiers may combine disk
storage and memory.

The caching policies of some CDN providers might be very complex, depending on
their needs.

9.1.3 Request routing

Having caching farms with good network connectivity all over the world is one thing;
routing client requests to the right PoPis another.

Later in this chapter we will cover some request routing strategies in detail, but at this
point we can generalize and say that potential request routing strategies are:

733

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

* DNS with geographical awareness
¢ Services based on HT TP redirection

* Anycast
And quite often it’s a mix of various strategies.

The first step involves a basic localization of the client: on which continent is the client
located? Does the client IP address match one of the major regions where we have PoPs?

The next step may involve network routing methodologies, such as Anycast, which an-
nounce an IP address in multiple locations and can calculate the shortest route to a PoP.

9.14 Why build your own CDN?

Although commercial CDN services are easy to use, and although they have the scale to
cover the most significant parts of the globe, they are black boxes.

For companies that want a tighter grip on their content delivery strategy, relying solely
on a CDN-as-a-service can prove to be the wrong bet.

At a certain scale, these services can also become expensive. That’s why a lot of com-
panies are building their own CDN, or at least a selection of PoPs that fit into a hybrid
CDN strategy.

For companies that serve the majority of their trafhic from the same geographical region
as their origin, it makes sense to build a local CDN. Telecom companies and national
broadcasters fit into that category. For the latter this is usually related to OTT video
streaming.

It is also possible that your CDN provider doesn’t have a PoP in an area where a lot of
your users are located. This is also a reason why you would build a Private CON PoP
there.

What we also see is that companies build a local CDN as an origin shield: it protects the
origin from revalidation requests coming from the various PoPs of their CDN service
provider. The irony is that these revalidation requests are the equivalent of a DDoS at-
tack, which requires origin shielding.

Based on these scenarios there are actually three main reasons why companies build
their own CDN:

* Better coverage
* More control over the content delivery chain

* More predictable costs

734

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

If you already have data center capacity, networking resources and infrastructure,
building your own CDN can be a very sensible thing to do.

735

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.2 Why Varnish?

If you're planning to build your own CDN, why should you consider using Varnish for
the job?

To make our point, we won’t present a lot of new information, but instead will reiterate
facts we have already mentioned throughout the book.

9.2.1 Request coalescing

Request coalescing ensures that massive amounts of concurrent requests for non-cached
content don’t cause a stampede of backend requests.

As explained earlier, request coalescing will put requests for the same resource on a wait-
ing list, and only send a single request to the origin. The response will be stored in cache
and will satisfy all queued sessions in parallel.

In terms of origin shielding, this is a killer feature that makes Varnish an excellent build-
ing block for a Private CDN.

9.2.2 Backend request routing

Because of VCL, Varnish is capable of doing granular routing of incoming requests to

the selected backend.

A backend can be the origin server, but it could also be another caching tier that is part
of your CDN strategy.

vmod_directors offers a wide range of load-balancing algorithms, and when content
affinity matters, the shard director is the director of choice.

Extra logic, written in VCL, can even precede the use of directors.

When having to connect to a lot of backends, or connect to backends on-the-fly, Varnish
Enterprise’s vmod_goto is an essential tool.

9.2.3 Performance and throughput

Varnish is designed for performance and scales incredibly well. If you were to build a
Private CDN using Varnish, the following facts and figures will give you an idea on how
it is going to perform.

736

VARNISH

* Anindividual Varnish server can handle more than 800,000 requests per second.

* A throughput of over 100 Gbps can be achieved on a single Varnish server where
Hitch is used to terminate TLS.

* Varnish Enterprise can handle over 200 Gbps on a single server using its native TLS
capabilities.

* Interms of latency, Varnish can serve cached objects sub-millisecond.

These are not marketing numbers: these numbers were measured in actual environ-
ments, both by Varnish Software and some of its clients.

Of course you will only attain these numbers if you have the proper hardware, and if
your network is fast and stable enough to handle the throughput. Some of the hardware
that was used for these benchmarks is incredibly expensive.

In real-world situations on commercial off-the-shelf hardware, you will probably not be
able to match this performance; however, Varnish is still freakishly fast.

9.24 Horizontal scalability

It is easy to scale out a cluster of Varnish servers to increase the capacity of the CDN.
In fact it is quite common to have two layers of Varnish for scalability reasons:

* An edge tier that stores hot content in memory and routes cache misses to the stor-
age tier via consistent hashing

* A storage tier that is responsible for storing most of the content catalog

A request routing component selects one of two edge nodes. As explained, these edge
nodes only contain the most popular objects. Via consistent hashing traffic is routed to
the storage layer. The sharding director will create a consistent hash and will provide
content afffinity.

This content affinity, based on the request URL, will ensure that every miss fora URL
on the edge tier will also be routed to the same server on the storage tier.

Adding storage capacity in your CDN is as simple as adding extra storage nodes.

Horizontally scaling the edge tier is also possible, but the hit rate doesn’t matter too
much at that level. The only reason to do it is to increase the outward bandwidth of our
PoP.

Remember the statement earlier in this chapter?

737

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

[It’s not about the cache hits; it’s about how good your misses are.]

In this case our misses are very good because they are also served by Varnish at the
storage-tier level. There is really no need to beef up your edge tier too much as long as it
doesn’t get crushed under the load of incoming requests.

9.2.1 Transparency

Because of Varnish’s unparalleled logging and monitoring tools, the transparency of a
Varnish-based CDN is quite amazing.

varnishlog provides in-depth information about requests, responses, timing, caching,
selected backends, and V'CL decisions. On top of that you can use std.1log() to log
custom messages.

When you start using multiple Varnish nodes in a single environment, running var-
nishlog on each node can become tedious. At this point log centralization will become
important.

Tools like Logstash and Beats ofter plugins for varnishlog, which facilitates shipping
logs to a central location without having to transfers log files.

In chapter 7 we already talked about Prometheus, and how it has become something of
an industry standard for time-series data. varnishstat counters can easily be exported
and centralized in Prometheus. A rool like Grafana can be used to visualize these alerts.

In Varnish Enterprise vmod_kvstore gives you the ability to have custom counters.
And on top of that there’s Varnish Custom Statistics.

Having transparency is important: knowing how your CDN is behaving, being able to
troubleshoot, and having actionable data to base decisions on. This leads to more con-
trol and a better understanding of your end-to-end delivery.

Once again Varnish proves to be an excellent candidate as CDN software.

9.2.1 Varnish Cache or Varnish Enterprise?
It is entirely possible to build your own CDN using Varnish Cache.

Storage becomes a bit trickier with Varnish Cache: we advise against using the fzle steve-
dore, which means your storage tier relies on memory only.

As long as you can equip your storage tier with enough memory and enough nodes,
your CDN will scale out just fine. Just keep the increased complexity of managing large
amounts of servers in mind.

738

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

A very important component is the shard director. It is responsible for creating the con-
tent affinity that is required to provide horizontal scalability of your storage tier. This
director is part vmod_directors and is shipped with Varnish Cache.

The reality is that the Massive Storage Engine (MSE) is a key feature for building a Pri-
vate CDN:

e MSE combines the speed of memory and the reliability of disks.

* MSE can store petabytes of data on a single machine.

* MSEis much more configurable than any other stevedore.

e The Memory Governor ensures a constant memory footprint on the server.
e MSE ofters a persisted cache that can survive restarts.

e vmod_mse allows MSE book and store selection on a per-request basis.

MSE is only available on Varnish Enterprise and is the number one reason why people
who are building their own CDN choose Varnish Enterprise.

When your CDN increases in size, being able to benefit from the Varnish Controller will
simplify managing those nodes.

Other than that, choosing between Varnish Cache and Varnish Enterprise will mainly
depend on the VA10Ds you need.

739

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.3 Varnish CDN architecture

We’ve mentioned it before: the key objective when building your own CDN is horizon-

tal scalability. You probably won’t be able to serve every single request from one Varnish
node.

The main reason is not having enough cache storage. Another reason is that one server
may not be equipped to handle that many incoming requests.

In essence, Varnish receives H1TP responses from a backend, which are sent to a client.
The backend shouldn’t necessarily be the origin, and the client isn’t necessarily the
end-user. The fact that both the storage and request processing should scale horizontal-
ly means that we can use Varnish as a building block to develop a multi-tier architecture.

The following diagram contains a multi-tier Varnish environment. It could be the archi-
tecture for a small PoP:

Request
Router
Varnish Varnish
edge node edge node

Varnish Varnish Varnish Varnish
edge node edge node edge node edge node

Multi-tier Varnish

Let’s talk about the various tiers for a moment.

740

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.3.1 Edge tier

The edge tier is responsible for interfacing directly with the clients.

These nodes handle TLS. If you'’re using Varnish Cache, Hitch is your tool of choice for
TLS termination. If you’re using Varnish Enterprise, you can use Hitch or native TLS.

Any dlient-side security precautions, such as authentication, rate limiting or throttling,
are also the responsibility of the edge tier.

Any geographical targeting or blocking that requires access to the client IP address also
happens on the edge.

In terms of horizontal scalability, edge nodes are added to enable client-delivery capacity.
This means having the bandwidth to deliver all the assets. Because the edge tier is direct-
ly in contact with the clients, it has to be able to withstand a serious beating and handle
all the incoming requests.

Hardware considerations

In terms of hardware, caching nodes in the edge tier will need very fast network interfaces
to provide the desired bandwidth. Other tiers will receive significantly less traffic and
need to provide less bandwidth.

Edge nodes also need enough CPU power to handle TLS. If your edge VCL configuration
has compute-intensive logic, having powerful CPUs will be required to deliver the de-

sired bandwidth.

Memory is slightly less important here: the goal is not to serve all objects from cache,
but to only serve hot items from cache. Consider that 50% of the available server mem-
ory needs to be allocated viamalloc or mse, and the other 50% is there for TCP buffers
and in-flight content.

If you’re using MSE’s memory governor feature, you can allocate up to 20% of your serv-
er’s memory to varnishd.

VCL example

Here’s a very basic VCL example for an edge-tier node:

741

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

vcl 4.1;
import directors;
backend broadcaster {

.host = "broadcaster.example.com";
.port = "8088";

}

backend storagel {
.host = "storagel.example.com";
.port = "80";

}

backend storage2 {
.host = "storage2.example.com";
.port = "80";

}

backend storage3 {
.host = "storage3.example.com";
.port = "80";

}

acl invalidation {
"localhost";
"172.24.0.0"/24;

}

sub vcl_init {
new storage_tier = directors.shard();
storage_tier.add_backend(storagel, rampup=5m);
storage_tier.add_backend(storage2, rampup=5m);
storage_tier.add_backend(storage3, rampup=5m);
storage_tier.reconfigure();

}

sub vcl_recv {
set req.backend_hint = storage_tier.backend(URL);
if(reqg.method == "BAN") {
if (req.http.X-Broadcaster-Ua ~ "~Broadcaster") {
if (!client.ip ~ invalidation) {
return(synth(405,"BAN not allowed for " + client.
ip));
}
if(!req.http.x-invalidate-pattern) {
return(purge);
¥
ban("obj.http.x-url ~ " + req.http.x-invalidate-pattern
+ " & obj.http.x-host == " + req.http.host);

742

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

return (synth(200,"Ban added"));

} else {
set reqg.backend_hint = broadcaster;
return(pass);

}

sub vcl_backend_response {
set beresp.http.x-url = bereq.url;
set beresp.http.x-host = bereq.http.host;
set beresp.ttl = 1h;

}

sub vcl_deliver {
set resp.http.x-edge-server = server.hostname;
unset resp.http.x-url;
unset resp.http.x-host;

}
- J

The only enterprisy part of this VCL is the broadcaster implementation: when a BAN
request is received by the edge tier, and the X-Broadcaster-Ua header doesn’t contain
Broadcaster, we connect to the broadcaster endpoint and let it handle invalidation on
all selected nodes.

If the X-Broadcaster-Ua request header does contain Broadcaster, it means it’s the
broadcaster connecting to the node, and we handle the actual ban.

Apart from that, this example is compatible with Varnish Cache.

As you can see, the shard director front and center in this example because it is respon-
sible for distributing requests to the storage tier. A hash key is composed, based on the
URL, for every request. The sharding director is responsible for mapping that hash key
to a backend on a consistent basis.

This means every cache miss for a URL is routed to the same storage server. If the hit
rate on certain objects is quite low, but the request rate is very high, there is a risk that
the selected storage node becomes overwhelmed with requests. This is something to
keep an eye on from an operational perspective.

You can throw in as much logic on the edge tier as you want, depending on the
VMOD:s that are available to you. We won’t go into detail now, but in the previous
chapters there were plenty of examples. Specifically in chapter 8, which is all about
decision-making on the edge, you’ll find plenty of inspiration.

743

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.3.2 Storage tier

Because of content affinity, our main priority is to achieve a much higher hit rate on the
storage tier.

Every node will cache a shard of the total cached catalog. We use the word shard on
purpose because the shard director on the edge-tier level will be responsible for routing
traffic to storage-tier nodes using a consistent hashing algorithm.

Hardware considerations

If you're using Varnish Cache, having enough memory is your main priority: as long as
the assigned memory as a total sum of storage nocdes matches the catalog of resources,
things will work out and your hit rate will be good.

