
HTTP STREAMING
– With Varnish Streaming Server

White paper:

2

Introduction

The ubiquity of HTTP streaming poses challenges but even more opportunities, of which companies across industries
have already taken advantage. As streaming becomes the norm, and video comes to make up the majority of internet traffic,
these challenges become more pressing and specific.

Varnish offers a solution that addresses the future-facing challenges of HTTP streaming delivery management and
builds on the natural strengths of Varnish: performance and flexibility, both of which are major concerns as the future
of streaming unfolds.

Tackle the challenges of HTTP streaming
delivery & performance with Varnish Software

What you will learn:

• Consumer trends that are accelerating the migration to HTTP-based viewing.

• The characteristics of a caching layer that is ready for anything across live, VoD, popular and long-tail content.

• How to introduce unprecedented storage and throughput capacity using fewer servers.

• How to protect the origin/backend from the threat of overload and achieve best-in-class reliability.

• The considerations that are driving more streaming service providers toward a private, DIY CDN model.

The current state of media streaming is constant growth
and change, underpinned by the near-ubiquity of and
demand for high-performance streaming across devices.
This includes both free and paid streaming services,
ranging from on-demand YouTube videos, TV/media outlets
streaming content globally 24/7 and their VoD offshoots,
radio stations and premium content streaming from
Spotify to Netflix and competitive contemporaries. Media
streaming also enables everything from online conference
calls/meetings, webcasts and live events and e-learning/
distance education. Live video has spread to all kinds of

industries, such as healthcare, education and recruitment,
among many others1. The potential for mass streaming
and its applications have been realized everywhere, as
technologies have converged to make streaming both
scalable and seamless for the end-user.

Delivering reliable, high-performance streaming,
particularly of live, Over-the-top (OTT) and video on
demand (VoD) media, is at the heart of the challenge
companies face.

Given its
universality,

HTTP has been
instrumental in
the evolution of
video streaming

Sources
[1] http://www.streamingmedia.com/Articles/
ReadArticle.aspx?ArticleID=121376

2

3

From a trickle to a stream:
Live and on-demand
HTTP streaming

In the early days of media streaming - from the first
live stream of a major league baseball game in
1995 - we did not necessarily foresee the long road
to achieving a smooth and user-friendly streaming
experience. Fast-forward more than two decades,
and we are still working toward offering the optimal
everywhere, anytime streaming experience.

By far the most successful application on the internet
- the web - relies on the HTTP protocol for transport.
Why? Other protocols often run into problems
crossing firewalls and routers. This, combined with
its simplicity and the extensive tooling, has made
HTTP into a generic protocol that has found uses far
outside its original designation. Given its universality,
HTTP has been instrumental in the evolution of
video streaming.

Streaming timeline:

Diagram 1: Two decades in, when streamed media content dominates the internet,
we are still working towards an optimal streaming experience.

HTTP-based
adaptive Streaming

A majority of internet
traffic was HTTP-based

and content delivery networks
were increasingly being used.

Move Networks introduces
HTTP-based adaptive

streaming.

First live
stream event

ESPN SportsZone
internet-radio streams
a baseball game using
Progressive Networks

technology.

Over 82% of
content on the
internet will be

streamed media

Audio/video
dominates

Most content on the internet
is media (audio/video). Cloud

solutions and hybrid CDN
usage dominate the content

delivery space.

1995 2000s 2010s 2021

4

Gentle HTTP waves

The HTTP protocol has been used to send media files
in chunks, interacting with the streaming media player
application to gain insight into network conditions. That
is, only sending appropriately sized file chunks to suit the
available network bandwidth, i.e. adaptive streaming.
In this way, some of the fundamental roadblocks to
mass streaming have been averted: endless buffering
and connectivity problems could be circumvented using
content distribution over standard HTTP (via content
delivery networks) and caching.

This is not the end of the story and only illustrates how
some of the platform-agnostic building blocks came to
form the foundation of what we know as streaming
today. There are still growing pains, including numerous
shortcomings in terms of efficiency and speed.