If you’re using Varnish Enterprise, the use of MSE as your stevedore is a no-brainer:
assign enough memory to store the hot data in memory, and let MSE’s persistent storage
handle the rest. We advise using NVAMe SSD disks for persistence to ensure that disk
access is fast enough to serve long-tail content without too much latency.

We also advise that you set MSE’s memcache_size configuration setting to auto,
which enables the memory governor teature. By default 80% of the server’s memory will
be used by varnishd.

CPU power and very fast network interfaces aren’t a priority on the storage tier: most
requests will be handled by the edge tier. Only requests for long-tail content should end
up being requested on the storage tier.

VCL example

The VCL example for the storage tier focuses on the following elements:

* Banning objects

* DProviding stale-if-error support

* Choosing the right MSE store

* Protecting the origin from malicious requests by enabling the WAF

Here’s the code:

744

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

vcl 4.1;
include "waf.vcl";

import stale;
import mse;

acl invalidation {
"localhost";
"172.24.0.0"/24;
"172.18.0.0"/24;

sub vcl_init {
varnish_waf.add_files("/etc/varnish/modsec/modsecurity.conf");
varnish_waf.add_files("/etc/varnish/modsec/owasp-crs-v3.1.1/
crs-setup.conf");
varnish_waf.add_files("/etc/varnish/modsec/owasp-crs-v3.1.1/
rules/*.conf");

}

sub vcl_recv {
if(reqg.method == "BAN") {

if (!client.ip ~ invalidation) {
return(synth(405,"BAN not allowed for " + client.ip));

}

if(!req.http.x-invalidate-pattern) {
return(purge);

}

ban("obj.http.x-url ~ " + req.http.x-invalidate-pattern
+ " && obj.http.x-host == " + req.http.host);

return (synth(200,"Ban added"));

}

sub stale_if_error {
set beresp.keep = 1d;
if (beresp.status >= 500 && stale.exists()) {
stale.revive(20m, 1h);
stale.deliver();
return (abandon);

}

sub vcl_backend_response {
set beresp.http.x-url = bereq.url;
set beresp.http.x-host = bereq.http.host;
call stale_if_error;

745

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

if (beresp.ttl < 120s) {
mse.set_stores("none");
} else {
if (beresp.http.Content-Type ~ "~video/") {
mse.set_stores("storel");
} else {
mse.set_stores("store2");

}
}

sub vcl backend_error {
call stale_if error;

}

sub vcl_deliver {
set resp.http.x-storage-server = server.hostname;
unset resp.http.x-url;
unset resp.http.x-host;

}
- J

When we receive BAN requests, we ensure the necessary logic is in place to process them
and to prevent unauthorized access.

Viaa custom stale_if_error subroutine, we also provide a safety net in case the ori-
gin goes down: by setting beresp.keep to a day, expired and out-of-grace objects will
be kept around for a full day.

When the origin cannot be reached, vmod_stale will revive objects, make them fresh
for another 20 minutes, and give them an hour of grace. The object revival only takes
place when the object is available and if the origin starts returning H7TP 500-range
responses.

This VCL example also has WAF support. The WAFis purposely placed in the storage

tier and not in the edge tier.

Depending on the number of WAF rules, their complexity, and the amount of traffic
your Varnish CDN is processing, the WAF can cause quite a bit of overhead. We want
to place it in the tier that receives the fewest requests to reduce this overhead.

Another reason why the WA Fbelongs as close to the origin as possible is because our
goal is to protect the origin from malicious requests, not necessarily Varnish itself. And
we also want to avoid that bad requests end up in the cache.

And finally vmod_mse is used to select MSE stores: in this case storel is used to store
video footage, and store2 is used for any other content.

746

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.3.3 Origin-shield tier

There is an implicit tier that also deserves a mention: the origin-shield tier.

When one of the CDN’s PoPs is in the same data center as the origin server, the storage
tier will assume the role of origin-shield tier.

When your CDN has many PoPs, none of which are hosted in the same data center as
the origin server, it makes sense to build a small, local CDN that protects the origin from
the side effects of incoming requests from the PoPs.

Even if you’re not planning to build your own CDN, and you rely on public CDN pro-
viders, it still makes sense to build a Jocal CDN, especially if the origin server is prone to
heavy load. This way CDN cache misses will not affect the stability of the origin server.

Typical tasks that the origin-shield tier will perform are:

* Defining caching rules

* stale-if-error behavior

* WAF protection

* Using vmod_directors to route requests to the right origin server

We won’t present a dedicated VCL example for the origin-shield tier because the code
will be nearly identical to the one presented in the storage tier. Only the vmod_mse will
not be part of the VCL code.

This is the tier that receives the fewest requests. The hardware required for this tier
should only be able to handle requests coming from the storage tier, which in its turn
only receives requests that weren’t served by the edge tzer.

If you have a dedicated origin-shield tier, this is also the place where the WA Fbelongs:

close to the origin and in a tier that receives the fewest requests.

Instead of a VCL example, here’s a diagram that includes three PoPs, each with zwo tiers,
and a dedicated origin-shield tier in the origin data center:

747

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Client

Request

Router

Varnish
edge
node

Varnish
edge
node

Varnish
edge
node

Varnish
edge
node

edge
node

Varnish Varnish
Storage Storage
node node

Varnish
Storage
node

Varnish
Storage
node

Varnish
Storage
node

Varnish
Storage
node

Varnish
Storage
node

Varnish
Storage
node

Varnish Varnish

Varnish
Storage
node

Origin
datacenter
Varnish origin Varnish arigin
shield node shield node

Varnish CDN with a dedicated origin-shield tier

Here’s the scenario for this diagram:

¢ The request router will pick an edge node in the selected PoP.

¢ When the object cannot be served by the edge tier, the fetch is done from the storage

tier.

* Because of content affinity, the same storage node will always be selected when a spe-

cific URL is requested.

* When the storage node cannot serve the object from cache, an origin-shield node is

selected.

* When the origin-shield node cannot serve the object from cache, the origin server

receives the request.

748

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

94 Caching video

As mentioned in chapter 1: the majority of the internet’s bandwidth is no longer con-
sumed by websites or images: today online video is responsible for more than 80% of
internet traffic.

This type of video streaming is called over-the-top (OTT) video. This means that tra-
ditional cable, broadcast and satellite platforms are bypassed and the internet is used
instead.

OTT video is served over HT TP, which makes Varnish an excellent candidate to cache
and deliver it to clients.

We also highlighted this fact in chaprer 1: a single 4K video stream consumes at least 6
GB per hour. As a result, hosting a large catalog of on-demand video will require lots of

storage. Combined with potential viewers spread across multiple geographic regions,
delivering OT T video through a CDN is advised.

94.1 OTT protocols

First things first: there are various OTT protocols, we’re going to highlight three of them:

* HILS
* MPEG-DASH
* CMAF

¢ These protocols have some similarities:
¢ Thevideo stream is fragmented into a sequence video segments.
e Each video segment represents a number of seconds of footage.

* A manifest file, also called a playlist file, indexes the various segments per bitrate
and provides metadata.

¢ The video player reads the manifest file and loads the corresponding sequence of
video segments.

¢ From capturing to viewing footage, there are a couple of steps that take place:

¢ Captured footage is sent to an encoder or a transcoder to convert it using a support-

ed codec.

* Encoded footage is then sent to an ingestion service, which chops the footage up
into various segments.

* The segmented footage, along with the playlist, is then published on the conzent
delivery platform, which is consumed by video players.

749

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

This process is also called content packaging.

For live streaming, the footage comes in as it is captured. There is a slight delay: footage
is only sent to the player when the video segment is completed. When each video seg-
ment represents six seconds of footage, the delay is around six seconds.

The corresponding manifest file is updated each time a new segment is added. It’s up to
the video player to refresh the manifest file and load the newest video segment.

When you add catch-up capabilities to live streaming, a viewer can pause the footage,
rewind and fast-forward. This requires older video segments to remain available in the
manifest file.

Video on demand (VoD) has no live component to it, which results in a fixed manifest
file. Because all video segments are ready at the time of viewing, the video player should
only load the manifest file once.

Ingest footage

Encoding &
packaging

Captured

footage

Publish HSL files

Playlist
Video "

segments

Content delivery
platform

Request manifest

Encoding &

packaging

Request video files

OTT video streaming flow

HLS
HTTP Live Stream (HLS) is a very popular streaming protocol that was invented by
Apple.

Video footage is encoded using the H.264/AVC or HEVC/H. 265 codec. The container
format for the segmented output is either fMP4 (fragmented MP4) , or MPEG-TS (MPEG
transport streams).

750

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

HLS supports various resolutions and frame rates, which impact the bitrate of the
stream.

Resolutions range from 256x144 for 144p all the way up to 3840x2160 for 4K, while
frame rates range from 23.97 fps to 60 fps. The resulting bitrates are usually between
300 Kbps and 50 Mbps.

The endpoints of the video segments are listed in an extended M3U manifest file. Usual-
ly, this file has a .m3u8 extension and acts as a playlist.

The manifest file is consumed by the video player, and the player loads the video seg-
ments in the order in which they were listed in the .m3u8 file.

On average, every video segment represents between six and ten seconds of footage. The
target duration of the video segments is defined in the manifest file.

Audio is encoded in AAC, MP3, AC-3 or EC-3 format. The audio is either part of the video
files or is listed in the manifest file as separate streams in case of multi-language audio.

Endpoints referring to captions and subtitles can also be added to the .m3u8 file.

HLS supports adaptive bitrate streaming. This means that the HLS manifest file offers
multiple streams in different resolutions based on the available bitrate. It’s up to the
video player to detect this and select a lower or higher bitrate based on the available

bandwidth.

Because the video stream is chopped up in segments, adaptive bitrate streaming will
allow a change in quality after every segment.

Video segments can also be encrypted using AES encryption based on a secret key. This
key is mentioned in the manifest, but access to its endpoint should be protected to avoid
unauthorized access to the video streams.

In most cases securing a video stream usually happens via a third-party DRM provider.
This is more secure than having the secret key out in the open or relying on your own
authentication layer to protect that key.

DRM stands for digital rights management and does more than just provide the key to
decrypt the video footage. The DRAM service also contains rules that decide whether or
not the user can play the video.

This results in a number of extra playback features:

751

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

¢ Allow or block offline playback

* Restrictaccess to specific platforms

* Restrict a user from watching a video more than x times
¢ Decide when the user can watch the video

* Restrict how long the video remains available

Here’s an example of a VoD manifest file:

s
#EXTM3U

#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:6
#EXT-X-MEDIA-SEQUENCE: 0
#EXT-X-PLAYLIST-TYPE:VOD
#EXTINF :6.000000,
stream_00.ts

#EXTINF :6.000000,
stream_01.ts
#EXTINF:6.000000,
stream_02.ts

#EXTINF :6.000000,
stream_03.ts

H#EXTINF :6.000000,
stream_04.ts
#EXTINF:6.000000,
stream_05.ts

#EXTINF :6.000000,
stream_06.ts

#EXTINF :6.000000,
stream_07.ts
H#EXTINF:6.000000,
stream_08.ts

#EXTINF :6.000000,
stream_09.ts
H#EXTINF:5.280000,
stream_010.ts
#EXT-X-ENDLIST

&

J

This .m3u8 file refers to a video stream that is segmented into 11 parts, where the dura-

tion of every segment is six seconds. The last segment only lasts 5.28 seconds.

If the manifest file is hosted on https://example.com/vod/stream.m3u8, the video

segments will be loaded by the video player using the following UR Ls:

752

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

https://example.com/vod/stream_00.ts
https://example.com/vod/stream_01.ts
https://example.com/vod/stream_02.ts
https://example.com/vod/stream_03.ts
https://example.com/vod/stream_04.ts
https://example.com/vod/stream_05.ts
https://example.com/vod/stream_06.ts
https://example.com/vod/stream_07.ts
https://example.com/vod/stream_08.ts
https://example.com/vod/stream_09.ts

https://example.com/vod/stream_010.ts
- J

The .m3u8 manifest supports a lot more syntax, which is beyond the scope of this book.
We will conclude with an example of adaptive bitrate streaming:

()
#EXTM3U

#EXT-X-VERSION:3

#EXT-X-STREAM-INF : BANDWIDTH=800000, RESOLUTION=640Xx360

stream_360p.m3u8

#EXT-X-STREAM-INF : BANDWIDTH=1400000, RESOLUTION=842x480

stream_480p.m3u8

#EXT-X-STREAM-INF : BANDWIDTH=2800000, RESOLUTION=1280x720

stream_720p.m3u8
#EXT-X-STREAM-INF : BANDWIDTH=5000000, RESOLUTION=1920x1080
stream_1080p.m3u8

g J

This manifest file provides additional information about the stream and loads other
manifest files based on the available bandwidth. Each of these .m3u8 files links to the
video segments that contain the required footage.

MPEG-DASH

The DASH part of MPEG-DASH is short for Dynamic Adaptive Streaming over HTTP.
It is quite similar to and is newer than HLS.

MPEG-DASH was developed as an official standard at a time when Apple’s HLS protocol
was competing with protocols from various other vendors. MPEG-DASH is now an
open source standard that is pretty much on par with ALS in terms of capabilities.

As an open standard, MPEG-DASH used to have a slight edge in terms of capabilities,
but HLS matched these with later upgrades to the protocol.

The main difference is that MPEG-DASH is codec-agnostic, whereas HLS relies on
H.264/AVC and HEVC/H.265.

753

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

MPEG-DASH streams are not supported by Apple devices because they only use HLS.

The manifest file for MPEG-DASH streams is in XML format. This is a bit harder to
interpret, but it allows for richer semantics and more context.

Here’s an example:

~
<?xml version="1.0" ?>
<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" profiles="urn:mpeg:dash:-
profile:isoff-1live:2011" minBufferTime="PT2.00S" mediaPresentationDu-
ration="PT2M17.680S" type="static">
<Period>
<!-- Video -->
<AdaptationSet mimeType="video/mp4" segmentAlignment="true"
startWithSAP="1" maxWidth="1920" maxHeight="1080">
<SegmentTemplate timescale="1000" duration="1995" initial-
ization="¢$RepresentationID$/init.mp4" media="$RepresentationID$/
seg-$Number$.m4s" startNumber="1"/>
<Representation id="video/avcl" codecs="avcl.640028"
width="1920" height="1080" scanType="progressive" frameRate="25"
bandwidth="27795013"/>
</AdaptationSet>
<!-- Audio -->
<AdaptationSet mimeType="audio/mp4" startWithSAP="1" segmen-
tAlignment="true" lang="en">
<SegmentTemplate timescale="1000" duration="1995" initial-
ization="¢$RepresentationID$/init.mp4" media="$RepresentationID$/
seg-$Number$.m4s" startNumber="1"/>
<Representation id="audio/en/mp4a" codecs="mp4a.40.2" band-
width="132321" audioSamplingRate="48000">
<AudioChannelConfiguration schemeIdUri="urn:mpeg:-
dash:23003:3:audio_channel_configuration:2011" value="2"/>
</Representation>
</AdaptationSet>
</Period>
</MPD>
_ J

This manifest file, which could be named stream.mpd, uses an <MPD></MPD> tag to
indicate that this is an MPEG-DASH stream. The minBufferTime attribute tells the
player that it can build up a tfwo-second buffer. The mediaPresentationDuration at-
tribute announces that the stream has a duration of two minutes and 17.68 seconds. The
type="static" attribute tells us that this a VoD stream.

Within the manifest, there can be multiple consecutive periods. However, this example
only has one <Period></Period> tag.

754

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Within the <Period></Period> tag we defined multiple <AdaptationSet></Adapta-
tionSet> tags. An adaptation set is used to present audio or video in a specific bitrate.
In this example the delivery of audio and video comes from different files, hence the
two adaptation sets.

An adaptation set has two underlying entities:

* Asegment template that defines where the corresponding files can be found and
when they should be loaded

* A vrepresentation that defines the properties of the audio and video segments that
are loaded

In this example the video footage can be found in the video/avc1 folder. This loca-
tion is referenced in the $RepresentationID$ variable, which is then used within the
<SegmentTemplate></SegmentTemplate> tag.

The duration attribute defines the duration of each audio or video segment. In this
case this is 1995 milliseconds.

Another variable is the $Number$ variable, which in this case starts at 1 because of the
startNumber="1" attribute.

The maximum value of $Number$ can be calculated by dividing the mediaPresen-
tationDuration attribute in the <MPD></MPD> tag by the duration attribute in the
<SegmentTemplate></SegmentTemplate> tag:

[137680 / 1995 = 69]

The total duration of the stream is 137680 milliseconds, and each segment represents

1995 milliseconds of footage. This results in 69 audio and video segments for this
stream.

The $RepresentationID$/seg-$Numbers$.mds notation results in the following video
segments:

video/avcl/seg-1.mds
video/avcl/seg-2.m4s
video/avcl/seg-3.m4s

video/avcl/seg-69.mds

755

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

The <Representation></Representation> taghasan id attribute that refers to the
folder where this representation of the footage can be found. In this case this is video/
avcl. The codec attribute refers to the codec that was used to encode the footage. This
is one of the main benefits of MPEG-DASH: begin coded-agnostic.

The width and height attributes define the aspect ratio of the video, and the frameR-
ate attribute defines the corresponding frame rate. And finally the bandwidth attri-
bute defines the bandwidth that is required to play the footage fluently. This is in fact
the bitrate of the footage.

The audio has a similar adaptation set.

And based on the <SegmentTemplate></SegmentTemplate> and <Representa-
tion></Representation> tags, youll find the following audio segments:

audio/en/mp4a/seg-1.mas
audio/en/mp4a/seg-2.mis
audio/en/mpda/seg-3.m4s

audio/en/mp4a/seg-69.mas

As you can see, the MPD XML format caters to multiple audio tracks.

In terms of HTTP, these MPEG-DASH resources can be loaded through the following
endpoints:

(N
https://example.com/vod/stream.mpd

https://example.com/vod/video/avcl/init.mp4

https://example.com/vod/video/avcl/seg-1.m4s
https://example.com/vod/video/avcl/seg-2.m4s
https://example.com/vod/video/avcl/seg-3.mas

https://example.com/vod/audio/en/mp4a/init.mp4

https://example.com/vod/audio/en/mp4a/seg-1.mas
https://example.com/vod/audio/en/mpda/seg-2.mas
https://example.com/vod/audio/en/mp4a/seg-3.mis

=)
CMAF

The Common Media Application Format (CMAEF)is a specification that uses a single
encoding and packaging format, yet presents the segmented footage via various mani-

fest types.
Whereas HLS primarily uses MPEG-TS for its file containers, MPEG-DASH primarily

756

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

uses fMP4. When you want to offer both HLS and MPEG-DASH to users, you need to
encode the same audio and video twice.

This leads to a lot of overhead in terms of packaging, storage and delivery.

CMAF does not compete with HLS or MPEG-DASH. The specification aims to create
a uniform standard for segmented audio and video that can be used by both ALS and
MPEG-DASH.

The output will be very similar to the MPEG-DASH example:

e There will be separate seg-*.m4s files for the audio and video streams.

* There will be init.mp4 files to initialize audio and video streams.

e There will be a stream.mpd file that exposes the footage as MPEG-DASH.
* And there will also be a stream.m3us8 file that exposes the footage as HLS.

e The stream.m3us8 file will refer to various other HLS manifests for audio and video
for each available bitrate.

9.4.2 Varnish and video

Now that you know about HLS, MPEG-DASH and CMAF, we can focus on Varnish

again.

Because these OTT protocols leverage the HT TP protocol for transport, Varnish can be
used to cache them.

We’ve already mentioned that the files can be rather big: a 4K stream consumes at least
6 GB per hour. The MPEG-DASH example above has a duration of two minutes and 17
seconds and consumes 330 MB. Keep in mind that this is only for a single bitrate. If you
support multiple bitrates, the size of the streams increases even more.

A single Varnish server will not cut it for content like this: for a large video catalog,
you probably won’t have enough storage capacity on a single machine. And more im-
portantly: if you start serving video at scale, you’re going to need enough computing
resources to handle the requests and data transfer.

The obvious conclusion is that a CDN is required to serve OTT video streams at scale,
which is the topic of this chapter.

Earlier in the chapter we stated that Varnish Cache can be used to build your own CDN,
and we still stand by it. However, if you are serving terabytes of video content, your
CDN’’s storage tier will need Varnish Cache servers with a lot of memory, and potentially
a lot of servers to scale this tier.

757

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

However, in this case Varnish Enterprise’s MSE stevedore really shines. With MSE in
your arsenal, your storage tier isn’t going to be that big. The memory consumption will
primarily depend on how popular certain video content is. The memory governor will
ensure a constant memory footprint on your system, whereas the persistence layer will
cache the rest of the content.

The time to live you are going to assign to OT T video streams is pretty straightforward:

¢ Segmented video files for HLS and MPEG-DASH can be cached for a very long
time.

* Manifest files like .m3u8 and .mpd for video on demand (VoD) footage can also be
cached for a long time.

* Manifest files like .m3u8 and .mpd for /ive streams should only be cached for half of
the duration of a video segment.

Once a video segment is created, it won’t change any more. Even for live streaming, you
will just add segments, you won’t be changing them. A T7TL of one day or longer is per-
fectly viable.

The same applies to the manifest files for VoD: all video segments are there when play-
back starts, which means that the manifest file will not change either. Long 77Ls are
fine in this case.

However, for live streaming, caching manifest files for too long can become problemat-
ic. A live stream will constantly add new video segments, which should be referenced in
the manifest file. This means the manifest file is updated every time.

The update frequency depends on the target duration of the segment. If a video seg-
ment contains szx seconds of footage, caching the manifest file for longer than six seconds
will prevent smooth playback of the footage. The rule of thumb is to only cache a mani-
test file for half of the target duration.

It your HLS or MPEG-DASH stream has a target duration of six seconds, setting the
TTL for .m3u8and .mpd files to three seconds is the way to go.

Keep in mind that three seconds is less than the shortlived runtime parameter, which
has a default value of ten seconds. This means that these objects don’t end up in the reg-
ular cache, but in transient storage. Don’t forget that transient storage is unbounded by
default, which may impact the stability of your system.

Even when using standard AMSE instead of standard malloc, short-lived objects will
end up in an unbounded Transient stevedore. It is possible to limit the size of t7an-
sient storage, but that might lead to errors when it is full.

758

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

The most reliable way to deal with short-lived content, like these manifest files, is to use
the memory governor: the memory governor will shrink and grow the size of transient
storage based on the memory consumption of the varnishd process.

What is also unique to the memory governor is that it introduces an LRU mechanism on
transient objects. This ensures that when transient is full, LRU takes place rather than
returning an error because the transient storage is full.

In reality it seems unlikely that short-lived objects containing the manifest files would be
the reason that transient storage spins out of control and causes your servers to go out

of memory. Because we’re dealing with relatively small plain text files, the size of each
manifest will be mere kilobytes.

94.3 VCL tricks

There are some interesting things we can do with VCL with regard to video. These are
individual examples that only focus on video. Of course these VCL snippets should be
part of the VCL code that is in one of your CDN tiers.

Controlling the TTL

The first example is pretty basic, and ensures that .m3u8, .mpd, .ts, .mp4 and .m4s files
are always cached. Potential cookies are stripped, and the 7'7'L is tightly controlled:

~
vcl 4.1;
sub vcl_recv {
if(req.url ~ "A[A?2]*\.(m3u8|mpd|ts|mp4|mds) (\?.*)?$") {
unset req.http.Cookie;
return(hash);
}
}
sub vcl _backend_response {
if(bereq.url ~ "A[A?2]*\.(m3u8|mpd|ts|mp4|mds)(\?.*)2$") {
unset beresp.http.Set-Cookie;
set beresp.ttl = 1d;
}
if(bereq.url ~ "~/live/[~?]*\.(m3u8|mpd)(\2?.*)?$") {
set beresp.ttl = 3s;
}
}
_ J

759

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

All video-related files are stored in cache for a full day. Butif an .m3u8 or .mpd manifest
file is loaded where the URL starts with /1ive, it implies this is a live stream. In that
case the 7TL is reduced to half the duration of a video segment. In this case the 771
becomes three seconds.

Prefetching segments

When dealing with VoD streams, we know that all the video segments are ready to be
consumed when playback starts, unlike /zve streams where new segments are constantly

added.

This allows Varnish to prefetch the next video segment, knowing that it is available and
is about to be required by the video player. Having the next segment ready in cache may
reduce latency at playback time.

Here’s the code:

~
vcl 4.1;
import http;
sub vcl_recv {
if(reg.url ~ "A[~?2]*\.(m3u8|mpd|ts|mp4|mas) (\?.*)?$") {
unset req.http.Cookie;
if(req.url ~ "~/vod/[~?]*\.(ts|mp4|m4s)(\?.*)2$") {
http.init(9);
http.req_copy_headers(0);
http.req_set_method(©, "HEAD");
http.req_set_url(0, http.prefetch_next_url());
http.req_send_and_finish(0);
}
return(hash);
}
}
sub vcl_backend_response {
if(bereq.url ~ "A[~2]*\.(m3u8|mpd|ts|mp4|mas)(\?.*)?$") {
unset beresp.http.Set-Cookie;
set beresp.ttl = 1d;
}
if(bereq.url ~ "~/live/[~?]*\.(m3u8|mpd) (\2.*)?$") {
set beresp.ttl = 3s;
}
}
_ J

760

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

This prefetching code will fire oft an internal subrequest while not waiting for the re-
sponse to come back. We assume that the next segment will be stored in cache by the
time it gets requested.

http.prefetch_next_url() does some guesswork on what the next segment’s se-
quence number would be. If a request for /vod/stream_01.ts is received, http.
prefetch_next_url() will return /vod/stream_@2.ts as the next URL.

However, if the URL would be /vod/videol/stream_01.ts, there are two numbers
in the URL, which may trigger http.prefetch_next_url() to only increase the first
number. To avoid this, we can add a prefix, which instructs http.prefetch_next_
url() to only start increasing numbers after the prefix pattern has been found.

With /vod/videol/stream_01.ts in mind, this is what the prefetch function would
look like:

[http.prefetch_next_url("~/vod/videol/");]

No origin

As mentioned in chapter 5: vmod_file can serve files from the local file system, and ex-

pose itself as a file backend.