To rectify these shortcomings, a chorus of competing
HTTP-based transport layers emerged, such as, Microsoft
(Smooth Streaming), Apple (HTTP Live Streaming or HLS)
and Adobe (HTTP Dynamic Streaming or HDS), all of which
are based on the simple principle of splitting
H.264 video up into short segments and sending each
of these in a HTTP response. To avoid the pitfalls of
competitive infighting and incompatible protocols,
the aim of interoperability has driven development.

This is essentially where we are with streaming today.

Streaming challenges

The real challenges for streaming revolve around quality
and volume. With more connected devices, connectivity
everywhere, and most of all, an exponentially growing
mass of multimedia content, users demand
high-quality, fast, seamless delivery and
complete, integrated digital experiences.

Some content delivery challenges will be out
of your hands. For example, most companies
are not going to be able to influence things
like network bandwidth limitations, which
still hold back quality improvements. To
some degree streaming challenges can
be met with developments to video coding
and compression efficiency. Focusing on
one key issue - performance - can help
mitigate what you can’t control.

Tackling practical challenges

There will always be aspects of content delivery that are
out of your control, which makes it all the more important
to control the aspects you can. In our work with industry
leaders across multiple sectors, we have learned that HTTP
streaming poses similar challenges across the board, many
of which are interrelated, and all of which Varnish can solve
or relieve:

• Software that does not scale to traffic levels and more
generally managing unpredictable demand

• Slow or latent content delivery issues

• Lack of resilience

• Lack of flexibility or adaptability in streaming
software solutions

• Origin shield/backend protection

• No transparency, e.g. “black box” solutions that take
flexibility and control out of your hands and possibly
tack on extra costs with every feature added

• Security

The flexibility
Varnish is known

for makes it a perfect
fit for different

use cases

Technology solutions:
What Varnish Streaming Server offers

Bring on the flood

HTTP is what Varnish was built for. To tackle the practical
challenges listed above, Varnish’s HTTP native design gives
you a solution that can be used and deployed flexibly to
meet your individual streaming needs.

The flexibility Varnish is known for makes it a perfect fit for
different use cases. For streaming (see diagram 2), Varnish
should be implemented as close as possible to the end-
user, where it acts as cache and at the same time protects
the underlying origin. The idea is simple: a camera records
and the resulting video is processed and distributed. But
what exactly do we mean when we repeat “flexibility”
like a mantra? It’s much more than a buzzword. Varnish
Streaming Server can be used in multiple ways
to manage the hardest and most persistent challenges
of streaming:

• as a standalone component for serving video and an
efficient way to scale out your platform

• as an efficient storage platform for serving massive
amounts of content/traffic from a single location
efficiently (high-volume VoD)

• as an “origin shield” when used with CDNs to protect
your backend and ultimately the most valuable asset
of all: your content

• as a complex policy and logic engine that enables
things like authorization and authentication, rate
limiting or geographically restricted content to ensure
that your content can be accessed as, when and by
whom you want it to be accessed

• as a performance engine for ensuring that you deliver
content fast, reducing latency by putting a pre-warmed
cache in place/pre-fetch technology

All of these flexible functions can be tuned to your own
specific setup and needs, and Varnish is equipped with
resilience and security measures to ensure that the
solutions you put in place continue to work under
virtually any conditions.

Serve video and scale your platform:
Varnish Streaming Server

Built for high-traffic, high-volume, dynamic content,
Varnish Streaming Server delivers scale, speed,
performance and stability. Able to handle all kinds
of files, all levels of traffic, Varnish helps you be ready
for anything. But how does Varnish Streaming Server
enable the solutions listed above?

5

Live streaming

Diagram 2: Live streaming scenario leveraging Varnish Streaming Server.
The scenario will be quite similar for VoD and OTT deployments.