This could be a useful feature that eliminates the need for an origin web server. Here’s
the VCL code:

~N
vcl 4.1;
import file;
backend default {
.host = "origin.example.com";
.port = "80";
}
sub vcl_init {
new fs = file.init("/var/www/html/");
}
sub vcl backend_fetch {
if(bereq.url ~ "~A[~?]*\.(m3u8|mpd|ts|mp4|mds)(\?.*)?$") {
set bereq.backend = fs.backend();
} else {
set bereq.backend = default;
}
}
_ _J

761

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

The standard behavior is to serve content from the origin.example.com backend.
This could be the web application that relies on a database to visualize dynamic con-
tent.

But the video files are static, and they can be served directly from the file system when
Varnish has them on disk. This example will match extensions like .m3u8, .mpd, .ts,
.mp4 and .m4s and serve these directly from the file system before storing them in the
cache.

Ad injection

Imagine the following .m3u8 playlist:

(
H#EXTM3U

#EXT-X-VERSION:3
#EXT-X-TARGETDURATION: 6
#EXT-X-MEDIA-SEQUENCE: 0
#EXT-X-PLAYLIST-TYPE:VOD
#EXTINF :6.000000,
stream_00_us.ts

#EXTINF :6.000000,
stream_01.ts
#EXTINF:6.000000,
stream_02.ts

H#EXTINF:6.
stream_03.
H#EXTINF:6.
stream_04.
H#EXTINF:6.
stream_05
H#EXTINF:6.
stream_06.
H#EXTINF:6.
stream_07.
H#EXTINF:6.
stream_08.
H#EXTINF:6
stream_09.
H#EXTINF:5.

000000,
ts
000000,
ts
000000,

.ts

000000,
ts
000000,
ts
000000,
ts

.000000,

ts
280000,

stream_010.ts
#EXT-X-ENDLIST

&

The first segment that is loaded is stream_0@_us.ts, which has us in the filename.
That is because it is a pre-roll ad that is valid for the US market.

762

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Via geolocation you can determine the user’s location. This is based on the client IP
address. That’s pretty straightforward. But having to create a separate .m3u8 file per
country is not ideal.

We can leverage vmod_edgestash and template this value. Here’s what this would look
like:

[stream_00_{{country}}.ts]

And now it’s just a matter of parsing in the right country code. Here’s the VCL to do
that:

~
vcl 4.1;
import edgestash;
import mmdb;
sub vcl_init {
new geodb = mmdb.init("/path/to/db");
}
sub vcl_recv {
set req.http.x-country = geodb.country_code(client.ip);
if (req.http.x-country !~ "~(gb|de|fr|nl|be|us|cal|br)$") {
set req.http.x-country = "us";
}
}
sub vcl_backend_response {
if (bereq.url ~ "\.m3u8%$") {
edgestash.parse_response();
set beresp.ttl = 3s;
}
}
sub vcl_deliver {
if (edgestash.is_edgestash()) {
edgestash.add_json({"
{
"country": ""} + req.http.x-country + {""
}
"1
edgestash.execute();
}
}
_ J

763

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

This example has ad-insertion capabilities for: the UK, Germany, the Netherlands, Bel-
gium, the US, Canada and Brazil. Users visiting from any other country will see the US

pre-roll ad.

764

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.5 Request routing

You can build a CDN with as many PoPs as you want, but you need a way to route cli-
ents to the right PoP.

There are various ways you can do this, but DNS is a popular one. The authoritative
DN server for the hostname that receives the DNS reguests uses geolP lookups based on
the client network address in the case of EDNS, or in non-EDNS cases we use the recur-
sive resolver’s IP address, which returns the IP address of the PoP.

Resolving nameservers can pass information about users using EDNS Client Sub-
net. The subnet is a short suffix that is appended to the end of an IP address that
indicates where a user is located. Not all resolvers forward this information.

Another way is via WAN Anycast, where the network routing technology is used to
select a PoP based on the shortest network route.

Certain use cases can also warrant the use of H7TP for routing requests to the right
PoP: a discovery service can also use geolP to localize the client, and then perform an
HTTP 301 redirect to the right PoP. Using HT TP has the upside that the discovery
service will see the requesting client IP and the geolP filtering will be more fine-grained.

It is possible to combine these methods and first perform a crude localization through
DNS, and then let Anycast find the closest server for that IP address.

In a more practical sense, we will cover four request routing implementations:

e PowerDNS
¢ AWS Route 53
* Anycast

¢ Varnish Traffic Router

9.5.1 PowerDNS

PowerDNS is an open source DNS server that is quite easy to install and manage.

Via its geoip backend plugin, geolocation can be performed. If the request is done

with EDNS the client network address is part of the DNS request. If it is done without
EDNS the requesting resolver address is inspected and matched to a geolP database. The
DN response is the IP address of a PoPin our CDN.

765

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

In terms of configuration, you can add the following settings to /etc/powerdns/pdns.
conf:

launch=geoip
geoip-database-files=/usr/share/GeoIP/GeoIP.dat,/usr/share/GeoIP/
GeoIPv6.dat

geoip-zones-file=/etc/powerdns/zone

This configuration enables the geoip backend, loads the geo/P databases, and sets the
location of the zone file.

The zone file, located in /etc/powerdns/zone, contains information about the do-
main and its records and could look like this:

4)

- domain: geo.example.com
ttl: 60
records:
geo.example.com:
- soa: ns.example.com. hostmaster.example.com. 1 7200 3600
86400 60
- ns: ns.example.com.
eu.geo.example.com:
- a: 192.168.1.2
na.geo.example.com:
- a: 192.168.1.3
sa.geo.example.com:
- a: 192.168.1.4
af.geo.example.com:
- a: 192.168.1.5
as.geo.example.com:
- a: 192.168.1.6
"*,geo.example.com":
- a: 192.168.1.7
services:
www.geo.example.com: ‘%cn.geo.example.com’

- J

This zone file provides DNS information for the geo.example.com domain. There are
a certain number of address records available that are linked to specific IP addresses:

* eu.geo.example.com points to IP address 192.168.1.2 and represents our Europe-
an PoP.

* na.geo.example.com points to IP address 192.168.1.3 and represents our North
American PoP.

* sa.geo.example.com points to IP address 192.168.1.4 and represents our Soxth
American PoP.

766

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

¢ af.geo.example.com points to IP address 192.168.1.5 and represents our African
PoP.

* as.geo.example.com points to IP address 192.168.1.6 and represents our Asian
PoP.

e *.geo.example.com points to IP address 192.168.1.7 and catches DNS requests
for unmatched continents, or when the continent information could not be re-
trieved from the client IP address.

And finally, there is a service definition for www.geo.example.com that is exposed as a
CNAME record. It points to %cn.geo.example.com. The %cn placeholder is replaced with
the continent code of the client.

For any matching address record, the IP address will be returned. Unmatched address
records will be caught by the *.geo.example.com record.

Because DNS resolution is distributed, it scales well: your system’s DNS resolvers will
perform all the heavy lifting. DNS requests to our PowerDNS server will only be made
if the cached value of your DNS resolver expires.

As you can see, DNS uses caching techniques just like Varnish. There is also a TTL that
should be respected. However, there is no way to enforce this 77, and no way to force-
fully invalidate the cache.

If changes in the zone file occur, it could take a couple of hours before they are propa-

gated globally.

9.51 AWS Route53

Route53 is a cloud-based DNS service by Amazon Web Services (AWS). The technology
is very similar to the PowerDNS example you just saw: Route53 identifies the client IP
address for incoming DNS requests and matches the requested hostname to an IP ad-
dress that is associated with a specific geographic region.

Route53 can match continents, countries, and US states.

The following screenshot shows how to configure a DNS record with geolocation rout-

ing:

767

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Quick create record 1o Switch to wizard Add another record

v Retord | Delete
Record name Info Record type Info value Info P Alias
WWW Adiy-cdn.varnish- A - Routes traffic to an IPva address and ... ¥
software.com
Valid characters: a=7, 0-9, 1" #53 % & ") " + H
@IVIS (|}~ Enter madbiple values an separate lines
TTL (seconds) infe Routing policy info Location
300 Geolocation v Europe v
im ih id
Recommiended values: 60 to 172800 (twao days)
Health check - aprional 1nfo Record IDV 1nfo

AWS Route 53

The IP address that is returned represents the closest CDIN PoP the user should connect
to. If the PoP nodes are also hosted in the AWS cloud, RouteS3 has some additional re-
quest routing capabilities.

9.51 Anycast

Anycast is a network-routing technique that maps a single IP address to multiple end-
points and lets routers decide which endpoint is selected.

Endpoint selection is based on the number of hops between the client and the end-
points, on distance, and network latency. Anycast will choose the shortest route.

Anycast may even select a PoP that is a lot further away because the latency is lower. Geo-
location does not have this intelligence.

The preferred route for Anycast addressing is implemented using the Border Gateway
Protocol (BGP). This is a routing protocol that announces the routes over the network.

This is not a layer-7 implementation; however, it can be leveraged by layer-7 protocols,
such as HTTP and DNS.

When routing traffic to a CDN PoP, Anycast can give you the IP address of a load bal-
ancer or an edge-tier node, which can be directly used by the H7TTP protocol.

It is also possible that you use Anycast to send requests to specific DNS servers. The
DN server can then use finer-grained geolocation information that differs based on the
selected DNS server.

768

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.5.1 Varnish Traffic Router

Varnish Software is also building a traffic router. The systems are designed to be per-

fectly compatible with its Varnish Enterprise offering and approaches the routing aspect
from two different angles:

e DNS
e HTTP redirects

One big differentiator from the other request routing solutions is that the Varnish Traf-
fic Router keeps track of PoP and endpoint utilization and health. It keeps track of band-
width consumption and request rate. It takes the load of the individual endpoints and PoPs
into account when routing traffic. An endpoint or PoP that is not healthy or overloaded
will not get any traffic sent to it. There is also support for CIDR routing,

To avoid reinventing the wheel, Varnish Traffic Router doesn’t implement a custom
DN server but leverages PowerDNS instead.

The Varnish Traffic Router uses PowerDNS to handle all DNS protocol specifics and
acts as a remote backend. This means that PowerDNS polls an HT TP endpoint to retrieve
zone information. This endpoint happens to be a specific listening port on the Varnish
Traffic Router.

The logic, the rules, and the geolocation is done inside the traffic router.

This logic can also be exposed for incoming HTTP requests: when a client requests

an HTTP resource on the traffic router, it decides based on the client IP address which
node in a specific PoP is going to be selected. The result is an H7TP 301 redirect to that
node.

For websites, HT TP redirection is not ideal for SEO reasons. But for assets like images,
video streams, and other static files, this is a viable solution. Video is the primary use
case here.

Varnish Traffic Router is still an unreleased product, still in development at the time

of writing this book. However, chances are that by the time you are reading this, the
Varnish Traffic Router will be released, and its management integrated into the Varnish
Controller.

769

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.6 Varnish and 56

5G is coming; there’s no doubt about it. There’s plenty of hype surrounding this new
cellular network technology.

The two metrics that are used to describe the benefits of SG are:

* Higher throughput
e Lower latency

In theory 5G can be 100 times faster than 4G with throughput up to 10 Gbit per second.
On average, 30 ms of latency occurs on a 4G connection. On 5G this should be sub-mil-
lisecond.

And those happen to be terms you can associate with Varnish too. So how does Varnish
fitinto this story?

Higher throughput and lower latency will create expectations that are hard to meet:
although your 5G service may support throughput in the hundreds of megabits with
a sub-millisecond latency, this doesn’t mean that the content you’re requesting will be
received at the same pace.

The network route between the 5G antenna and the server that contains the requested
resources might not yield that kind of throughput and latency. But that’s why CDNs
were invented in the first place.

A centralized CDN with a number of PoPs will yield better results, but it will be no-
where near the theoretical numbers that are thrown around.

9.6.1 Multi-access edge computing

In a 5G context, the only solution for better performance is to move the edge even closer
to the user. This concept is part of 5G and is called multi-access edge computing (MEC).

Instead of relying on a centralized cloud for computing and storage, 5G operators will
run workloads in 5G edge locations. These are decentralized cloud environments that are
as close as possible to the 5G antennas.

Only by putting the content even closer to the user than in a traditional CDN architec-
ture can we truly improve the quality of experience for the user.

The dlondification of mobile technology, powered by open radio access network (RAN)
standards, will lower the barriers to entry for developers and content providers and will
lead to more 5G integrations.

770

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

The MEC is a way for ISPs to build out a CDN deep in their network. This offloads
their core network and provides ultra-low latency for clients in that area.

9.6.1 Use cases

The obvious use case that comes to mind is video: video is prone to latency, and deliver-

ing high-quality video requires plenty of bandwidth.

5G will push OTT video streaming to the next level:

* Higher video resolutions

* Higher frame rates

e Smaller video segments, reducing latency for live streaming
* 360°video

5G could also revolutionize gaming and accelerate the shift to gaming in the cloud. Vir-
tual reality (VR) and augmented reality (AR) applications could also be pushed to the
cloud thanks to multi-access edge computing.

The use cases are not limited to public mobile networks. Companies can build private
5G networks, thanks to the open RAN standards and use those networks for industrial
automation in their factories and plants.

Healthcare innovations powered by ultra-low latency robotic surgery could greatly ben-
efit from 5G.

And as 5G promises to be 100 times faster than traditional mobile networks, this could
also mean that traditional broadband subscriptions could be replaced with mobile sub-
scriptions without jeopardizing the quality of experience.

9.6.1 Varnish Edge Cloud

With all those innovations on the horizon, Varnish is in an excellent position to add
value to companies who want to build out a MEC.

Varnish Edge Cloud is the name of the our 5G solution, which is of course based on
Varnish Enterprise. As SG continues to evolve, so will Varnish Edge Cloud, to meet the
evolving requirements for those building out MECs. The virtualized nature of these
setups will only further democratize mobile networking.

Here are some key capabilities that Varnish Edge Cloud, the SG-branded version of Var-
nish Enterprise, currently has:

771

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

Being able to serve up to 800,000 requests per second
Supporting a throughput up to 200 Gbps
Latency below one millisecond

The Varnish Configuration Language that allows developers to run workloads on

the edge
Clustering and high availability to synchronize caches across MEC locations

Multi-terabyte edge storage, thanks to MSE

772

CHAPTER 9: BUILDING YOUR OWN CDN WITH VARNISH

9.7 Summary

Content delivery has become an important topic for anyone that provides services on the
web.

Increased latency and low throughput severely impact the quality of experience, which
may drive them to your competitors.

Because of globalization, it is likely that people from all around the world are consum-
ing your online services. Geography plays a significant part in the experience: the fur-
ther your users are removed from the origin, the higher the risk of latency.

A key takeaway from this chapter is that CDNs are responsible for the fact that online
content is delivered so fast and with such stability.

Without CDN5, 4K video streams on your smart TV would be a lot more challenging.
Another takeaway is that it often makes sense to build your own CDN.

Varnish has some unique features that make it a suitable building block for Private
CDN.

Moving from building blocks to a ready-to-use product, Varnish Enterprise is equipped
to deliver enterprise-grade Private CDN capabilities that are used by some of the biggest
video streaming platforms, broadcasters and CDN providers in the world.

With the advent of 5G and the need to push the edge even closer to the user, Varnish is
again in a unique position to offer caching and edge computing solutions via Varnish
Software’s Varnish Edge Cloud solution.

Despite Varnish Software’s commitment to leverage its technology to build Private
CDN solutions, it also possible to use Varnish Cache to build your own CDN.

It all depends on the storage needs you have, and which VA4ODs your use case requires.

Not only does this wrap up chapter 9, we’ve also come full circle in the book. We’d like
to invite you to turn the page, and read the closing notes of this book.

773

CHAPTER 10: CLOSING NOTES

Chapter 10: Closing notes

Thank you for taking the time to read this book. Writing it was a memorable experience
for me, and I hope it brought some inspiration and insight to you immediately and can
be a solid reference resource for you in the future as well.

No doubt, we covered a lot of topics, and the scope of this book was pretty broad. This
makes sense because this breadth illustrates just how varied the Varnish ecosystem is and
paints a brighter, more detailed picture of Varnish being about much more than just
writing a couple of lines of VCL.

Some of the key takeaways I hope you got from the book include:

Get started with and develop your hands-on knowledge of Varnish I sincerely
hope that by now you are capable of setting up a cluster of Varnish servers, manage
them properly, and perform the necessary monitoring and logging to ensure a stable
content delivery platform.

Understand in greater depth how important HT'TP is Varnish speaks HTTP, so it
is important to know how the protocol works. Throughout the book, and especially in
chapter 3, you've seen the ins and outs of H77TP, and you've learned all about its caching
capabilities, and some of the specific headers that can be leveraged.

Appreciate that Varnish thrives on driving performance By now it should also be
crystal clear that Varnish is built for performance. Some of the numbers I shared are
quite impressive and make Varnish one of the fastest content delivery systems in the
industry.

774

CHAPTER 10: CLOSING NOTES

See the flexibility and power of the Varnish Configuration Language The unique
selling point of Varnish is the Varnish Configuration Langunage: it is instrumental in
offering the right caching experience, but it is even more important from an edge-com-
puting point of view.

Yes, the Varnish Configuration Language (VC)L allows you to make very detailed de-

cisions on when and how to cache content. But the true power of VCL lies in the fact
that it can offload logic from the origin to the edge and cache otherwise uncacheable

content.

Remember, Varnish is not necessarily a standalone piece of technology. The Varnish
ecosystem is a lot broader than the varnishd program.

As you have learned in this book, there are also a collection of commercial solutions
that are under the Varnish Enterprise umbrella, developed and maintained by Varnish
Software.

First of all, there is Varnish Enterprise itself. This commercial caching solution adds

native features, extra tools and a rich collection of enterprise VAMODs on top of Varnish
Cache.

In the end, Varnish can be considered CDN technology that powers the delivery of web-
sites, APIs, OTT video streaming platforms, Private CDNs, and 5G multi-access edge
clouds.

Web performance matters; content delivery matters. I hope we at Varnish Software
have convinced you that Varnish is a great tool to address the modern content de-
livery challenges you may be facing.

775

CHAPTER 10: CLOSING NOTES

10.1.1 Thank you

Dear Reader, I've already thanked you. But I also want to take the opportunity to

thank my colleagues who have assisted me during the writing process.

They spent countless hours doing calls, assisting me in describing the ins and outs of

Varnish, and coming up with interesting examples and valuable use cases.

As an author I’ll probably get most of the credit. However, I would like to name every-

one who was involved in the planning, writing and reviewing process:

* AlffAndré Walla

* AlveElde

* Andrew Wiik

* Arianna Aondio

* Asad Sajjad Ahmed
* Dag Haavi Finstad
* David Baron

¢ Dridi Boukelmoune

¢ Erik Tedfelt Lennstrom

¢ FErika Wolfe
e Espen Braastad
¢ Fredrik Steen

* Guillaume Quintard

¢ Henry Choi
¢ Ian Vaughan

Without these people, this book would be a lot less detailed and a lot less interesting. I

Kyle Simukka

Lars Larsson

Lucas Guardalben
Magnus Persson
Martin Blix Grydeland
Miles Weaver

Morten Bekkelund
Niklas Brand

Pil Hermunn Johansen
Rein-Amund Schultz
Reza Naghibi

Sam Woodcock

Steven Wojcik

Torgeir Hapnes

can even say that there would be no book without these people.

776

CHAPTER 10: CLOSING NOTES

10.1.2 What does the future bring?

The adoption of Varnish keeps increasing, and it is our aim to provide more and better
resources for developers online as well as do more outreach to the open source commu-
nity. Our ambition is that all organizations with content delivery and edge-compute
needs should find Varnish technology to be the best solution.

Varnish Software is continuously growing as a company and attracting more customers
that are looking for enterprise-grade content delivery and edge-compute solutions. This
means that you can count on Varnish to continue developing even faster, richer func-
tionality and offer availability on the most popular platforms.

The future of Varnish Cache and Varnish Enterprise is bright, and Varnish’s importance
in the web acceleration, content delivery, and SG edge-compute space will continue to
increase.

10.1.3 More information

If you would like to know more about Varnish Cache, please visit the official website at
http://varnish-cache.org/.

For all things Varnish Software, you can visit https://www.varnish-software.com/.

If you're interested in more technical resources, VCL examples and tutorials, please visit
our developer portal, which will be launched in 2021, at https://developers.varnish-soft-
ware.com.

777

http://varnish-cache.org/
https://www.varnish-software.com/
https://developers.varnish-software.com
https://developers.varnish-software.com

Varnish 6: By Example

Varnish is the leading web acceleration and content delivery
software that powers more than ten million websites worldwide
and that is trusted by more than 20% of the top 10,000 websites.

Varnish caches HTTP responses and accelerates anything that
communicates over HTTP by doing so. The technology is used
not only to accelerate websites and APlIs, but also for live & VoD
video streaming platforms, to build private CDNs, and even to
operate in a 5G multi-access edge cloud context.

This book covers the ins and outs of the Varnish ecosystem and
focuses on both the open source and enterprise versions of the
software. This in-depth technical book is targeted at developers
and operations engineers but can also be valuable for
decision-makers.

.
Regardless of your role, if you're interested in high-performance

content delivery, this book is for you.

g Thijs Feryn is a technical evangelist at Varnish Software.
For more information, please visit www.varnish-software.com.