PACKAGER 2

PACKAGER 1

CLIENTINTERNETCACHES

ENCODER

LIVE
EVENT

6

Varnish Streaming Server features

Store and serve massive amounts of content

One continuous challenge of VoD streaming is the issue
of growing amounts of content - vast libraries and archives
of media that must be stored and easily, quickly accessed
when requested. Varnish Massive Storage Engine (MSE)
provides a significant amount of local cache storage.
Caching live streaming is easy, thanks to the short lifetime
of content, but caching an entire catalogue of VoD, your
storage solution needs to scale to tens and hundreds of
terabytes, allowing to cache everything you want, and not
just the hottest content.

• Built for up to 100+ terabytes of storage on each node

• Fragmentation-proof allocation algorithm

• Higher cache hit rates thanks to a better eviction policy

• Persistent datastore so you don’t lose your entire cache
on restart

Protect your backend: Origin shield

Backend overload is bad news, but with Varnish, you can
shield your origin from excess traffic hitting it and achieve
solid streaming performance and a reasonable cache-hit
rate, even with live streams. Clearly when you plan your
architecture, you will build in cache replication to ensure
that you’re never left with a single point of failure. Also,

because all of this traffic will pass through Varnish, you
are adding an extra layer of security.

Normally, networks of CDNs turn to the origin to fetch
content, and the pressure of an influx of unexpectedly high
traffic or an overload drives origin servers into the ground.
Varnish acts as a content replication engine at the same
time as serving as a protective layer against these traffic
floods, acting as a tier of caches - horizontal scaling in
front of the traffic. Pressure on the origin is reduced
and the reliability and resilience of your streaming
service is secured.

Sources
[2] Keyed-hash message authentication code

Protecting your backends

VARNISH

SHIELD

VARNISH

VARNISH

VARNISH

Diagram 3: Your Varnish layer will exist as close as possible to the origin servers and this
layer will protect backends and serve as much content as possible to other Varnish nodes.

7

Control logic and policy:
Varnish Configuration Language (VCL)

VCL is a major key to the Varnish flexibility offers - giving
you the ability to configure and control the logic governing
your content. Because of this flexibility, you can, for
example, do things like:

Geo-blocking at country or city level

When content needs to be restricted by geography, Varnish
Streaming Server includes a GeoIP VMOD for limiting
or restricting access by specific location. While Varnish
does not have this functionality built in, it is just one of the
many flexible additional modules (VMODs) that can be
added thanks to the flexibility of VCL. By setting a header
indication instructing that a geo-based limitation should
be put in place, we can set up specific restrictions.

For example, allowing requests coming from France only
is as easy as:

Token access in any shape or form

Using VCL, it’s easy to quickly prototype and test the
logic of various authorization schemes. This is greatly
helped by the digest vmod which provides a collection
of hashing functions, enabling you to build and check
HMAC2 very simply.

For example, here, we expect the client to hash the
requested URL using a “secretkey” as a cryptographic
key and placing it in the “check” header:

For the more complex cases, it is also possible to create
a VMOD to improve readability. That is, VCL is an
extremely powerful tool, but sometimes, things can get
a bit convoluted, or simply limited. Those cases can be
handled via VMODs (Varnish modules) - VCL MODules
(like geoip or digest) that mask the complexity, or tap
into lower-level APIs.

Flexible rate limiting and abuse suppression

Designed exactly for these use cases, the throttle VMOD
will act as a guardian, directly in VCL, keeping tabs on
requests, letting you refuse the too-frequent occurrences.

Using the example from the README:

You can limit a single client to download at an unfair rate.
You can specify multiple limits to really fine-tune the access
patterns. An example of this kind of use is, for example,
when you have a VoD library available for streaming on
mobile, and want to rate limit how much bandwidth can
be used.