	foreword
	what-is-varnish-1
	what-is-vcl
	varnish-cache-and-varnish-enterprise
	version-numbers
	product-vs-project
	which-features-does-varnish-cache-have
	X58585f412a0759febe7dfb9fc97d8dce6804b1f
	which-use-cases-does-varnish-address
	video-streaming-acceleration
	web-application-firewalling
	under-the-hood
	the-manager-process
	the-vcl-compiler-process
	compilation-steps
	the-child-process
	threads
	the-cache-main-thread
	the-thread-pool-herder-thread
	the-acceptor-threads
	the-waiter-thread
	the-expiry-thread
	the-backend-poller-thread
	the-ban-lurker-thread
	worker-threads
	transports
	disembarking
	the-waiting-list
	serialization
	workspaces
	streaming
	varnish-fetch-and-delivery-processors
	chapter-summary
	varnish-6
	why-varnish-6
	a-lot-of-old-content-out-there
	varnish-versions-vs-vcl-syntax-versions
	encouraging-upgrades
	its-the-way-forward
	whats-new-in-varnish-6
	whats-new-in-varnish-6.0
	unix-domain-sockets-uds
	http2-support-considered-stable
	other-features-in-varnish-6.0
	whats-new-in-varnish-6.1
	whats-new-in-varnish-6.2
	whats-new-in-varnish-6.3
	explicitly-trigger-vcl_backend_error
	vmod-import-changes
	X6d447d32895815043889dd1bddb6a3198be4980
	std.ip-accepts-optional-port-argument
	querying-changes-in-vsl-tools
	whats-new-in-varnish-6.4
	if-range-support
	import-vmod_cookie-from-varnish_modules
	defining-none-backends
	other-vcl-changes
	whats-new-in-varnish-6.5
	strict-cidr-checks-on-acls
	vcc__acl__pedantic-parameter
	obj.can_esi
	a-new-.resolve-method
	closing-the-connection
	blob-literal-syntax
	std.blobread
	X45cf4602cbd1c51c27afb3b331f9ba128d71d1e
	help-screen-in-varnishstat
	whats-new-in-varnish-6.6
	start-varnish-without-a-backend
	header-validation
	vary-notices
	checking-ban-errors
	modulus-operator
	new-notation-for-long-strings
	new-built-in-vcl
	vcl-variable-changes
	backports-to-6.0-lts
	varnish-enterprise-6
	the-origin-story
	new-features-in-varnish-enterprise-6
	total-encryption-and-vmod_crypto
	encoding
	hashing
	encryption
	total-encryption
	vmod_urlplus
	the-return-of-req.grace
	vmod_synthbackend
	mse3
	vmod_ykey
	varnish-high-availability-6
	vmod_mmdb
	vmod_utils
	explicitly-return-errors
	json-formatting-support-in-varnishncsa
	vmod_str
	vmod_mse
	set-weighting-algorithm
	select-stores-by-tag
	last-byte-timeout
	if-range-support-1
	built-in-tls-support
	memory-governor
	vmod_jwt
	vmod_stale
	vmod_sqlite3
	vmod_tls
	vmod_headerplus
	vmod_resolver
	veribot
	vmod_brotli
	vmod_format
	scoreboard
	X8df9af27084e87155b099d167d630fa15fcf063
	Xeb2b2f5e6838b611e94d7ba7ca44b08fbbacf82
	where-to-get-it
	the-official-package-repositories
	installing-from-source
	official-docker-image
	official-cloud-images
	varnish-enterprise-features-in-the-cloud
	licensing-and-billing
	chapter-summary-1
	its-all-about-http
	http-as-the-go-to-protocol
	the-strengths-of-http
	the-limitations-of-http
	newer-versions-of-the-http-protocol
	http1.1
	http2
	http3.0
	what-about-varnish
	http2-in-varnish
	http3-in-varnish
	the-expires-header
	max-age-vs-s-maxage
	public-vs-private
	deciding-not-to-cache
	revalidation
	how-varnish-deals-with-cache-control
	surrogates
	the-surrogate-capability-header
	the-surrogate-control-header
	surrogate-caching
	surrogate-targeting
	surrogate-support-in-varnish
	ttl-header-precedence-in-varnish
	cacheable-request-methods
	cacheable-status-codes
	cache-variations
	the-vary-header
	accept-language-variation-example
	hit-rate-considerations
	sanitizing-user-input
	varying-on-custom-headers
	varnish-built-in-vcl-behavior
	when-is-a-request-cacheable
	cacheable-request-methods-1
	invalid-request-methods
	state-getting-in-the-way
	X07e52c5f24f2c56014ca6dc5504948f0ca048b8
	dealing-with-stale-content
	Xf5cba23f1cc2d00d2ca8b00b4ff710a1cd4905c
	X6526f93c28aabd34238d03664c57db689a0761e
	range-requests
	accept-ranges-response-header
	range-request-header
	content-range-response-header
	what-if-the-range-request-fails
	range-request-support-in-varnish
	impact-on-the-origin
	backend-range-requests-using-vcl
	conditional-requests
	not-modified
	etag-the-fingerprint
	if-none-match
	the-workflow
	strong-vs-weak-validation
	conditional-request-support-in-varnish
	conditional-request-workflow-in-varnish
	grace-vs-keep
	X5da31c8f1cb9dcd4de32de85ebbb717482feeaf
	some-context
	exit-early
	leveraging-varnish
	X03112052bc044c8800bdeef732f768cbe3df296
	conditional-range-requests
	compression
	content-negotiation
	gzip-compression-in-varnish
	gzip-and-vcl
	brotli-compression-in-varnish
	content-streaming
	chunked-transfer-encoding
	streaming-support-in-varnish
	summary
	the-varnish-configuration-language
	what-is-vcl-again
	the-finite-state-machine
	the-client-side-flow
	the-backend-flow
	hooks-subroutines-and-built-in-vcl
	vcl_recv
	error-cases
	to-pipe-or-not-to-pipe
	only-get-and-head
	stateless
	anything-else-gets-cached
	vcl_hash
	vcl_hit
	a-dirty-little-secret-about-vcl_hit
	vcl_miss
	vcl_purge
	vcl_pass
	vcl_pipe
	vcl_synth
	vcl_deliver
	vcl_backend_fetch
	vcl_backend_response
	uncacheable
	zero-ttl
	a-cookie-was-set
	surrogate-control
	cache-control-says-no
	vary-all-the-things
	vcl_backend_error
	vcl_init
	vcl_fini
	vcl-syntax
	vcl-version-declaration
	assigning-values
	strings
	conditionals
	operators
	comments
	numbers
	booleans
	time-durations
	time
	duration
	regular-expressions
	backends
	the-basics
	optional-values
	probes
	default-values
	extending-values
	customizing-the-entire-http-request
	assigning-the-probe-to-a-backend
	tcp-only-probes
	unix-domain-sockets
	overriding-the-host-header
	access-control-lists
	functions
	ban
	hash_data
	synthetic
	regsub
	a-practical-example
	a-practical-example-1
	subroutines
	include
	import
	vcl-objects-and-variables
	connection-variables
	proxy-vs-no-proxy
	the-ip-type
	local-variables
	identities
	request-variables
	a-request-example
	X2cc1151edb0723691ac001b012f4aa6335c7199
	backend-request-variables
	backend-response-variables
	vfp-related-backend-response-variables
	X2cbdc4e51a8d96a540d4ca021d01e976e5a2ab0
	other-backend-response-variables
	object-variables
	response-variables
	storage-variables
	making-changes
	excluding-url-patterns
	sanitizing-the-url
	alphabetic-sorting
	X6d61b5a3522df1c95ff67298c52473fc93a66bf
	removing-url-hashes
	removing-trailing-question-marks
	stripping-off-cookies
	removing-select-cookies
	removing-all-but-some-cookies
	using-vmod_cookie
	using-vmod_cookieplus
	sanitizing-content-negotiation-headers
	overriding-ttls
	static-data-example
	overriding-the-default-ttl
	zero-ttls-are-evil
	dealing-with-websockets
	enabling-esi-support
	inspect-the-url
	inspect-the-content-type-header
	surrogate-headers
	protocol-detection
	using-vmod_proxy
	using-vmod_tls
	vcl-cache-variations
	protocol-cache-variations
	language-cache-variations
	language-cookie-cache-variation
	using-vmod_cookie-1
	using-vmod_cookieplus-1
	custom-error-messages
	the-current-built-in-vcl-implementation
	customize-error-messages-using-templates
	caching-objects-on-the-second-miss
	validation-and-testing
	syntax-validation
	testing
	built-in-vcl-test
	a-failing-test
	looking-at-varnishs-tests
	a-vcl-test
	summary-1
	varnish-modules-vmods
	whats-a-vmod
	scope-and-purpose
	vmod-api
	vcl-usage
	vmod-initialization
	installing-a-vmod
	Xa51c11c7c4305be167d66d38c59fb7a48b57e3d
	vmod_blob
	vmod_cookie
	vmod_directors
	vmod_proxy
	vmod_std
	logging
	string-manipulation
	environment-variables
	reading-a-file
	server-ports
	vmod_unix
	X7848bf78716e6bd3b12d94da8a5306b4931074b
	vmod_accept
	vmod_aclplus
	advanced-acls
	a-key-value-store-example
	vmod_cookieplus
	set-cookie-logic
	vmod_crypto
	hashing-encoding
	encryption-1
	vmod_deviceatlas
	vmod_edgestash
	vmod_file
	file-backends
	command-line-execution
	vmod_format-1
	vmod_json
	the-dns-backend
	the-dns-director
	extra-options
	dynamic-backends-example
	vmod_headerplus-1
	vmod_http
	vmod_jwt-1
	vmod_kvstore
	rewrite-rules-in-vcl
	vmod_rewrite-rulesets
	rulesets-as-a-string
	matching-url-patterns
	extracting-ruleset-fields
	where-can-you-find-other-vmods
	some-third-party-vmods-i-like
	vmod_basicauth
	vmod_redis
	the-varnish-software-vmod-collection
	vmod_bodyaccess
	vmod_header
	vmod_tcp
	vmod_var
	vmod_vsthrottle
	vmod_xkey
	how-to-install-these-vmods
	compiling-from-source
	debian-and-ubuntu-distro-packages
	writing-your-own-vmods
	vmod_example
	turning-vmod_example-into-vmod_os
	dependencies
	getting-the-code
	looking-at-the-vmod_os.c
	looking-at-the-vmod_os.vcc
	building-the-vmod
	testing-the-vmod
	using-the-vmod
	summary-2
	purging
	purge-vcl-code
	triggering-a-purge
	vmod_purge
	hard-purge
	soft-purge
	Xd90636b4f77fbc0a2ef674ae0d6316196112832
	banning
	ban-expressions
	expression-format
	expression-examples
	executing-a-ban-from-the-command-line
	ban-vcl-code
	purge-replacement
	invalidate-url-patterns
	complete-flexibility
	the-best-of-both-worlds
	the-ban-list
	there-is-always-an-item-on-the-list
	adding-a-first-ban
	adding-multiple-bans
	the-ban-lurker
	runtime-parameters
	ban-lurker-workflow
	ban-lurker-scope
	enforcing-asynchronous-bans
	tag-based-invalidation
	integrating-bans-in-your-application
	ban-limitations
	secondary-keys
	vmod_xkey-1
	initializing-vmod_xkey
	registering-keys
	invalidating-content
	vmod_xkey-limitations
	locking
	old-objects-arent-processed
	Xa2e98b95eb4683e95c8172c1970637b0e42e3c4
	vmod_ykey-2
	why-ykey
	vmod_ykey-performance-improvements
	registering-keys-1
	invalidating-content-1
	a-vmod_xkey-replica
	multiple-keys-soft-purging
	native-support-for-headers
	namespacing
	forcing-a-miss
	Xaa91438a7688016b77ed19f9bbe07127d969d9b
	varnish-broadcaster
	varnish-inventory
	issuing-a-purge
	bans-and-secondary-keys
	broadcast-groups
	summary-3
	varnish-for-operations
	install-and-configure
	packages
	official-packages
	varnish-enterprise-packages
	distro-packages
	cloud-images
	amazon-web-services
	microsoft-azure
	google-cloud-platform
	oracle-cloud-infrastructure
	digitalocean
	official-docker-container
	kubernetes
	config-map-definition
	service-definition
	deployment-definition
	deploying-varnish-to-kubernetes
	configuring-varnish
	systemd
	editing-via-systemctl-edit
	docker
	port-configuration
	object-storage
	naming-storage-backends
	transient-storage
	file-storage
	mse
	not-using-a-vcl-file
	varnish-cli-configuration
	runtime-parameters-1
	tls
	historically
	hitch
	installing-hitch
	configuring-hitch
	networking-settings
	certificate-settings
	protocol-settings
	tls-protocols
	proxy-protocol
	alpn-protocols
	cipher-settings
	ocsp-stapling
	what-is-ocsp-stapling
	ocsp-support-in-hitch
	mutual-tls
	vmod_proxy-1
	native-tls-in-varnish-enterprise
	enabling-native-tls
	configuring-native-tls
	when-to-use-native-tls
	vmod_tls-2
	backend-tls
	end-to-end
	massive-storage-engine
	history
	the-file-stevedore
	the-persistence-stevedore
	early-versions-of-mse
	architecture
	memory-vs-disk
	books
	stores
	the-danger-of-disk-fragmentation
	X05e877b891eb80292805ef0858768aa7fd2f04d
	making-sure-there-is-room-for-more
	X866480020770fe8a1d712b0a77946c4a718a43b
	memory-governor-1
	debt-collection
	lucky-loser
	configuration
	memory-configuration
	persistence
	book-configuration
	store-configuration
	store-selection
	tagging-stores
	tagging-books
	setting-the-default-stores
	vmod_mse-2
	monitoring
	memory-counters
	book-counters
	store-counters
	cache-warming
	load-balancing
	directors
	round-robin-director
	random-director
	fallback-director
	hash-director
	routing-through-two-layers-of-varnish
	self-routing-varnish-cluster
	key-remapping
	shard-director
	hash-selection
	warmup-and-rampup
	key-mapping-and-remapping
	least-connections-director
	dynamic-backends
	high-availability
	keeping-the-caches-hot
	vha
	leveraging-the-broadcaster
	architecture-1
	workflow
	efficient-replication
	when-does-replication-take-place
	security
	installing-vha
	nodes.conf
	vcl
	configuring-vha
	broadcaster-settings
	origin-settings
	tls-1
	limits
	skipping-replication
	forcing-an-update
	monitoring-1
	logging-1
	not-using-the-broadcaster
	discovery
	the-varnish-discovery-program
	installing-varnish-discovery
	configuring-varnish-discovery
	dns
	aws
	azure
	kubernetes-1
	monitoring-2
	varnishstat
	varnishstat-options
	other-output-formats
	curses-mode
	varnish-counters
	main-counters
	management-process-counters
	malloc-stevedore-counters
	backend-counters
	mse-counters
	kvstore-counters
	prometheus
	varnish-exporter
	telegraf
	setting-up-prometheus
	grafana
	varnish-custom-statistics
	vcs-metrics
	defining-keys
	the-vcs-agent
	the-vcs-server
	the-vcs-api
	the-vcs-user-interface
	when-things-go-wrong
	counters-we-want-as-low-as-possible
	debugging
	varnish-scoreboard
	logging-2
	varnish-shared-memory-log
	transactions
	transaction-hierarchy
	transaction-grouping
	tags
	transaction-tags
	session-tags
	request-tags
	response-tags
	backend-tags
	backend-request-tags
	backend-response-tags
	object-tags
	vcl-tags
	the-timestamp-tag
	the-ttl-tag
	output-filtering
	tag-inclusion
	tag-exclusion
	tag-inclusion-by-regular-expression
	tag-exclusion-by-regular-expression
	filtering-by-request-type
	the-all-in-one-example
	vsl-queries
	record-selection-criteria
	operators-1
	operands
	chaining-queries
	other-vsl-options
	processing-the-entire-buffer
	rate-limiting
	storing-and-replaying-logs
	varnishncsa
	logging-modes
	modifying-the-log-format
	extended-variables
	vsl-queries-1
	other-varnishncsa-options
	log-rotation
	varnishtop
	running-varnishncsa-as-a-service
	why-wasnt-this-page-served-from-cache
	because-it-was-a-post-request
	because-the-request-contained-a-cookie
	X0c40acfe148ea3737d93fd1b13e4dad609aeeea
	Xc2c9011376e3e38d8d3ab6863c1217f8ab6786f
	why-wasnt-this-page-stored-in-cache
	zero-ttl-1
	private-no-cache-no-store
	surrogate-control-no-store
	setting-a-cookie
	wildcard-variations
	the-significance-of-vsl
	security-1
	firewalling
	cache-encryption
	encrypting-persisted-cache-objects
	performance-impact
	skipping-encryption
	choosing-an-alternate-encryption-cipher
	header-encryption
	jailing
	making-runtime-parameters-read-only
	vcl-security
	tls-2
	cache-busting
	query-string-filtering
	max-connections
	backend-throttling
	slowloris-attacks
	web-application-firewall
	installing-the-varnish-waf
	tuning-varnish
	threading-settings
	growing-the-thread-pools
	shrinking-the-thread-pools
	client-side-timeouts
	backend-timeouts
	workspace-settings
	http-limits
	http-request-limit-examples
	http-response-limit-examples
	Xd1ad1c24dfb0eaa023d0852f829d4a8fe0c898f
	limiting-io-with-tmpfs
	other-settings
	listen-depth
	nuke-limit
	shortlived
	logging-cli-traffic-in-syslog
	the-varnish-cli
	backend-commands
	banning-1
	parameter-management
	displaying-parameters
	setting-parameter-values
	vcl-management
	vcl-inspection
	loading-vcl
	vcl-labels
	vcl-temperature
	configuring-remote-cli-access
	the-cli-protocol
	the-cli-command-file
	quoting-pitfalls
	expansion
	heredoc
	the-varnish-controller
	architecture-2
	domain
	vcl-1
	deployment
	vcl-group
	agent
	setup
	authentication-authorization
	the-api
	the-cli
	the-gui
	summary-4
	decision-making-on-the-edge
	dealing-with-state
	body-access
	request-body-access
	vmod_bodyaccess-1
	xbody
	json.parse_req_body
	response-body-access
	xbody-revisited
	edgestash
	json-endpoint
	advanced-mustache-templating
	an-e-commerce-example
	sessions
	cacheability
	the-caching-solution
	the-vcl-code
	the-end-result
	http-calls
	prefetching
	link-prefetching
	video-prefetching
	api-calls
	authentication
	database-access
	sqlite
	key-value-storage-kvstore
	memcached
	redis
	a-shopping-cart-example
	geo-features
	vmod_geoip2
	vmod_mmdb-2
	lookup-filters
	backend-geotargeting-example
	synthetic-responses
	synthetic-output-and-no-backend
	loading-an-html-template
	creating-a-simple-api
	synthetic-backends
	authentication-1
	basic-authentication
	ensuring-cacheability
	vmod_basicauth-1
	hashed-passwords-inside-vmod_kvstore
	digest-authentication
	digest-authentication-exchange
	X63ea4b4c6052c14cb7df66231e67329e42851b0
	json-web-tokens
	jwt-header
	jwt-payload
	jwt-signature
	vmod_jwt-2
	oauth
	google-oauth-in-varnish
	summary-5
	what-is-a-cdn
	network-connectivity
	caching
	request-routing
	why-build-your-own-cdn
	why-varnish
	request-coalescing
	backend-request-routing
	performance-and-throughput
	horizontal-scalability
	transparency
	varnish-cache-or-varnish-enterprise
	varnish-cdn-architecture
	edge-tier
	hardware-considerations
	vcl-example
	storage-tier
	hardware-considerations-1
	vcl-example-1
	origin-shield-tier
	caching-video
	ott-protocols
	hls
	mpeg-dash
	cmaf
	varnish-and-video
	vcl-tricks
	controlling-the-ttl
	prefetching-segments
	no-origin
	ad-injection
	request-routing-1
	powerdns
	aws-route53
	anycast
	varnish-traffic-router
	varnish-and-5g
	multi-access-edge-computing
	use-cases
	varnish-edge-cloud
	summary-6
	closing-notes
	thank-you
	what-does-the-future-bring
	_GoBack
	more-information
	Chapter 1: What is Varnish?
	1.1	What is Varnish?
	1.2	What is VCL?
	1.3	Varnish Cache and Varnish
	Enterprise
	1.3.1	Version numbers
	1.3.2	Product vs project
	1.3.3	Which features does Varnish Cache have?
	1.3.4 	Which features does Varnish Enterprise
	have?