Also note that because the first argument is a string,
it’s possible to filter IPs, as well as URLs, countries,
and more, including combinations of those parameters.

import geoip;

sub vcl_recv {
 if (geoip.country_code(client.
ip) != “FR”) {
 return (synth(403, “Sorry,
unauthorized country”));
 }
}

import vsthrottle;

if (vsthrottle.is_denied(client.ip,
3, 1s)) {
 return (synth(429, “Too Many
Requests”);
}

Built for high-traffic,
high-volume, dynamic

content, Varnish Streaming
Server delivers scale,
speed, performance

and stability

import digest;

sub vcl_recv {
 if (req.http.check != digest.
hmac_sha256(“secretkey”,req.url)) {
 return (synth(403, “Sorry,
bad secret”));
 }
}

7

8

Boost performance by anticipating the future:
Prefetch to keep your cache warm

Latency/performance lags are still end-users’ number
one complaint about streaming media. Prefetching
content, keeping your cache warm, is one potential
way to boost streaming performance and make the
streaming experience smoother. With the VMOD-http,
you can act predictively, anticipating what the next
logical chunks of content a user client will request,
letting you prefetch content.

What exactly does this mean? You are loading data into
your edge server’s cache before it is even requested -
making it available and ready to serve immediately

when the client requests it. When the predictive prefetch is
accurate, latency should theoretically be reduced because
the time lapse between roundtrip content request and
return to and from the backend is eliminated. This should
also save some strain on the origin server.

With live video, of course, there are only a limited number
of chunks available to prefetch because the live event is
happening in real-time. With VoD, of course, prefetching
has more chunks to work with.

While the VMOD-http functionality extends beyond
prefetching, for streaming prefetching is an important
use. The VMOD lets you execute HTTP requests directly
from VCL and supports synchronous and asynchronous

Latency/performance
lags are still end-users’

number one complaint about
streaming media. Prefetching
content, keeping your cache
warm, is one potential way to
boost streaming performance

and make the streaming
experience smoother

9

operations and connection pooling for higher efficiency.
With asynch requests, you fire and forget HTTP requests
without waiting for responses, i.e. VCL processing
happens without waiting for responses, which speeds
things up. How this fits into prefetching is that an asynch
operation fetches the next logical object into cache: the
next logical URL to be requested based on the current
stream is generated by incrementing the number
sequence of the original one. This may sound more
complicated than it is when it boils down to the fact that
with just six lines of VCL you can warm your cache with
the next video segment and keep it ready to continue
delivering content:

The idea, of course, is that with prefetch capabilities,
you can gain a performance edge and better satisfy
end-user requests.

Transparency - what you see is what you get (and more)

Many streaming solutions on the market today function
something like a “black box”. They do not offer users
any insight into how the solution works or any flexibility
to adapt or configure it to their own needs. These kinds
of solutions are fine for basic streaming, but most
deployments, according to the majority of our customers
who have highlighted this as an issue they’ve encountered
repeatedly, require more oversight and the ability to make
changes and customizations to the streaming platform.
These black box solutions are less flexible or even
impossible to change - and usually come with unforeseen,
unpredictable additional costs as necessary features were
added to the basic ‘black box solution’. This could also add
delays to deployment and make vendor lock-in more likely.

Another feature that boosts transparency is the available
logging facilities, which allow for very easy debugging.
Varnish, compared to other caching solutions, has a very
verbose log output. It writes to a circular buffer called
Varnish Shared Memory Log (VSL). To avoid filling up
your disk with information, it is not persistent by default.
Making it persistent is an option VSL. All the Varnish tools
read from the VSL, process the data and present it to the
user, i.e. varnishstat and varnishlog are the most used.
The former displays statistics from a running varnishd
instance, while the latter shows varnish logs.

All of these issues can create roadblocks down the
line as streaming changes or when it comes time to
restructure or redesign a company’s site architecture.
Not having control over or ability to configure aspects of
the streaming solution creates a number of unneeded
question marks.

Security

Secure connections with TLS/SSL safeguard the data
we’re sending; this has not always been key for streaming.
But it has become standard practice to stream over SSL,
and SSL is required to stream in certain markets and on
certain sites, such as Facebook and Google. SSL and
non-SSL traffic cannot be mixed. For example, if you want
to run a video on nytimes.com or any other site, which
is served over SSL, your video needs to be served over
SSL. Also, looking at sites like at Netflix and YouTube,
content is all served over SSL, as major browsers have
begun showing warnings for non-SSL traffic. In line with
this, the video industry as a whole is in the process of
standardizing on SSL delivery.