	1.4	Which use cases does Varnish
	address?
	1.4.1	API acceleration
	1.4.2	Web acceleration
	1.4.3	Private CDN
	1.4.4	Video streaming acceleration
	1.4.5	Web application firewalling

	1.5	Under the hood
	1.5.1	The manager process
	1.5.2	The VCL compiler process
	Compilation steps

	1.5.3	The child process
	1.5.4	Threads
	The cache-main thread
	The thread pool herder thread
	The acceptor threads
	The waiter thread
	The expiry thread
	The backend-poller thread
	The ban-lurker thread
	Worker threads

	1.5.5	Transports
	1.5.6	Disembarking
	1.5.7	The waiting list
	1.5.8	Serialization
	1.5.9	Workspaces
	1.5.10	Backend fetches
	Streaming
	Varnish Fetch and Delivery Processors

	1.6	Chapter summary

	Chapter 2: Varnish 6
	2.1	Why Varnish 6?
	2.1.1 	A lot of old content out there
	2.1.2 	Varnish versions vs VCL syntax versions
	2.1.2 	Encouraging upgrades
	2.1.3	It’s the way forward

	2.2	What’s new in Varnish 6?
	2.2.1	What’s new in Varnish 6.0?
	UNIX domain sockets (UDS)
	HTTP/2 support considered stable
	Other features in Varnish 6.0

	2.2.2	What’s new in Varnish 6.1?
	2.2.3	What’s new in Varnish 6.2?
	2.2.4	What’s new in Varnish 6.3?
	Explicitly trigger vcl_backend_error
	VMOD import changes
	Behavior change in auto VCL temperature state
	Querying changes in VSL tools

	2.2.5	What’s new in Varnish 6.4?
	if-range support
	Import vmod_cookie from varnish_modules
	Defining none backends
	Other VCL changes

	2.2.6	What’s new in Varnish 6.5?
	Strict CIDR checks on ACLs
	vcc_acl_pedantic parameter
	obj.can_esi
	A new .resolve() method
	Closing the connection
	BLOB literal syntax
	std.blobread()
	No connection is made to a backend administratively set as unhealthy
	Help screen in varnishstat

	2.2.7	What’s new in Varnish 6.6?
	Start Varnish without a backend
	Header validation
	Vary notices
	Checking ban errors
	Modulus operator
	New notation for long strings
	New built-in VCL
	VCL variable changes

	2.2.8	Backports to 6.0 LTS

	2.3	Varnish Enterprise 6
	2.3.1	The origin story
	2.3.3	New features in Varnish Enterprise 6
	Total encryption and vmod_crypto
	vmod_urlplus
	The return of req.grace
	vmod_synthbackend
	MSE3
	vmod_ykey
	Varnish High Availability 6
	vmod_mmdb
	vmod_utils
	Explicitly return errors
	JSON formatting support in varnishncsa

	2.3.3	vmod_str
	vmod_mse
	Last byte timeout
	If-Range support
	Built-in TLS support
	Memory governor
	vmod_jwt
	vmod_stale
	vmod_sqlite3

	2.3.4	vmod_tls
	vmod_headerplus
	vmod_resolver
	Veribot

	2.3.5	vmod_brotli
	2.3.6	vmod_format
	2.3.8	Features ported from Varnish Cache Plus 4.1
	2.3.9	What happens when a new Varnish Cache version
	is released?

	2.4	Where to get it
	2.4.1	The official package repositories
	2.4.2	Installing from source
	2.4.3	Official Docker image
	2.4.4	Official cloud images
	Varnish Enterprise features in the cloud
	Licensing and billing

	2.5	Chapter summary

	Chapter 3: It’s all about HTTP
	3.1	HTTP as the go-to protocol
	3.1.1	The strengths of HTTP
	3.1.2	The limitations of HTTP
	3.1.3	Newer versions of the HTTP protocol
	HTTP/1.1
	HTTP/2
	HTTP/3.0

	3.1.4	What about Varnish?
	HTTP/2 in Varnish
	HTTP/3 in Varnish

	3.2	HTTP caching
	3.2.1	The Expires header
	3.2.2	The Cache-Control header
	max-age vs s-maxage
	Public vs private
	Deciding not to cache
	Revalidation
	How Varnish deals with Cache-Control

	3.2.3	Surrogates
	The Surrogate-Capability header
	The Surrogate-Control header
	Surrogate caching
	Surrogate targeting
	Surrogate support in Varnish

	3.2.4	TTL header precedence in Varnish
	3.2.5	Cacheable request methods
	3.3.6	Cacheable status codes
	3.2.7	Cache variations
	The vary header
	Accept-Language variation example
	Hit-rate considerations
	Sanitizing user input
	Varying on custom headers

	3.3	Varnish built-in VCL behavior
	3.3.1	When is a request cacheable?
	Cacheable request methods
	Invalid request methods
	State getting in the way

	3.3.2	How does Varnish identify objects in cache?
	3.3.3	Dealing with stale content
	3.3.4	When does Varnish store a response in cache?
	3.3.5	What happens if the response couldn’t be stored in cache?

	3.4	Range requests
	3.4.1	Accept-Ranges response header
	3.4.2	Range request header
	3.4.3	Content-Range response header
	3.4.4	What if the range request fails?
	3.4.5	Range request support in Varnish
	Impact on the origin
	Backend range requests using VCL

	3.5	Conditional requests
	3.5.1	304 Not Modified
	3.5.2	Etag: the fingerprint
	3.5.3	If-None-Match
	3.5.4	The workflow
	3.5.5	Strong vs weak validation
	3.5.6	Conditional request support in Varnish
	Conditional request workflow in Varnish
	Grace vs keep

	3.5.7	Optimizing the origin for conditional requests
	Some context
	Exit early
	Leveraging Varnish

	3.5.8	Last-Modified and If-Modified-Since as your backup plan
	3.5.9	Conditional range requests

	3.6	Compression
	3.6.1	Content negotiation
	3.6.2	Gzip compression in Varnish
	3.6.3	Gzip and VCL
	3.6.4	Brotli compression in Varnish

	3.7	Content streaming
	3.7.1	Chunked transfer encoding
	3.7.2	Streaming support in Varnish

	3.8	Summary

	Chapter 4: The Varnish
Configuration Language
	4.1	What is VCL again?
	4.2	The finite state machine
	4.2.1	The client-side flow
	4.2.2	The backend flow

	4.3	Hooks, subroutines, and built-in VCL
	4.3.1	vcl_recv
	Error cases
	To pipe or not to pipe
	Only GET and HEAD
	Stateless
	Anything else gets cached

	4.3.2	vcl_hash
	4.3.3	vcl_hit
	A dirty little secret about vcl_hit

	4.3.4	vcl_miss
	4.3.5	vcl_purge
	4.3.6	vcl_pass
	4.3.7	vcl_pipe
	4.3.8	vcl_synth
	4.3.9	vcl_deliver
	4.3.10	vcl_backend_fetch
	4.3.11	vcl_backend_response
	Uncacheable
	Zero TTL
	A cookie was set
	Surrogate control
	Cache control says no
	Vary all the things

	4.3.12	vcl_backend_error
	4.3.13	vcl_init
	4.3.14	vcl_fini

	4.4	VCL syntax
	4.4.1	VCL version declaration
	4.4.2	Assigning values
	4.4.3	Strings
	4.4.4	Conditionals
	4.4.5	Operators
	4.4.6	Comments
	4.4.7	Numbers
	4.4.8	Booleans
	4.4.9	Time & durations
	Time
	Duration

	4.4.10	Regular expressions
	4.4.11	Backends
	The basics
	Probes
	UNIX domain sockets
	Overriding the host header

	4.4.12	Access control lists
	4.4.13	Functions
	ban()
	hash_data()
	synthetic()
	regsub()
	A practical example
	A practical example

	4.4.14	Subroutines
	4.4.15	Include
	4.4.16	Import

	4.5	VCL objects and variables
	4.5.1	Connection variables
	PROXY vs no PROXY
	The IP type
	Local variables
	Identities

	4.5.2	Request variables
	A request example
	Top-level requests and Edge Side Includes

	4.5.3	Backend request variables
	4.5.3	Backend response variables
	VFP-related backend response variables
	Timing-related backend response variables
	Other backend response variables

	4.5.4	Object variables
	4.5.5	Response variables
	4.5.1	Storage variables

	4.6	Making changes
	4.6.1	Excluding URL patterns
	4.6.2	Sanitizing the URL
	Alphabetic sorting
	Removing tracking query string parameters
	Removing URL hashes
	Removing trailing question marks

	4.6.3	Stripping off cookies
	Removing select cookies
	Removing all but some cookies
	Using vmod_cookie
	Using vmod_cookieplus

	4.6.4	Sanitizing content negotiation headers
	4.6.5	Overriding TTLs
	Static data example
	Overriding the default TTL
	Zero TTLs are evil

	4.6.6	Dealing with websockets
	4.6.7	Enabling ESI support
	Inspect the URL
	Inspect the Content-Type header
	Surrogate headers

	4.6.8	Protocol detection
	Using vmod_proxy
	Using vmod_tls

	4.6.9	VCL cache variations
	Protocol cache variations
	Language cache variations

	4.6.10	Language cookie cache variation
	Using vmod_cookie
	Using vmod_cookieplus

	4.6.11	Custom error messages
	The current built-in VCL implementation
	Customize error messages using templates

	4.6.12	Caching objects on the second miss

	4.7	Validation and testing
	4.7.1	Syntax validation
	4.7.2	Testing
	Built-in VCL test
	A failing test
	Looking at Varnish’s tests
	A VCL test

	4.8	Summary

	Chapter 5:
Varnish Modules (VMODs)
	5.1	What’s a VMOD?
	5.1.1	Scope and purpose
	5.1.2	VMOD API
	5.1.3	VCL usage
	5.1.4	VMOD initialization
	5.1.5	Installing a VMOD

	5.2	Which VMODs are shipped with
	Varnish Cache?
	5.2.1	vmod_blob
	5.2.2	vmod_cookie
	5.2.3	vmod_directors
	5.2.4	vmod_proxy
	5.2.5	vmod_std
	Logging
	String manipulation
	Environment variables
	Reading a file
	Server ports

	5.2.6	vmod_unix

	5.3	Which VMODs are shipped with
	Varnish Enterprise?
	5.3.1	vmod_accept
	5.3.2	vmod_aclplus
	Advanced ACLs
	A key-value store example

	5.3.3	vmod_cookieplus
	Set-Cookie logic

	5.3.4	vmod_crypto
	Hashing & encoding
	Encryption

	5.3.5	vmod_deviceatlas
	5.3.5	vmod_edgestash
	5.3.7	vmod_file
	File backends
	Command line execution