With the European GDPR data processing and storage
rules, security is more essential than ever. Also, more
and more data are being delivered on mobile - mobile
connections usually deliver content faster if the data are
encrypted (even if it has not been standard practice to
encrypt video in the past).

Varnish Total Encryption3 is another security measure
that will encrypt the entire cache as a means to safeguard
cache data against bugs and vulnerabilities, such as
Meltdown and Spectre and Cloudbleed respectively.
However, it does more than just make your cache
unreadable to unwanted eyes. Varnish Total Encryption
prevents an entire class of cache vulnerability, the cache
leak. Caches are designed for speed and efficiency, and
are designed to be fast and open and not secured and
locked down. With Varnish Total Encryption, assigning
each and every cache object its own unique AES256
encryption key provides the lockdown the cache
historically lacked.

vcl 4.0;
import http;

sub vcl_recv{
 if (req.url ~”^/live/”) {
 http.init(0);
 http.req_copy_headers(0);
 http.req_set_
method(0,”HEAD”);
 http.req_s et_url(0, http.
prefetch_next_url());
 http.req_send_and_finish(0);
 }
}

Sources
[3] To read a full overview of Varnish Total Encryption:
https://info.varnish-software.com/blog/introducing-varnish-total-encryption

9

10

Who should use Varnish
Streaming Server?

Everyone is cutting the cord in one way or another,
creating use cases in multiple sectors and industries.

With these considerations in mind, virtually anyone will
benefit from using Varnish as their solution for VoD,
OTT and live streaming, including:

CDNs

Content providers

• Broadcast networks/channels/telecoms companies
(who do not want to be seen only as the “dumb pipe”
supplying the bandwidth)

• Media outlets – TV, radio, online

• Streaming content sites/aggregated content,
such as Dailymotion

• Sports associations (as mentioned, the NFL has
not managed on its own on this front very well, while
Major League Baseball was so technically adept
that they have their own spin-off, in-house streaming
media department4 that handles not only baseball but
streaming digital distribution for a lot of other very big
media names).

• Corporations, universities, healthcare organizations
and other large institutions moving into live streaming
of lectures and training, etc.

This is really only a sampling of who should be and
can benefit from using Varnish for streaming.

Get your feet wet: Start HTTP
streaming with Varnish
Streaming Server

As the internet and the protocols governing it have
matured, the “consumerization” of streaming multimedia,
complete with stability, speed and high definition, has
fueled progressive development, making scalable
streaming mainstream. HTTP has been the backbone of
what got us to where we are - and it will continue to be
the standard through which we deploy technologies that
deliver the ever-growing stream of multimedia content to
ever-hungrier end-users.

We have helped our customers globally to build advanced,
scalable and fast streaming solutions on their own terms
through the whole lifecycle of the software: Design,
feature development and enhancements, implementation
and optimization. Varnish Streaming Server offers all
the flexibility and performance to make the streaming
experience high-performance, robust and efficient
while giving end-users what they want and expect.

About Varnish® Software

Varnish® Software is a global pioneer in high
performance digital content delivery. Powered by a
uniquely flexible caching technology, Varnish® Software’s
solutions are indispensable common denominators
among some of the world’s most popular brands,
such as Sky, Emirates and Tesla. Our solutions enable
organizations worldwide to provide a superior user
experience with fast, digital content delivery at any scale,
while giving them the flexibility to maintain control over
their content and make the technology their own.

Sources
[4] http://www.theverge.com/2015/8/4/9090897/
mlb-bam-live-streaming-internet-tv-nhl-hbo-now-espn

10

11

Everyone is cutting the cord
in one way or another, creating
use cases in multiple sectors

and industries. With these
considerations in mind, virtually
anyone will benefit from using

Varnish as their solution for
VoD, OTT and live streaming

www.varnish-software.com

www.varnish-software.com

Los Angeles - Paris - London

Stockholm - Singapore - Karlstad

Dusseldorf - Oslo - Tokyo