	5.3.8	vmod_format
	5.3.9	vmod_json
	5.3.10	vmod_goto
	The DNS backend
	The DNS director
	Extra options
	Dynamic backends example

	5.3.11	vmod_headerplus
	5.3.12	vmod_http
	5.3.13	vmod_jwt
	5.3.14	vmod_kvstore
	5.3.15	vmod_mmdb
	5.3.16	vmod_mse
	5.3.17	vmod_resolver
	5.3.18	vmod_rewrite
	Rewrite rules in VCL
	vmod_rewrite rulesets
	Rulesets as a string
	Matching URL patterns
	Extracting ruleset fields

	5.3.19	vmod_sqlite3
	5.3.20	vmod_stale
	5.3.21	vmod_synthbackend
	5.3.22	vmod_tls
	5.3.23	vmod_urlplus
	5.3.24	vmod_xbody
	5.3.25	vmod_ykey

	5.4	Where can you find other VMODs?
	5.4.1	Third-party VMODs
	vmod_basicauth
	vmod_redis

	5.4.2	The Varnish Software VMOD collection
	vmod_bodyaccess
	vmod_header
	vmod_tcp
	vmod_var
	vmod_vsthrottle
	vmod_xkey

	5.4.3	How to install these VMODs
	Compiling from source
	Debian and Ubuntu distro packages

	5.5	Writing your own VMODs
	5.5.1	vmod_example
	5.5.2	Turning vmod_example into vmod_os
	Dependencies
	Getting the code

	5.5.3	Looking at the vmod_os.c
	Looking at the vmod_os.vcc
	Building the VMOD
	Testing the VMOD
	Using the VMOD

	5.6	Summary

	Chapter 6: Invalidating the cache
	6.1	Purging
	6.1.1	Purge VCL code
	6.1.2	Triggering a purge
	6.1.3	vmod_purge
	Hard purge
	Soft purge

	6.1.4	Integrating purge calls in your application

	6.2	Banning
	6.2.1	Ban expressions
	Expression format
	Expression examples

	6.2.2	Executing a ban from the command line
	6.2.3	Ban VCL code
	Purge replacement
	Invalidate URL patterns
	Complete flexibility
	The best of both worlds

	6.2.4	The ban list
	There is always an item on the list
	Adding a first ban
	Adding multiple bans

	6.2.5	The ban lurker
	Runtime parameters
	Ban lurker workflow
	Ban lurker scope

	6.2.6	Enforcing asynchronous bans
	6.2.7	Tag-based invalidation
	6.2.8	Integrating bans in your application
	6.2.9	Ban limitations

	6.3	Secondary keys
	6.3.1	vmod_xkey
	Initializing vmod_xkey
	Registering keys
	Invalidating content
	vmod_xkey limitations

	6.3.2	vmod_ykey
	Why Ykey?
	vmod_ykey performance improvements
	Registering keys
	Invalidating content

	6.4	Forcing a miss
	6.5	Distributed invalidation with
	Varnish Broadcaster
	6.5.1	Varnish Broadcaster
	6.5.2	Varnish inventory
	6.5.3	Issuing a purge
	6.5.4	Bans and secondary keys
	6.5.5	Broadcast groups

	6.6	Summary

	Chapter 7: Varnish for operations
	7.1	Install and configure
	7.1.1	Packages
	Official packages
	Varnish Enterprise packages
	Distro packages

	7.1.2	Cloud images
	Amazon Web Services
	Microsoft Azure
	Google Cloud Platform
	Oracle Cloud Infrastructure
	DigitalOcean

	7.1.3	Official Docker container
	7.1.4	Kubernetes
	Config map definition
	Service definition
	Deployment definition
	Deploying Varnish to Kubernetes

	7.2	Configuring Varnish
	7.2.1	Systemd
	Editing via systemctl edit

	7.2.2	Docker
	7.2.3	Port configuration
	7.2.4	Object storage
	Naming storage backends
	Transient storage
	File storage
	MSE

	7.2.5	Not using a VCL file
	7.2.6	Varnish CLI configuration
	7.2.7	Runtime parameters

	7.3	TLS
	7.3.1	Historically
	7.3.2	Hitch
	Installing Hitch
	Configuring Hitch
	Networking settings
	Certificate settings
	Protocol settings
	Cipher settings
	OCSP stapling
	Mutual TLS

	7.3.3	vmod_proxy
	7.3.4	Native TLS in Varnish Enterprise
	Enabling native TLS
	Configuring native TLS
	When to use native TLS

	7.3.5	vmod_tls
	7.3.6	Backend TLS
	7.3.7	End-to-end

	7.4	Massive Storage Engine
	7.4.1	History
	The file stevedore
	The persistence stevedore
	Early versions of MSE

	7.4.2	Architecture
	Memory vs disk
	Books
	Stores
	The danger of disk fragmentation
	Problems with the traditional memory allocator
	Memory governor
	Lucky loser

	7.4.3	Configuration
	Memory configuration
	Persistence
	Book configuration
	Store configuration

	7.4.4	Store selection
	Tagging stores
	Tagging books
	Setting the default stores
	vmod_mse

	7.4.5	Monitoring
	Memory counters
	Book counters
	Store counters

	7.4.6	Cache warming

	7.5	Load balancing
	7.5.1	Directors
	7.5.1	Round-robin director
	7.5.1	Random director
	7.5.1	Fallback director
	7.5.1	Hash director
	Routing through two layers of Varnish
	Self-routing Varnish cluster
	Key remapping

	7.5.1	Shard director
	Hash selection
	Warmup and ramp-up
	Key mapping and remapping

	7.5.1	Least connections director
	7.5.1	Dynamic backends

	7.6	High Availability
	7.6.1	Keeping the caches hot
	7.6.1	VHA
	7.6.1	Leveraging the broadcaster
	7.6.1	Architecture
	Workflow
	Efficient replication
	When does replication take place?
	Security

	7.6.1	Installing VHA
	nodes.conf
	VCL

	7.6.1	Configuring VHA
	Broadcaster settings
	Origin settings
	TLS
	Limits
	Skipping replication
	Forcing an update

	7.6.1	Monitoring
	7.6.1	Logging
	7.6.1	Not using the broadcaster
	7.6.1	Discovery
	The varnish-discovery program
	Installing varnish-discovery
	Configuring varnish-discovery
	DNS
	AWS
	Azure
	Kubernetes

	7.7	Monitoring
	7.7.1	Varnishstat
	Varnishstat options
	Other output formats
	Curses mode

	7.7.2	Varnish counters
	Main counters
	Management process counters
	Malloc stevedore counters
	Backend counters
	MSE counters
	KVStore counters

	7.7.3	Prometheus
	Varnish Exporter
	Telegraf
	Setting up Prometheus
	Grafana

	7.7.4	Varnish Custom Statistics
	VCS metrics
	Defining keys
	The VCS agent
	The VCS server
	The VCS API
	The VCS user interface

	7.7.5	When things go wrong
	Counters we want as low as possible
	Debugging

	7.7.6	Varnish scoreboard

	7.8	Logging
	7.8.1	Varnish Shared Memory Log
	7.8.2	Transactions
	Transaction hierarchy
	Transaction grouping

	7.8.3	Tags
	Transaction tags
	Session tags
	Request tags
	Response tags
	Backend tags
	Backend request tags
	Backend response tags
	Object tags
	VCL tags
	The timestamp tag
	The TTL tag

	7.8.4	Output filtering
	Tag inclusion
	Tag exclusion
	Tag inclusion by regular expression
	Tag exclusion by regular expression
	Filtering by request type
	The all-in-one example

	7.8.5	VSL queries
	Record selection criteria
	Operators
	Operands
	Chaining queries

	7.8.6	Other VSL options
	Processing the entire buffer
	Rate limiting
	Storing and replaying logs

	7.8.7	varnishncsa
	Logging modes
	Modifying the log format
	Extended variables
	VSL queries
	Other varnishncsa options
	Log rotation

	7.8.8	varnishtop
	7.8.9	Running varnishncsa as a service
	7.8.10	Why wasn’t this page served from cache?
	Because it was a POST request
	Because the request contained a cookie
	Because an authorization header was passed
	Because we couldn’t recognize the request method

	7.8.11	Why wasn’t this page stored in cache?
	Zero TTL
	Private, no-cache, no-store
	Surrogate-control no-store
	Setting a cookie
	Wildcard variations

	7.8.12	The significance of VSL

	7.9	Security
	7.9.1	Firewalling
	7.9.2	Cache encryption
	Encrypting persisted cache objects
	Performance impact
	Skipping encryption
	Choosing an alternate encryption cipher
	Header encryption

	7.9.3	Jailing
	7.9.4	Making runtime parameters read-only
	7.9.5	VCL security
	7.9.6	TLS
	7.9.7	Cache busting
	Query string filtering
	Max connections
	Backend throttling

	7.9.8	Slowloris attacks
	7.9.9	Web application firewall
	Installing the Varnish WAF

	7.10	Tuning Varnish
	7.10.1	Threading settings
	Growing the thread pools
	Shrinking the thread pools

	7.10.2	Client-side timeouts
	7.10.3	Backend timeouts
	7.10.4	Workspace settings
	7.10.5	HTTP limits
	HTTP request limit examples
	HTTP response limit examples
	Make sure you have enough workspace memory
	Limiting I/O with tmpfs

	7.10.6	Other settings
	Listen depth
	Nuke limit
	Short-lived
	Logging CLI traffic in syslog

	7.11	The Varnish CLI
	7.11.1	Backend commands
	7.11.2	Banning
	7.11.3	Parameter management
	Displaying parameters
	Setting parameter values

	7.11.4	VCL management
	VCL inspection
	Loading VCL
	VCL labels
	VCL temperature

	7.11.5	Configuring remote CLI access
	7.11.6	The CLI protocol
	7.11.7	The CLI command file
	7.11.8	Quoting pitfalls
	Expansion
	Heredoc

	7.12	The Varnish Controller
	7.12.1	Architecture
	7.11.1	Core concepts
	Domain
	VCL
	Deployment
	VCL group
	Agent

	7.11.1	Setup
	7.11.1	Authentication & authorization
	7.11.1	The API
	7.11.1	The CLI
	7.11.1	The GUI

	7.13	Summary

	Chapter 8: Decision-making
on the edge
	8.1	Dealing with state
	8.2	Body access
	8.2.1	Request body access
	vmod_bodyaccess
	xbody
	json.parse_req_body()

	8.2.2	Response body access
	xbody revisited
	Edgestash

	8.2.3	An e-commerce example
	Sessions
	Cacheability
	The caching solution
	The VCL code
	The end result

	8.3	HTTP calls
	8.3.1	Prefetching
	Link prefetching
	Video prefetching

	8.3.2	API calls
	8.3.3	Authentication

	8.4	Database access
	8.4.1	SQLite
	8.4.2	Key-value storage (kvstore)
	8.4.3	Memcached
	8.4.4	Redis
	A shopping cart example

	8.5	Geo features
	8.5.1	vmod_geoip2
	8.5.2	vmod_mmdb
	8.5.3	Lookup filters
	8.5.4	Backend geotargeting example

	8.6	Synthetic responses
	8.6.1	Synthetic output and no backend
	Loading an HTML template
	Creating a simple API

	8.6.2	Synthetic backends

	8.7	Authentication
	8.7.1	Basic authentication
	Ensuring cacheability
	vmod_basicauth
	Hashed passwords inside vmod_kvstore

	8.7.2	Digest authentication
	Digest authentication exchange
	Offloading digest authentication in Varnish

	8.7.3	JSON web tokens
	JWT header
	JWT payload
	JWT signature
	vmod_jwt

	8.7.4	OAuth
	Google OAuth in Varnish

	8.8	Summary

	Chapter 9: Building your
own CDN with Varnish
	9.1	What is a CDN?
	9.1.1	Network connectivity
	9.1.2	Caching
	9.1.3	Request routing
	9.1.4	Why build your own CDN?

	9.2	Why Varnish?
	9.2.1	Request coalescing
	9.2.2	Backend request routing
	9.2.3	Performance and throughput
	9.2.4	Horizontal scalability
	9.2.1	Transparency
	9.2.1	Varnish Cache or Varnish Enterprise?

	9.3	Varnish CDN architecture
	9.3.1	Edge tier
	Hardware considerations
	VCL example

	9.3.2	Storage tier
	Hardware considerations
	VCL example

	9.3.3	Origin-shield tier

	9.4	Caching video
	9.4.1	OTT protocols
	HLS
	MPEG-DASH
	CMAF

	9.4.2	Varnish and video
	9.4.3	VCL tricks
	Controlling the TTL
	Prefetching segments
	No origin
	Ad injection

	9.5	Request routing
	9.5.1	PowerDNS
	9.5.1	AWS Route53
	9.5.1	Anycast
	9.5.1	Varnish Traffic Router

	9.6	Varnish and 5G
	9.6.1	Multi-access edge computing
	9.6.1	Use cases
	9.6.1	Varnish Edge Cloud

	9.7	Summary

	Chapter 10: Closing notes
	10.1.1	Thank you
	10.1.2	What does the future bring?
	10.1.3	More information

